1
|
Li Y, Li Y, Song Y, Liu S. Advances in research and application of photodynamic therapy in cholangiocarcinoma (Review). Oncol Rep 2024; 51:53. [PMID: 38334150 DOI: 10.3892/or.2024.8712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a disease characterized by insidious clinical manifestations and challenging to diagnose. Patients are usually diagnosed at an advanced stage and miss the opportunity for radical surgery. Therefore, effective palliative therapy is the main treatment approach for unresectable CCA. Current common palliative treatments include biliary drainage, chemotherapy, radiotherapy, targeted therapy and immunotherapy. However, these treatments only offer limited improvement in quality of life and survival. Photodynamic therapy (PDT) is a novel local treatment method that is considered a safe tumor ablation method for numerous cancers. It has shown good efficacy in various studies of CCA and is expected to become an important treatment for CCA. In the present study, the mechanisms of PDT in the treatment of CCA were systematically explored and the progress in the research of photosensitizers was discussed. The current study focused on the various PDT protocols and their therapeutic effects in CCA, with the objective of providing a new horizon for future research and clinical applications of PDT in the treatment of CCA.
Collapse
Affiliation(s)
- Yufeng Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Yuhang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Yinghui Song
- Central Laboratory of Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410005, P.R. China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
2
|
Mosaddad SA, Namanloo RA, Aghili SS, Maskani P, Alam M, Abbasi K, Nouri F, Tahmasebi E, Yazdanian M, Tebyaniyan H. Photodynamic therapy in oral cancer: a review of clinical studies. Med Oncol 2023; 40:91. [PMID: 36749489 DOI: 10.1007/s12032-023-01949-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/08/2023] [Indexed: 02/08/2023]
Abstract
A significant mortality rate is associated with oral cancer, particularly in cases of late-stage diagnosis. Since the last decades, oral cancer survival rates have only gradually improved despite advances in treatment. This poor success rate is mainly due to the development of secondary tumors, local recurrence, and regional failure. Invasive treatments frequently have a negative impact on the aesthetic and functional outcomes of survivors. Novel approaches are thus needed to manage this deadly disease in light of these statistics. In photodynamic therapy (PDT), a light-sensitive medication called a photosensitizer is given first, followed by exposure to light of the proper wavelength that matches the absorbance band of the photosensitizer. The tissue oxygen-induced cytotoxic free radicals kill tumor cells directly, harm the microvascular structure, and cause inflammatory reactions at the targeted sites. In the case of early lesions, PDT can be used as a stand-alone therapy, and in the case of advanced lesions, it can be used as adjuvant therapy. The current review article discussed the uses of PDT in oral cancer therapy based on recent advances in this field.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Seyedeh Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Poorya Maskani
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Nouri
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran.
| |
Collapse
|
3
|
Huis in ‘t Veld RV, Heuts J, Ma S, Cruz LJ, Ossendorp FA, Jager MJ. Current Challenges and Opportunities of Photodynamic Therapy against Cancer. Pharmaceutics 2023; 15:pharmaceutics15020330. [PMID: 36839652 PMCID: PMC9965442 DOI: 10.3390/pharmaceutics15020330] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is an established, minimally invasive treatment for specific types of cancer. During PDT, reactive oxygen species (ROS) are generated that ultimately induce cell death and disruption of the tumor area. Moreover, PDT can result in damage to the tumor vasculature and induce the release and/or exposure of damage-associated molecular patterns (DAMPs) that may initiate an antitumor immune response. However, there are currently several challenges of PDT that limit its widespread application for certain indications in the clinic. METHODS A literature study was conducted to comprehensively discuss these challenges and to identify opportunities for improvement. RESULTS The most notable challenges of PDT and opportunities to improve them have been identified and discussed. CONCLUSIONS The recent efforts to improve the current challenges of PDT are promising, most notably those that focus on enhancing immune responses initiated by the treatment. The application of these improvements has the potential to enhance the antitumor efficacy of PDT, thereby broadening its potential application in the clinic.
Collapse
Affiliation(s)
- Ruben V. Huis in ‘t Veld
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
- Department of Radiology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
- Correspondence:
| | - Jeroen Heuts
- Department of Immunology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Sen Ma
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Luis J. Cruz
- Department of Radiology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Ferry A. Ossendorp
- Department of Immunology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| |
Collapse
|
4
|
Souce M, Tfayli A, Rosilio V, Nicolis I, Kasselouri A. Photosensitizers incorporation in SOPC films at different hydration levels. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184077. [PMID: 36302493 DOI: 10.1016/j.bbamem.2022.184077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/29/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
In the present work, two photosensitizing drugs, Temoporfin and Verteporfin have been studied. Both have regular approval in Europe, Temoporfin for the treatment of head and neck cancers and Verteporfin for the treatment of age-related macular degeneration (AMD). The treatment modality, known as "Photodynamic Therapy" (PDT), involves drug activation with visible light in the presence of oxygen and production of reactive oxygen species (ROS) to destroy the pathological tissues. Both drugs are inactive in the absence of light, presenting only few side effects. The incorporation of the two drugs into a SOPC bilayer -used as a model membrane- was studied by ATR-FTIR. An original approach was applied, involving lyotropic transitions and a very slow dehydration rate of the sample. In low water content and dry film, Temoporfin highly affects stretching vibrations of SOPC chains and polar groups, showing that Temoporfin is inserted into the bilayer in both apolar and polar regions. In fully hydrated layers, Temoporfin - SOPC interactions still take place but only impact Temoporfin vibration bands. Verteporfin shows smaller effect on both chain and polar groups' vibrations of SOPC, with the exception of choline group, suggesting that Verteporfin is inserted into the bilayer to a lesser extent and remains at the bilayer polar interface. These results can be used to better understand drugs behavior in biological media.
Collapse
Affiliation(s)
- Martin Souce
- Lip(Sys)(2), Chimie Analytique Pharmaceutique, Université Paris-Saclay, F-92290 Châtenay-Malabry cedex, France
| | - Ali Tfayli
- Lip(Sys)(2), Chimie Analytique Pharmaceutique, Université Paris-Saclay, F-92290 Châtenay-Malabry cedex, France
| | - Véronique Rosilio
- Institut Galien Paris Sud, CNRS, Université Paris-Saclay, F-92290 Châtenay-Malabry cedex, France
| | - Ioannis Nicolis
- UR 7537 - BioSTM « Biostatistique, Traitement et Modélisation des données biologiques » Université Paris Cité, F-75270 Paris cedex 06, France
| | - Athena Kasselouri
- Lip(Sys)(2), Chimie Analytique Pharmaceutique, Université Paris-Saclay, F-92290 Châtenay-Malabry cedex, France.
| |
Collapse
|
5
|
Wei X, Chen Y, Jiang X, Peng M, Liu Y, Mo Y, Ren D, Hua Y, Yu B, Zhou Y, Liao Q, Wang H, Xiang B, Zhou M, Li X, Li G, Li Y, Xiong W, Zeng Z. Mechanisms of vasculogenic mimicry in hypoxic tumor microenvironments. Mol Cancer 2021; 20:7. [PMID: 33397409 PMCID: PMC7784348 DOI: 10.1186/s12943-020-01288-1] [Citation(s) in RCA: 213] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
Background Vasculogenic mimicry (VM) is a recently discovered angiogenetic process found in many malignant tumors, and is different from the traditional angiogenetic process involving vascular endothelium. It involves the formation of microvascular channels composed of tumor cells; therefore, VM is considered a new model for the formation of new blood vessels in aggressive tumors, and can provide blood supply for tumor growth. Many studies have pointed out that in recent years, some clinical treatments against angiogenesis have not been satisfactory possibly due to the activation of VM. Although the mechanisms underlying VM have not been fully elucidated, increasing research on the soil “microenvironment” for tumor growth suggests that the initial hypoxic environment in solid tumors is inseparable from VM. Main body In this review, we describe that the stemness and differentiation potential of cancer stem cells are enhanced under hypoxic microenvironments, through hypoxia-induced epithelial-endothelial transition (EET) and extracellular matrix (ECM) remodeling to form the specific mechanism of vasculogenic mimicry; we also summarized some of the current drugs targeting VM through these processes, suggesting a new reference for the clinical treatment of tumor angiogenesis. Conclusion Overall, the use of VM inhibitors in combination with conventional anti-angiogenesis treatments is a promising strategy for improving the effectiveness of targeted angiogenesis treatments; further, considering the importance of hypoxia in tumor invasion and metastasis, drugs targeting the hypoxia signaling pathway seem to achieve good results.
Collapse
Affiliation(s)
- Xiaoxu Wei
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yunhua Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xianjie Jiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Miao Peng
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yiduo Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Daixi Ren
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yuze Hua
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Boyao Yu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yujuan Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Li Z, Yin Y, Jin W, Zhang B, Yan H, Mei H, Wang H, Guo T, Shi W, Hu Y. Tissue Factor-Targeted "O 2-Evolving" Nanoparticles for Photodynamic Therapy in Malignant Lymphoma. Front Oncol 2020; 10:524712. [PMID: 33240803 PMCID: PMC7683716 DOI: 10.3389/fonc.2020.524712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 09/21/2020] [Indexed: 11/30/2022] Open
Abstract
Vascular-targeted PDT (vPDT) has produced promising results in the treatment of many cancers, including drug-resistant ones, but little is known about its efficacy in lymphoma. Unfortunately, the lack of a specific therapeutic target and a hypoxic microenvironment for lymphoma jeopardizes the efficacy of vPDT severely. In this study, we designed a lymphoma tissue factor-targeted “O2-evolving” strategy combining PDT with catalase and HMME-encapsulated, EGFP-EGF1-modified PEG-PLGA nanoparticles (CENPs) to boost PDT efficiency; this combination takes advantage of the low oxygen tension of lymphoma. In our results, CENPs accumulated effectively in the vascular lymphoma in vivo and in vitro, and this accumulation increased further with PDT treatment. Per positron emission tomography imaging, combining CENPs with PDT inhibited lymphoma glucose metabolism significantly. The expression of hypoxia-inducible factor (HIF)-1α in the entrapped catalase groups reduced markedly. These data show that the combined administration of PDT and CENPs can prompt tissue factor-cascade-targeted and self-supply of oxygen and that it has a good therapeutic effect on malignant lymphoma.
Collapse
Affiliation(s)
- Ziying Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, China
| | - Yanxue Yin
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, China
| | - Weiwei Jin
- Department of Cardiovascular, Optical Valley School District, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Bo Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, China.,Department of Systems Biology, National Cancer Institute Comprehensive Cancer Center, Beckman Research Institute, City of Hope, Monrovia, CA, United States
| | - Han Yan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, China
| | - Huafang Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, China
| | - Tao Guo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, China
| | - Wei Shi
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, China
| |
Collapse
|
7
|
Wei C, Li X. The Role of Photoactivated and Non-Photoactivated Verteporfin on Tumor. Front Pharmacol 2020; 11:557429. [PMID: 33178014 PMCID: PMC7593515 DOI: 10.3389/fphar.2020.557429] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Verteporfin (VP) has long been clinically used to treat age-related macular degeneration (AMD) through photodynamic therapy (PDT). Recent studies have reported a significant anti-tumor effect of VP as well. Yes-associated protein (YAP) is a pro-tumorigenic factor that is aberrantly expressed in various cancers and is a central effector of the Hippo signaling pathway that regulates organ size and tumorigenesis. VP can inhibit YAP without photoactivation, along with suppressing autophagy, and downregulating germinal center kinase-like kinase (GLK) and STE20/SPS1-related proline/alanine-rich kinase (SPAK). In addition, VP can induce mitochondrial damage and increase the production of reactive oxygen species (ROS) upon photoactivation, and is an effective photosensitizer (PS) in anti-tumor PDT. We have reviewed the direct and adjuvant therapeutic action of VP as a PS, and its YAP/TEA domain (TEAD)-dependent and independent pharmacological effects in the absence of light activation against cancer cells and solid tumors. Based on the present evidence, VP may be repositioned as a promising anti-cancer chemotherapeutic and adjuvant drug.
Collapse
Affiliation(s)
- Changran Wei
- Department of The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangqi Li
- Department of The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| |
Collapse
|
8
|
Gheewala T, Skwor T, Munirathinam G. Photosensitizers in prostate cancer therapy. Oncotarget 2018; 8:30524-30538. [PMID: 28430624 PMCID: PMC5444762 DOI: 10.18632/oncotarget.15496] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 02/06/2017] [Indexed: 01/17/2023] Open
Abstract
The search for new therapeutics for the treatment of prostate cancer is ongoing with a focus on the balance between the harms and benefits of treatment. New therapies are being constantly developed to offer treatments similar to radical therapies, with limited side effects. Photodynamic therapy (PDT) is a promising strategy in delivering focal treatment in primary as well as post radiotherapy prostate cancer. PDT involves activation of a photosensitizer (PS) by appropriate wavelength of light, generating transient levels of reactive oxygen species (ROS). Several photosensitizers have been developed with a focus on treating prostate cancer like mTHPC, motexafin lutetium, padoporfin and so on. This article will review newly developed photosensitizers under clinical trials for the treatment of prostate cancer, along with the potential advantages and disadvantages in delivering focal therapy.
Collapse
Affiliation(s)
- Taher Gheewala
- Department of Biomedical Sciences, University of Illinois, College of Medicine, Rockford, IL, USA
| | - Troy Skwor
- Department of Chemical and Biological Sciences, Rockford University, Rockford, IL, USA
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, University of Illinois, College of Medicine, Rockford, IL, USA
| |
Collapse
|
9
|
Kraus D, Palasuberniam P, Chen B. Targeting Phosphatidylinositol 3-Kinase Signaling Pathway for Therapeutic Enhancement of Vascular-Targeted Photodynamic Therapy. Mol Cancer Ther 2017; 16:2422-2431. [PMID: 28835385 DOI: 10.1158/1535-7163.mct-17-0326] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/10/2017] [Accepted: 08/07/2017] [Indexed: 11/16/2022]
Abstract
Vascular-targeted photodynamic therapy (PDT) selectively disrupts vascular function by inducing oxidative damages to the vasculature, particularly endothelial cells. Although effective tumor eradication and excellent safety profile are well demonstrated in both preclinical and clinical studies, incomplete vascular shutdown and angiogenesis are known to cause tumor recurrence after vascular-targeted PDT. We have explored therapeutic enhancement of vascular-targeted PDT with PI3K signaling pathway inhibitors because the activation of PI3K pathway was involved in promoting endothelial cell survival and proliferation after PDT. Here, three clinically relevant small-molecule inhibitors (BYL719, BKM120, and BEZ235) of the PI3K pathway were evaluated in combination with verteporfin-PDT. Although all three inhibitors were able to synergistically enhance PDT response in endothelial cells, PDT combined with dual PI3K/mTOR inhibitor BEZ235 exhibited the strongest synergism, followed in order by combinations with pan-PI3K inhibitor BKM120 and p110α isoform-selective inhibitor BYL719. Combination treatments of PDT and BEZ235 exhibited a cooperative inhibition of antiapoptotic Bcl-2 family protein Mcl-1 and induced more cell apoptosis than each treatment alone. In addition to increasing treatment lethality, BEZ235 combined with PDT effectively inhibited PI3K pathway activation and consequent endothelial cell proliferation after PDT alone, leading to a sustained growth inhibition. In the PC-3 prostate tumor model, combination treatments improved treatment outcomes by turning a temporary tumor regrowth delay induced by PDT alone to a more long-lasting treatment response. Our study strongly supports the combination of vascular-targeted PDT and PI3K pathway inhibitors, particularly mTOR inhibitors, for therapeutic enhancement. Mol Cancer Ther; 16(11); 2422-31. ©2017 AACR.
Collapse
Affiliation(s)
- Daniel Kraus
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, Pennsylvania
| | - Pratheeba Palasuberniam
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, Pennsylvania
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, Pennsylvania. .,Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Chen B. 14 Vascular imaging in photodynamic therapy. IMAGING IN PHOTODYNAMIC THERAPY 2017:275-292. [DOI: 10.1201/9781315278179-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
11
|
Saini R, Lee NV, Liu KYP, Poh CF. Prospects in the Application of Photodynamic Therapy in Oral Cancer and Premalignant Lesions. Cancers (Basel) 2016; 8:cancers8090083. [PMID: 27598202 PMCID: PMC5040985 DOI: 10.3390/cancers8090083] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/26/2016] [Accepted: 08/30/2016] [Indexed: 12/16/2022] Open
Abstract
Oral cancer is a global health burden with significantly poor survival, especially when the diagnosis is at its late stage. Despite advances in current treatment modalities, there has been minimal improvement in survival rates over the last five decades. The development of local recurrence, regional failure, and the formation of second primary tumors accounts for this poor outcome. For survivors, cosmetic and functional compromises resulting from treatment are often devastating. These statistics underscore the need for novel approaches in the management of this deadly disease. Photodynamic therapy (PDT) is a treatment modality that involves administration of a light-sensitive drug, known as a photosensitizer, followed by light irradiation of an appropriate wavelength that corresponds to an absorbance band of the sensitizer. In the presence of tissue oxygen, cytotoxic free radicals that are produced cause direct tumor cell death, damage to the microvasculature, and induction of inflammatory reactions at the target sites. PDT offers a prospective new approach in controlling this disease at its various stages either as a stand-alone therapy for early lesions or as an adjuvant therapy for advanced cases. In this review, we aim to explore the applications of PDT in oral cancer therapy and to present an overview of the recent advances in PDT that can potentially reposition its utility for oral cancer treatment.
Collapse
Affiliation(s)
- Rajan Saini
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Nathan V Lee
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Kelly Y P Liu
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Catherine F Poh
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
| |
Collapse
|
12
|
Pogue BW, Elliott JT, Kanick SC, Davis SC, Samkoe KS, Maytin EV, Pereira SP, Hasan T. Revisiting photodynamic therapy dosimetry: reductionist & surrogate approaches to facilitate clinical success. Phys Med Biol 2016; 61:R57-89. [PMID: 26961864 DOI: 10.1088/0031-9155/61/7/r57] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Photodynamic therapy (PDT) can be a highly complex treatment, with many parameters influencing treatment efficacy. The extent to which dosimetry is used to monitor and standardize treatment delivery varies widely, ranging from measurement of a single surrogate marker to comprehensive approaches that aim to measure or estimate as many relevant parameters as possible. Today, most clinical PDT treatments are still administered with little more than application of a prescribed drug dose and timed light delivery, and thus the role of patient-specific dosimetry has not reached widespread clinical adoption. This disconnect is at least partly due to the inherent conflict between the need to measure and understand multiple parameters in vivo in order to optimize treatment, and the need for expedience in the clinic and in the regulatory and commercialization process. Thus, a methodical approach to selecting primary dosimetry metrics is required at each stage of translation of a treatment procedure, moving from complex measurements to understand PDT mechanisms in pre-clinical and early phase I trials, towards the identification and application of essential dose-limiting and/or surrogate measurements in phase II/III trials. If successful, identifying the essential and/or reliable surrogate dosimetry measurements should help facilitate increased adoption of clinical PDT. In this paper, examples of essential dosimetry points and surrogate dosimetry tools that may be implemented in phase II/III trials are discussed. For example, the treatment efficacy as limited by light penetration in interstitial PDT may be predicted by the amount of contrast uptake in CT, and so this could be utilized as a surrogate dosimetry measurement to prescribe light doses based upon pre-treatment contrast. Success of clinical ALA-based skin lesion treatment is predicted almost uniquely by the explicit or implicit measurements of photosensitizer and photobleaching, yet the individualization of treatment based upon each patients measured bleaching needs to be attempted. In the case of ALA, lack of PpIX is more likely an indicator that alternative PpIX production methods must be implemented. Parsimonious dosimetry, using surrogate measurements that are clinically acceptable, might strategically help to advance PDT in a medical world that is increasingly cost and time sensitive. Careful attention to methodologies that can identify and advance the most critical dosimetric measurements, either direct or surrogate, are needed to ensure successful incorporation of PDT into niche clinical procedures.
Collapse
Affiliation(s)
- Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA. Department of Surgery, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Li R, Zhang Y, Mohamed MA, Wei X, Cheng C. Macrophages play an essential role in the long effects of low-dose photodynamic therapy on vessel permeability. Int J Biochem Cell Biol 2015; 71:55-61. [PMID: 26667270 DOI: 10.1016/j.biocel.2015.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/25/2015] [Accepted: 12/02/2015] [Indexed: 12/16/2022]
Abstract
Low-dose photodynamic therapy (L-PDT) has been used to transiently increase the permeability of tumor vessels to improve the delivery of chemotherapeutic drugs to lung tumors. However, the effects of L-PDT in a long-term on delivery of chemotherapeutic drugs are unknown. In this study, we studied this question as well as the underlying mechanisms. We found that the effects of L-PDT on tumor vessel permeability appeared to be prolonged. Moreover, L-PDT significantly increased the number of tumor associated macrophages, and appeared to induce macrophage polarization to a M1 phenotype. Further analyses showed that L-PDT upregulated stromal cell-derived factor 1 (SDF-1) in tumor to recruit macrophages through a SDF-1/Chemokine (C-X-C Motif) Receptor 4 (CXCR4) axis, which accounted for the prolonged effects of L-PDT on vessel permeability. Application of a specific CXCR4 inhibitor significantly suppressed the L-PDT-induced macrophage recruitment, resulting in abolishment of the prolonged effects of L-PDT on vessel permeability. Furthermore, the inhibitory effects of Liporubicin™ on the growth of the implanted tumor in L-PDT-treated mice were significantly attenuated by CXCR4 inhibition. Thus, our data demonstrate a previously unappreciated long-lasting effect of L-PDT on vessel permeability, and suggest that this long-lasting effects of L-PDT treatment on vessel permeability may result from modulation of macrophage recruitment and polarization. Hence, L-PDT may be a promising method to assist chemotherapeutic approaches.
Collapse
Affiliation(s)
- Rui Li
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Zhang
- Department of Surgery, the Third Affiliated Hospital of Jianghan University, 259 Baixiu Street, Wuhan 430030, China
| | - Mohamed Abdulkadir Mohamed
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiang Wei
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cai Cheng
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
14
|
Shirmanova M, Yuzhakova D, Snopova L, Perelman G, Serebrovskaya E, Lukyanov K, Turchin I, Subochev P, Lukyanov S, Kamensky V, Zagaynova E. Towards PDT with Genetically Encoded Photosensitizer KillerRed: A Comparison of Continuous and Pulsed Laser Regimens in an Animal Tumor Model. PLoS One 2015; 10:e0144617. [PMID: 26657001 PMCID: PMC4686120 DOI: 10.1371/journal.pone.0144617] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/20/2015] [Indexed: 01/12/2023] Open
Abstract
The strong phototoxicity of the red fluorescent protein KillerRed allows it to be considered as a potential genetically encoded photosensitizer for the photodynamic therapy (PDT) of cancer. The advantages of KillerRed over chemical photosensitizers are its expression in tumor cells transduced with the appropriate gene and direct killing of cells through precise damage to any desired cell compartment. The ability of KillerRed to affect cell division and to induce cell death has already been demonstrated in cancer cell lines in vitro and HeLa tumor xenografts in vivo. However, the further development of this approach for PDT requires optimization of the method of treatment. In this study we tested the continuous wave (593 nm) and pulsed laser (584 nm, 10 Hz, 18 ns) modes to achieve an antitumor effect. The research was implemented on CT26 subcutaneous mouse tumors expressing KillerRed in fusion with histone H2B. The results showed that the pulsed mode provided a higher rate of photobleaching of KillerRed without any temperature increase on the tumor surface. PDT with the continuous wave laser was ineffective against CT26 tumors in mice, whereas the pulsed laser induced pronounced histopathological changes and inhibition of tumor growth. Therefore, we selected an effective regimen for PDT when using the genetically encoded photosensitizer KillerRed and pulsed laser irradiation.
Collapse
Affiliation(s)
- Marina Shirmanova
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
- * E-mail:
| | - Diana Yuzhakova
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Ludmila Snopova
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
| | - Gregory Perelman
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Ekaterina Serebrovskaya
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Konstantin Lukyanov
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Ilya Turchin
- Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Pavel Subochev
- Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Sergey Lukyanov
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Vladislav Kamensky
- Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Elena Zagaynova
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
| |
Collapse
|
15
|
Kawczyk-Krupka A, Wawrzyniec K, Musiol SK, Potempa M, Bugaj AM, Sieroń A. Treatment of localized prostate cancer using WST-09 and WST-11 mediated vascular targeted photodynamic therapy-A review. Photodiagnosis Photodyn Ther 2015; 12:567-74. [PMID: 26467273 DOI: 10.1016/j.pdpdt.2015.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 09/23/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) is well known for its direct cytotoxicity of the free radical-producing photochemical reaction, indirect mechanisms of action including modulation of intrinsic anti-tumour immune activity, and occlusion of pathologically altered tumour vessels leading to tumour ischaemia. The aim of this work is to critically review the evidence base for the use of vascular targeted PDT (VTP) to treat low-risk prostate cancer, and to discuss perspectives and challenges yet to be overcome. A brief general overview of focal prostate cancer therapy was provided, followed by a discussion of both basic and clinical research pertaining to prostate cancer VTP, with a focus on the palladium-based WST-09 and WST-11 photosensitisers. MATERIALS AND METHOD Literature on VTP for prostate cancer with the fallowing medical subject headings search terms: prostate cancer, photodynamic therapy, vascular targeted photodynamic therapy, bacteriopheophorbide were reviewed. The articles were selected by their relevance to the topic. RESULTS The clinical and basic research data available to date show much promise for WST-09, and WST-11 based VTP eventually joining the standard urologist's armamentarium against prostate cancer. With good reported tolerability and efficacy VTP can be proposed as an intermediate treatment for local low risk disease, halfway between watchful waiting and radical therapy.
Collapse
Affiliation(s)
- A Kawczyk-Krupka
- School of Medicine with the Division of Dentistry in Zabrze, Department and Clinic of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego Street 15, 41-902 Bytom, Poland.
| | - K Wawrzyniec
- Department of Internal Diseases, 11 Listopada 48, 28-200 Staszów, Poland
| | - S K Musiol
- School of Clinical Medicine, University of Cambridge, Cambridge, Addenbrooke's Hospital, Hills Rd, Cambridge CB2 OSP, United Kingdom
| | - M Potempa
- School of Medicine with the Division of Dentistry in Zabrze, Department and Clinic of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego Street 15, 41-902 Bytom, Poland
| | - A M Bugaj
- School of Medicine with the Division of Dentistry in Zabrze, Department and Clinic of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego Street 15, 41-902 Bytom, Poland; College of Health, Beauty Care and Education, Brzeźnicka 3, 60-133 Poznań, Poland
| | - A Sieroń
- School of Medicine with the Division of Dentistry in Zabrze, Department and Clinic of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego Street 15, 41-902 Bytom, Poland
| |
Collapse
|
16
|
Zhang Y, Wen J, Zhou L, Qin L. Utilizing a high-throughput microfluidic platform to study hypoxia-driven mesenchymal-mode cell migration. Integr Biol (Camb) 2015; 7:672-80. [PMID: 25965948 DOI: 10.1039/c5ib00059a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hypoxia is a critical microenvironment in tumor pathogenesis. There is a close relationship between hypoxia, tumor metastasis and poor prognosis. Hypoxia has been shown to induce epithelial-mesenchymal transition and high levels of lactic acid production, through which cancer cells gain migratory capability. Here, we present a high-throughput microfluidic platform with a controlled oxygen environment to specifically monitor mesenchymal migration under hypoxic conditions. We found that, combined with a slightly alkaline microenvironment, such a platform can help to improve the efficiency of antimetastatic drugs. We also use this platform to study primary and rare cells from mice and demonstrate the correlation between on-chip results and in vivo outcome. This device may provide a new opportunity for biologists and clinicians to better perform assays that evaluate cancer cell behaviors related to metastasis.
Collapse
Affiliation(s)
- Yuanqing Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
17
|
Fateye B, Wan A, Yang X, Myers K, Chen B. Comparison between endothelial and tumor cells in the response to verteporfin-photodynamic therapy and a PI3K pathway inhibitor. Photodiagnosis Photodyn Ther 2015; 12:19-26. [DOI: 10.1016/j.pdpdt.2015.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
|
18
|
Wang Y, Wang X, Le Bitoux MA, Wagnieres G, Vandenbergh H, Gonzalez M, Ris HB, Perentes JY, Krueger T. Fluence plays a critical role on the subsequent distribution of chemotherapy and tumor growth delay in murine mesothelioma xenografts pre-treated by photodynamic therapy. Lasers Surg Med 2015; 47:323-30. [DOI: 10.1002/lsm.22329] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Yabo Wang
- Department of Thoracic and Vascular Surgery; Centre Hospitalier Universitaire Vaudois; Ecole Polytechnique Federale de Lausanne; Lausanne Switzerland
| | - Xingyu Wang
- Department of Thoracic and Vascular Surgery; Centre Hospitalier Universitaire Vaudois; Ecole Polytechnique Federale de Lausanne; Lausanne Switzerland
| | - Marie-Aude Le Bitoux
- Department of Pathology; Centre Hospitalier Universitaire Vaudois; Ecole Polytechnique Federale de Lausanne; Lausanne Switzerland
| | - Georges Wagnieres
- Department of Chemistry; Ecole Polytechnique Federale de Lausanne; Lausanne Switzerland
| | - Hubert Vandenbergh
- Department of Chemistry; Ecole Polytechnique Federale de Lausanne; Lausanne Switzerland
| | - Michel Gonzalez
- Department of Thoracic and Vascular Surgery; Centre Hospitalier Universitaire Vaudois; Ecole Polytechnique Federale de Lausanne; Lausanne Switzerland
| | - Hans-Beat Ris
- Department of Thoracic and Vascular Surgery; Centre Hospitalier Universitaire Vaudois; Ecole Polytechnique Federale de Lausanne; Lausanne Switzerland
| | - Jean Y Perentes
- Department of Thoracic and Vascular Surgery; Centre Hospitalier Universitaire Vaudois; Ecole Polytechnique Federale de Lausanne; Lausanne Switzerland
| | - Thorsten Krueger
- Department of Thoracic and Vascular Surgery; Centre Hospitalier Universitaire Vaudois; Ecole Polytechnique Federale de Lausanne; Lausanne Switzerland
| |
Collapse
|
19
|
Meerovich IG, Kazachkina NI, Savitsky AP. Investigation of the effect of photosensitizer Tiosense on the tumor model mel Kor-TurboRFP expressed red fluorescent protein. RUSS J GEN CHEM+ 2015. [DOI: 10.1134/s1070363215010429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Perentes JY, Wang Y, Wang X, Abdelnour E, Gonzalez M, Decosterd L, Wagnieres G, van den Bergh H, Peters S, Ris HB, Krueger T. Low-Dose Vascular Photodynamic Therapy Decreases Tumor Interstitial Fluid Pressure, which Promotes Liposomal Doxorubicin Distribution in a Murine Sarcoma Metastasis Model. Transl Oncol 2014; 7:S1936-5233(14)00045-X. [PMID: 24836648 PMCID: PMC4145392 DOI: 10.1016/j.tranon.2014.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/24/2014] [Accepted: 03/26/2014] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION Solid tumors are known to have an abnormal vasculature that limits the distribution of chemotherapy. We have recently shown that tumor vessel modulation by low-dose photodynamic therapy (L-PDT) could improve the uptake of macromolecular chemotherapeutic agents such as liposomal doxorubicin (Liporubicin) administered subsequently. However, how this occurs is unknown. Convection, the main mechanism for drug transport between the intravascular and extravascular spaces, is mostly related to interstitial fluid pressure (IFP) and tumor blood flow (TBF). Here, we determined the changes of tumor and surrounding lung IFP and TBF before, during, and after vascular L-PDT. We also evaluated the effect of these changes on the distribution of Liporubicin administered intravenously (IV) in a lung sarcoma metastasis model. MATERIALS AND METHODS A syngeneic methylcholanthrene-induced sarcoma cell line was implanted subpleurally in the lung of Fischer rats. Tumor/surrounding lung IFP and TBF changes induced by L-PDT were determined using the wick-in-needle technique and laser Doppler flowmetry, respectively. The spatial distribution of Liporubicin in tumor and lung tissues following IV drug administration was then assessed in L-PDT-pretreated animals and controls (no L-PDT) by epifluorescence microscopy. RESULTS L-PDT significantly decreased tumor but not lung IFP compared to controls (no L-PDT) without affecting TBF. These conditions were associated with a significant improvement in Liporubicin distribution in tumor tissues compared to controls (P < .05). DISCUSSION L-PDT specifically enhanced convection in blood vessels of tumor but not of normal lung tissue, which was associated with a significant improvement of Liporubicin distribution in tumors compared to controls.
Collapse
Affiliation(s)
- Jean Yannis Perentes
- Division of Thoracic and Vascular Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| | - Yabo Wang
- Division of Thoracic and Vascular Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Xingyu Wang
- Division of Thoracic and Vascular Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Etienne Abdelnour
- Division of Thoracic and Vascular Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Michel Gonzalez
- Division of Thoracic and Vascular Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Laurent Decosterd
- Department of Clinical Pharmacology and Toxicology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Georges Wagnieres
- Laboratory of Organometallic and Medicinal Chemistry, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hubert van den Bergh
- Laboratory of Organometallic and Medicinal Chemistry, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Solange Peters
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Hans-Beat Ris
- Division of Thoracic and Vascular Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Thorsten Krueger
- Division of Thoracic and Vascular Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| |
Collapse
|
21
|
Skupin-Mrugalska P, Piskorz J, Goslinski T, Mielcarek J, Konopka K, Düzgüneş N. Current status of liposomal porphyrinoid photosensitizers. Drug Discov Today 2013; 18:776-84. [PMID: 23591149 DOI: 10.1016/j.drudis.2013.04.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/02/2013] [Accepted: 04/09/2013] [Indexed: 10/27/2022]
Abstract
The complete eradication of various targets, such as infectious agents or cancer cells, while leaving healthy host cells untouched, is still a great challenge faced in the field of medicine. Photodynamic therapy (PDT) seems to be a promising approach for anticancer treatment, as well as to combat various dermatologic and ophthalmic diseases and microbial infections. The application of liposomes as delivery systems for porphyrinoids has helped overcome many drawbacks of conventional photosensitizers and facilitated the development of novel effective photosensitizers that can be encapsulated in liposomes. The development, preclinical studies and future directions for liposomal delivery of conventional and novel photosensitizers are reviewed.
Collapse
Affiliation(s)
- Paulina Skupin-Mrugalska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | | | | | | | | | | |
Collapse
|
22
|
Fateye B, Li W, Wang C, Chen B. Combination of phosphatidylinositol 3-kinases pathway inhibitor and photodynamic therapy in endothelial and tumor cells. Photochem Photobiol 2012; 88:1265-72. [PMID: 22506666 DOI: 10.1111/j.1751-1097.2012.01160.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tumor recurrence due to incomplete eradication of tumor cells is a major problem facing current cancer therapies. To overcome this problem, it is necessary to enhance cell killing and/or prevent cell regrowth after treatment. Because phosphatidylinositol 3-kinases (PI3K) pathway plays an important role in stimulating cell survival and growth, we studied the feasibility of using a PI3K pathway inhibitor NVP-BEZ235 (BEZ235) to enhance the effectiveness of vascular-targeted photodynamic therapy (vPDT) with verteporfin. We found that BEZ235 or PDT alone significantly inhibited cell growth in both SVEC endothelial and PC-3 prostate cancer cells, although SVEC cells appeared to be more responsive than PC-3 cells. Autophagy was detected after both BEZ235 and verteporfin-PDT in both cell lines. Autophagy appeared to protect cells from PDT-induced cell death because inhibition of autophagy increased cell death. Autophagic flux assay revealed that PDT actually decreased autophagic flux especially at a high dose of verteporfin. Combination of BEZ235 and PDT caused greater inhibition of PI3K signaling pathway, leading to enhanced cell growth inhibition in both cell lines. SVEC cells exhibited a higher sensitivity towards such a combination than PC-3 cells. Our data indicated that BEZ235 in combination with PDT provides a promising approach of enhancing therapeutic response.
Collapse
Affiliation(s)
- Babasola Fateye
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
23
|
Wang Y, Perentes JY, Schafer SC, Gonzalez M, Debefve E, Lehr HA, van den Bergh H, Krueger T. Photodynamic drug delivery enhancement in tumours does not depend on leukocyte-endothelial interaction in a human mesothelioma xenograft model. Eur J Cardiothorac Surg 2012; 42:348-54. [DOI: 10.1093/ejcts/ezr294] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
24
|
Quon H, Grossman CE, Finlay JC, Zhu TC, Clemmens CS, Malloy KM, Busch TM. Photodynamic therapy in the management of pre-malignant head and neck mucosal dysplasia and microinvasive carcinoma. Photodiagnosis Photodyn Ther 2011; 8:75-85. [PMID: 21497298 DOI: 10.1016/j.pdpdt.2011.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/24/2010] [Accepted: 01/06/2011] [Indexed: 12/25/2022]
Abstract
The management of head and neck mucosal dysplasia and microinvasive carcinoma is an appealing strategy to prevent the development of invasive carcinomas. While surgery remains the standard of care, photodynamic therapy (PDT) offers several advantages including the ability to provide superficial yet wide field mucosal ablative treatment. This is particularly attractive where defining the extent of the dysplasia can be difficult. PDT can also retreat the mucosa without any cumulative fibrotic complications affecting function. To date, clinical experience suggests that this treatment approach can be effective in obtaining a complete response for the treated lesion but long term follow-up is limited. Further research efforts are needed to define not only the risk of malignant transformation with PDT but also to develop site specific treatment recommendations that include the fluence, fluence rate and light delivery technique.
Collapse
Affiliation(s)
- Harry Quon
- Department of Radiation Oncology, United States.
| | | | | | | | | | | | | |
Collapse
|
25
|
Berg K, Nordstrand S, Selbo PK, Tran DTT, Angell-Petersen E, Høgset A. Disulfonated tetraphenyl chlorin (TPCS2a), a novel photosensitizer developed for clinical utilization of photochemical internalization. Photochem Photobiol Sci 2011; 10:1637-51. [DOI: 10.1039/c1pp05128h] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Savellano MD, Owusu-Brackett N, Son J, Callier T, Savellano DH. Development of an ErbB-overexpressing A-431 optical reporting tumor xenograft model to assess targeted photodynamic therapy regimens. Photochem Photobiol 2010; 86:1379-89. [PMID: 20880229 PMCID: PMC2991608 DOI: 10.1111/j.1751-1097.2010.00805.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To better assess the efficacy of erbB-targeted therapies, it would help to have optical reporting human tumor xenograft models that abundantly express erbB receptors. A-431 cells have frequently been used in erbB1-targeting studies, but a well-characterized optical reporting version of the cell line has not been readily available. In this study, optical reporting A-431 clones were developed that express both a fluorescent protein reporter (green, GFP; or red, RFP) and a bioluminescent reporter, firefly luciferase. Reporter genes were transduced into cells using commercial lentiviral vectors, and clonal selection was carried out using a series of procedures. A number of clones were isolated for further characterization. A GFP/luciferase clone, A-431/D4, and an RFP/luciferase clone, A-431/G4, were obtained that exhibit erbB1 expression levels and tumor growth kinetics similar to the parental cells. To demonstrate the utility of the optical reporting clones, A-431/G4 tumors were grown subcutaneously in nude mice and treated with vascular-targeted photodynamic therapy (PDT), which targets the angiogenic consequences of erbB signaling. The A-431/G4 tumor model permitted highly sensitive longitudinal monitoring of PDT treatment response using optical imaging. A-431/D4 and A-431/G4 optical reporting tumor models should also prove useful for assessing therapies that directly target the erbB1 receptor.
Collapse
Affiliation(s)
- Mark D Savellano
- Surgical Research Laboratories, Dartmouth Medical School, Lebanon, NH, USA.
| | | | | | | | | |
Collapse
|
27
|
Busch TM, Wang HW, Wileyto EP, Yu G, Bunte RM. Increasing damage to tumor blood vessels during motexafin lutetium-PDT through use of low fluence rate. Radiat Res 2010; 174:331-40. [PMID: 20726728 DOI: 10.1667/rr2075.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Photodynamic therapy (PDT) with low light fluence rate has rarely been studied in protocols that use short drug-light intervals and thus deliver illumination while plasma concentrations of photosensitizer are high, creating a prominent vascular response. In this study, the effects of light fluence rate on PDT response were investigated using motexafin lutetium (10 mg/kg) in combination with 730 nm light and a 180-min drug-light interval. At 180 min, the plasma level of photosensitizer was 5.7 ng/microl compared to 3.1 ng/mg in RIF tumor, and PDT-mediated vascular effects were confirmed by a spasmodic decrease in blood flow during illumination. Light delivery at 25 mW/cm(2) significantly improved long-term tumor responses over that at 75 mW/cm(2). This effect could not be attributed to oxygen conservation at low fluence rate, because 25 mW/cm(2) PDT provided little benefit to tumor hemoglobin oxygen saturation. However, 25 mW/cm(2) PDT did prolong the duration of ischemic insult during illumination and was correspondingly associated with greater decreases in perfusion immediately after PDT, followed by smaller increases in total hemoglobin concentration in the hours after PDT. Increases in blood volume suggest blood pooling from suboptimal vascular damage; thus the smaller increases after 25 mW/cm(2) PDT provide evidence of more widespread vascular damage, which was accompanied by greater decreases in clonogenic survival. Further study of low fluence rate as a means to improve responses to PDT under conditions designed to predominantly damage vasculature is warranted.
Collapse
Affiliation(s)
- Theresa M Busch
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | |
Collapse
|
28
|
Cheng C, Debefve E, Haouala A, Andrejevic-Blant S, Krueger T, Ballini JP, Peters S, Decosterd L, van den Bergh H, Wagnieres G, Perentes JY, Ris HB. Photodynamic therapy selectively enhances liposomal doxorubicin uptake in sarcoma tumors to rodent lungs. Lasers Surg Med 2010; 42:391-9. [DOI: 10.1002/lsm.20912] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Olivo M, Bhuvaneswari R, Lucky SS, Dendukuri N, Soo-Ping Thong P. Targeted Therapy of Cancer Using Photodynamic Therapy in Combination with Multi-faceted Anti-Tumor Modalities. Pharmaceuticals (Basel) 2010; 3:1507-1529. [PMID: 27713315 PMCID: PMC4033994 DOI: 10.3390/ph3051507] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/28/2010] [Accepted: 05/11/2010] [Indexed: 01/23/2023] Open
Abstract
Photodynamic therapy (PDT) has emerged as one of the important therapeutic options in the management of cancer and other diseases. PDT involves a tumor-localized photosensitizer (PS), which when appropriately illuminated by visible light converts oxygen into cytotoxic reactive oxygen species (ROS), that attack key structural entities within the targeted cells, ultimately resulting in necrosis or apoptosis. Though PDT is a selective modality, it can be further enhanced by combining other targeted therapeutic strategies that include the use of synthetic peptides and nanoparticles for selective delivery of photosensitizers. Another potentially promising strategy is the application of targeted therapeutics that exploit a myriad of critical pathways involved in tumorigenesis and metastasis. Vascular disrupting agents that eradicate tumor vasculature during PDT and anti-angiogenic agents that targets specific molecular pathways and prevent the formation of new blood vessels are novel therapeutic approaches that have been shown to improve treatment outcome. In addition to the well-documented mechanisms of direct cell killing and damage to the tumor vasculature, PDT can also activate the body's immune response against tumors. Numerous pre-clinical studies and clinical observations have demonstrated the immuno-stimulatory capability of PDT. Herein, we aim to integrate the most important findings with regard to the combination of PDT and other novel targeted therapy approaches, detailing its potential in cancer photomedicine.
Collapse
Affiliation(s)
- Malini Olivo
- National Cancer Centre Singapore, 11 Hospital Drive, 169610, Singapore.
- Singapore Bioimaging Consortium, Biomedical Sciences Institutes, 11 Biopolis Way, #02-02 Helios, 138667, Singapore.
- School of Physics, National University of Ireland, Galway, Ireland.
- Department of Pharmacy, National University of Singapore, No. 18 Science Drive 4, Block S4, 117543, Singapore.
| | | | | | | | | |
Collapse
|
30
|
Madar-Balakirski N, Tempel-Brami C, Kalchenko V, Brenner O, Varon D, Scherz A, Salomon Y. Permanent occlusion of feeding arteries and draining veins in solid mouse tumors by vascular targeted photodynamic therapy (VTP) with Tookad. PLoS One 2010; 5:e10282. [PMID: 20421983 PMCID: PMC2858664 DOI: 10.1371/journal.pone.0010282] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 03/26/2010] [Indexed: 12/20/2022] Open
Abstract
Background Antiangiogenic and anti-vascular therapies present intriguing alternatives to cancer therapy. However, despite promising preclinical results and significant delays in tumor progression, none have demonstrated long-term curative features to date. Here, we show that a single treatment session of Tookad-based vascular targeted photodynamic therapy (VTP) promotes permanent arrest of tumor blood supply by rapid occlusion of the tumor feeding arteries (FA) and draining veins (DV), leading to tumor necrosis and eradication within 24–48 h. Methodology/Principal Findings A mouse earlobe MADB106 tumor model was subjected to Tookad-VTP and monitored by three complementary, non-invasive online imaging techniques: Fluorescent intravital microscopy, Dynamic Light Scattering Imaging and photosensitized MRI. Tookad-VTP led to prompt tumor FA vasodilatation (a mean volume increase of 70%) with a transient increase (60%) in blood-flow rate. Rapid vasoconstriction, simultaneous blood clotting, vessel permeabilization and a sharp decline in the flow rates then followed, culminating in FA occlusion at 63.2 sec±1.5SEM. This blockage was deemed irreversible after 10 minutes of VTP treatment. A decrease in DV blood flow was demonstrated, with a slight lag from FA response, accompanied by frequent changes in flow direction before reaching a complete standstill. In contrast, neighboring, healthy tissue vessels of similar sizes remained intact and functional after Tookad-VTP. Conclusion/Significance Tookad-VTP selectively targets the tumor feeding and draining vessels. To the best of our knowledge, this is the first mono-therapeutic modality that primarily aims at the larger tumor vessels and leads to high cure rates, both in the preclinical and clinical arenas.
Collapse
Affiliation(s)
- Noa Madar-Balakirski
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | | - Vyacheslav Kalchenko
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, Israel
| | - Ori Brenner
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, Israel
| | - David Varon
- Department of Hematology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Avigdor Scherz
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Yoram Salomon
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
31
|
Abstract
Antiangiogenic photodynamic therapy (PDT) is a promising modality for cancer treatment, since it causes efficient cutoff of oxygen and nutrients to the tumor cells and thus indirectly eradicates the tumor cells. For the improvement of therapeutic efficacy of antiangiogenic PDT by using a photosensitizer benzoporphyrin derivative monoacid ring A (BPD-MA) in a liposomal formulation, we endowed the liposomes with an active-targeting probe, Ala-Pro-Arg-Pro-Gly (APRPG), a peptide specific for angiogenic endothelial cells. APRPG-PEG-modified liposomal BPD-MA (APRPG-PEG-LipBPD-MA) accumulated in tumor tissues to a similar extent as PEG-LipBPD-MA at 3-h postinjection. In contrast, APRPG-PEG-LipBPD-MA strongly suppressed tumor growth by PDT treatment, but PEG-LipBPD-MA did not. This finding suggests that antiangiogenic PDT with targeted liposomes is an efficient modality for tumor treatment, whereas PEG-modified nontargeted liposomes are not suitable as a carrier of photosensitizers. The reason for the observed ineffectiveness of PEG-LipBPD-MA is as follows: In the case of PDT, the amount of photosensitizer bound to or taken up into the target cells during the time interval between injection of the agent and laser irradiation is critical, rather than the total amount of photosensitizer in tumor tissue. Therefore, active-targeting technology is quite useful for antiangiogenic PDT.
Collapse
Affiliation(s)
- Naoto Oku
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, Shizuoka, Japan
| | | |
Collapse
|
32
|
Photodynamic therapy induces selective extravasation of macromolecules: Insights using intravital microscopy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 98:69-76. [DOI: 10.1016/j.jphotobiol.2009.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 10/07/2009] [Accepted: 11/21/2009] [Indexed: 11/19/2022]
|
33
|
Norum OJ, Selbo PK, Weyergang A, Giercksky KE, Berg K. Photochemical internalization (PCI) in cancer therapy: from bench towards bedside medicine. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2009; 96:83-92. [PMID: 19467605 DOI: 10.1016/j.jphotobiol.2009.04.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/20/2009] [Accepted: 04/23/2009] [Indexed: 12/20/2022]
Abstract
PDT in cancer therapy has been reviewed several times recently and many published reports have been showing promising results. The clinical approvals for PDT include curative treatment of early or superficial cancers and palliative treatment of more advanced disease. Still PDT has yet to become a widely used cancer treatment. This may partly be due to limitations in current PDT regimens and partly due to effective alternative treatment modalities. If the specificity and selectivity of PDT could be improved, PDT would probably make substantial progress and comprise an even more competitive alternative in cancer treatment. The PCI technology is based on the same principles as PDT, the activation of a photosensitizer by light and subsequently followed by formation of reactive oxygen species. Unlike PDT, the photosensitizer used in PCI has to be located in the endocytic vesicles of the targeted cells and will, upon activation of light, induce a release of endocytosed therapeutic agents after a photochemically induced rupture of the endocytic vesicles. The endocytosed therapeutic agent will then be released and may reach their intracellular target of action before being degraded in lysosomes. This site-specific drug delivery induced by PCI will take place in addition to the well described cytotoxic, vascular and immunostimulatory effects of PDT. PCI has been shown to facilitate intracellular delivery of a large variety of macromolecules that do not otherwise readily penetrate the plasma membrane, including type I ribosome-inactivating proteins (RIPs), RIP-based immunotoxins, genes and some chemotherapeutic agents. Several animal models have been used for in vivo documentation of the PCI principle and more animal models of clinical relevance have recently been utilized for addressing clinical issues. This review will focus on the possibilities and limitations offered by PCI to overcome some of the challenges recognized in current PDT regimens in cancer treatment.
Collapse
Affiliation(s)
- Ole-Jacob Norum
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo, Norway
| | | | | | | | | |
Collapse
|
34
|
Norum OJ, Giercksky KE, Berg K. Photochemical internalization as an adjunct to marginal surgery in a human sarcoma model. Photochem Photobiol Sci 2009; 8:758-62. [DOI: 10.1039/b821129a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|