1
|
Larkin RM, Lopez DC, Robbins YL, Lassoued W, Canubas K, Warner A, Karim B, Vulikh K, Hodge JW, Floudas CS, Gulley JL, Gallia GL, Allen CT, London NR. Augmentation of tumor expression of HLA-DR, CXCL9, and CXCL10 may improve olfactory neuroblastoma immunotherapeutic responses. J Transl Med 2024; 22:524. [PMID: 38822345 PMCID: PMC11140921 DOI: 10.1186/s12967-024-05339-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Olfactory neuroblastoma is a rare malignancy of the anterior skull base typically treated with surgery and adjuvant radiation. Although outcomes are fair for low-grade disease, patients with high-grade, recurrent, or metastatic disease oftentimes respond poorly to standard treatment methods. We hypothesized that an in-depth evaluation of the olfactory neuroblastoma tumor immune microenvironment would identify mechanisms of immune evasion in high-grade olfactory neuroblastoma as well as rational targetable mechanisms for future translational immunotherapeutic approaches. METHODS Multispectral immunofluorescence and RNAScope evaluation of the tumor immune microenvironment was performed on forty-seven clinically annotated olfactory neuroblastoma samples. A retrospective chart review was performed and clinical correlations assessed. RESULTS A significant T cell infiltration was noted in olfactory neuroblastoma samples with a stromal predilection, presence of myeloid-derived suppressor cells, and sparse natural killer cells. A striking decrease was observed in MHC-I expression in high-grade olfactory neuroblastoma compared to low-grade disease, representing a mechanism of immune evasion in high-grade disease. Mechanistically, the immune effector stromal predilection appears driven by low tumor cell MHC class II (HLA-DR), CXCL9, and CXCL10 expression as those tumors with increased tumor cell expression of each of these mediators correlated with significant increases in T cell infiltration. CONCLUSION These data suggest that immunotherapeutic strategies that augment tumor cell expression of MHC class II, CXCL9, and CXCL10 may improve parenchymal trafficking of immune effector cells in olfactory neuroblastoma and augment immunotherapeutic responses.
Collapse
Affiliation(s)
- Riley M Larkin
- Sinonasal and Skull Base Tumor Program, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Diana C Lopez
- Sinonasal and Skull Base Tumor Program, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yvette L Robbins
- Section on Translational Tumor Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wiem Lassoued
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth Canubas
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Warner
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ksenia Vulikh
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - James W Hodge
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charalampos S Floudas
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James L Gulley
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gary L Gallia
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clint T Allen
- Section on Translational Tumor Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nyall R London
- Sinonasal and Skull Base Tumor Program, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Vargas GM, Shafique N, Xu X, Karakousis G. Tumor-infiltrating lymphocytes as a prognostic and predictive factor for Melanoma. Expert Rev Mol Diagn 2024; 24:299-310. [PMID: 38314660 PMCID: PMC11134288 DOI: 10.1080/14737159.2024.2312102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/17/2024] [Indexed: 02/06/2024]
Abstract
INTRODUCTION Tumor-infiltrating lymphocytes (TILs) have been investigated as prognostic factors in melanoma. Recent advancements in assessing the tumor microenvironment in the setting of more widespread use of immune checkpoint blockade have reignited interest in identifying predictive biomarkers. This review examines the function and significance of TILs in cutaneous melanoma, evaluating their potential as prognostic and predictive markers. AREAS COVERED A literature search was conducted on papers covering tumor infiltrating lymphocytes in cutaneous melanoma available online in PubMed and Web of Science from inception to 1 December 2023, supplemented by citation searching. This article encompasses the assessment of TILs, the role of TILs in the immune microenvironment, TILs as a prognostic factor, TILs as a predictive factor for immunotherapy response, and clinical applications of TILs in the treatment of cutaneous melanoma. EXPERT OPINION Tumor-infiltrating lymphocytes play a heterogeneous role in cutaneous melanoma. While they have historically been associated with improved survival, their status as independent prognostic or predictive factors remains uncertain. Novel methods of TIL assessment, such as determination of TIL subtypes and molecular signaling, demonstrate potential for predicting therapeutic response. Further, while their clinical utility in risk-stratification in melanoma treatment shows promise, a lack of consensus data hinders standardized application.
Collapse
Affiliation(s)
| | - Neha Shafique
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Giorgos Karakousis
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Shi G, Synowiec J, Singh J, Heller R. Modification of the tumor microenvironment enhances immunity with plasmid gene therapy. Cancer Gene Ther 2024; 31:641-648. [PMID: 38337037 DOI: 10.1038/s41417-024-00728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/27/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
Local intratumor delivery with electroporation of low levels of plasmids encoding molecules, induces an antitumor effect without causing systemic toxicity. However, previous studies have predominately focused on the function of the delivered molecule encoded within the plasmid, and ignored the plasmid vector. In this study, we found vectors pUMVC3 and pVax1 induced upregulation of MHC class I (MHC-I) and PD-L1 on tumor cell surface. These molecules participate in a considerable number of immunoregulatory functions through their interactions with and activating inhibitory immune cell receptors. MHC molecules are well-known for their role in antigen (cross-) presentation, thereby functioning as key players in the communication between immune cells and tumor cells. Increased PD-L1 expression on tumor cells is an important monitor of tumor growth and the effectiveness of immune inhibitor therapy. Results from flow cytometry confirmed increased expression of MHC-I and PDL-1 on B16F10, 4T1, and KPC tumor cell lines. Preliminary animal data from tumor-bearing models, B16F10 melanoma, 4T1 breast cancer and KPC pancreatic cancer mouse models showed that tumor growth was attenuated after pUMVC3 intratumoral electroporation. Our data also documented that pSTAT1 signaling pathway might not be associated with plasmid vectors' function of upregulating MHC-I, PD-L1 on tumor cells.
Collapse
Affiliation(s)
- Guilan Shi
- Department of Medical Engineering, University of South Florida, Tampa, FL, 33612, USA
| | - Jody Synowiec
- Department of Medical Engineering, University of South Florida, Tampa, FL, 33612, USA
| | - Julie Singh
- Department of Medical Engineering, University of South Florida, Tampa, FL, 33612, USA
| | - Richard Heller
- Department of Medical Engineering, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
4
|
Zhang G, Li S, Xiao W, Zhang C, Li T, Liao Z, Liu H, Xing R, Yao W, Yang J. Tumoral C2 Regulates the Tumor Microenvironment by Increasing the Ratio of M1/M2 Macrophages and Tertiary Lymphoid Structures to Improve Prognosis in Melanoma. Cancers (Basel) 2024; 16:908. [PMID: 38473271 DOI: 10.3390/cancers16050908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/21/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Immunotherapy is an essential therapy for individuals with advanced melanoma. However, not all patients respond to such treatment due to individual differences. We conducted a multidimensional analysis using transcriptome data from our center, as well as publicly available databases. We found that effective nivolumab treatment led to an upregulation of C2 levels, and higher levels following treatment are indicative of a good outcome. Through bioinformatics analyses and immunofluorescence, we identified a correlation between C2 and M1 macrophages. To further investigate the role of C2 in melanoma, we constructed subcutaneous tumorigenic models in C57BL/6 mice. The tumors in the C2 overexpression group exhibited significantly smaller sizes. Flow cytometric analysis of the mouse tumors demonstrated enhanced recruitment of macrophages, particularly of the M1 subtype, in the overexpression group. Moreover, single-cell RNA sequencing analysis revealed that C2-positive tumor cells exhibited enhanced communication with immune cells. We co-cultured tumor cell supernatants with macrophages in vitro and observed the induction of M1 subtype polarization. In addition, we discovered a close correlation between C2 and tertiary lymphoid structures. C2 has been demonstrated to exert a protective effect, mediated by its ability to modulate the tumor microenvironment. C2 serves as a prognostic marker for melanoma and can be employed to monitor the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Gengpu Zhang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Shengnan Li
- Department of Oncology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 519000, China
| | - Wanyi Xiao
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Chao Zhang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ting Li
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhichao Liao
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Haotian Liu
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ruwei Xing
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wei Yao
- Department of Oncology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 519000, China
| | - Jilong Yang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
5
|
Van Gool SW, Van de Vliet P, Kampers LFC, Kosmal J, Sprenger T, Reich E, Schirrmacher V, Stuecker W. Methods behind oncolytic virus-based DC vaccines in cancer: Toward a multiphase combined treatment strategy for Glioblastoma (GBM) patients. Methods Cell Biol 2023; 183:51-113. [PMID: 38548421 DOI: 10.1016/bs.mcb.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Glioblastoma (GBM) remains an orphan cancer disease with poor outcome. Novel treatment strategies are needed. Immunotherapy has several modes of action. The addition of active specific immunotherapy with dendritic cell vaccines resulted in improved overall survival of patients. Integration of DC vaccination within the first-line combined treatment became a challenge, and immunogenic cell death immunotherapy during chemotherapy was introduced. We used a retrospective analysis using real world data to evaluate the complex combined treatment, which included individualized multimodal immunotherapy during and after standard of care, and which required adaptations during treatment, and found a further improvement of overall survival. We also discuss the use of real world data as evidence. Novel strategies to move the field of individualized multimodal immunotherapy forward for GBM patients are reviewed.
Collapse
Affiliation(s)
| | | | | | | | | | - Ella Reich
- Immun-onkologisches Zentrum Köln, Cologne, Germany
| | | | | |
Collapse
|
6
|
Ashrafzadeh S, Foreman RK, Kalra S, Mandinova A, Asgari MM. Patterns of Tumor-Infiltrating Lymphocytes Used to Distinguish Primary Cutaneous Squamous Cell Carcinomas That Metastasize. JAMA Dermatol 2023; 159:788-790. [PMID: 37256610 PMCID: PMC10233450 DOI: 10.1001/jamadermatol.2023.1307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/04/2023] [Indexed: 06/01/2023]
Abstract
This case-control study examines the type, location, and density of tumor-infiltrating lymphocytes in adult patients with vs without metastatic cutaneous squamous cell carcinoma.
Collapse
Affiliation(s)
| | - Ruth K. Foreman
- Dermatopathology Unit, Department of Pathology, Massachusetts General Hospital, Boston
| | - Sara Kalra
- Department of Dermatology, Massachusetts General Hospital, Boston
| | - Anna Mandinova
- Department of Dermatology, Massachusetts General Hospital, Boston
- Harvard Stem Cell Institute, Cambridge, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge
| | - Maryam M. Asgari
- Department of Dermatology, Massachusetts General Hospital, Boston
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| |
Collapse
|
7
|
Regression in cutaneous melanoma: histological assessment, immune mechanisms and clinical implications. Pathology 2023; 55:227-235. [PMID: 36639333 DOI: 10.1016/j.pathol.2022.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022]
Abstract
Tumour regression is an immunologically driven process that results in complete or partial disappearance of tumour cells. This can be observed in histological sections as replacement of tumour cells with fibrosis, angiogenesis, and a variable inflammatory infiltrate. In primary cutaneous melanoma, the prognostic significance of regression has been debated for decades, in part because inconsistent histological criteria are used in prognostication studies. It is broadly accepted that CD8+ T lymphocytes are the primary effectors of the anti-tumour response, but the interplay between melanoma and the immune system is complex, dynamic, and incompletely understood. Sustained progress in unravelling the pathogenesis of melanoma regression has led to the identification of therapeutic targets, culminating in the development of immune checkpoint inhibitors for the management of advanced disease. Modern techniques allow for high-resolution spatial analyses of the tumour microenvironment. Such studies may lead to better understanding of the immune drivers of melanoma regression, thereby facilitating the search for new prognostic and predictive biomarkers to assist clinical decision-making.
Collapse
|
8
|
Conroy M, Forde PM. Advancing neoadjuvant immunotherapy for lung cancer. Nat Med 2023; 29:533-534. [PMID: 36928820 DOI: 10.1038/s41591-023-02246-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Michael Conroy
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Patrick M Forde
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
9
|
Stevenson VB, Klahn S, LeRoith T, Huckle WR. Canine melanoma: A review of diagnostics and comparative mechanisms of disease and immunotolerance in the era of the immunotherapies. Front Vet Sci 2023; 9:1046636. [PMID: 36686160 PMCID: PMC9853198 DOI: 10.3389/fvets.2022.1046636] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
Melanomas in humans and dogs are highly malignant and resistant to therapy. Since the first development of immunotherapies, interest in how the immune system interacts within the tumor microenvironment and plays a role in tumor development, progression, or remission has increased. Of major importance are tumor-infiltrating lymphocytes (TILs) where distribution and cell frequencies correlate with survival and therapeutic outcomes. Additionally, efforts have been made to identify subsets of TILs populations that can contribute to a tumor-promoting or tumor-inhibiting environment, such as the case with T regulatory cells versus CD8 T cells. Furthermore, cancerous cells have the capacity to express certain inhibitory checkpoint molecules, including CTLA-4, PD-L1, PD-L2, that can suppress the immune system, a property associated with poor prognosis, a high rate of recurrence, and metastasis. Comparative oncology brings insights to comprehend the mechanisms of tumorigenesis and immunotolerance in humans and dogs, contributing to the development of new therapeutic agents that can modulate the immune response against the tumor. Therapies that target signaling pathways such as mTOR and MEK/ERK that are upregulated in cancer, or immunotherapies with different approaches such as CAR-T cells engineered for specific tumor-associated antigens, DNA vaccines using human tyrosinase or CGSP-4 antigen, anti-PD-1 or -PD-L1 monoclonal antibodies that intercept their binding inhibiting the suppression of the T cells, and lymphokine-activated killer cells are already in development for treating canine tumors. This review provides concise and recent information about diagnosis, comparative mechanisms of tumor development and progression, and the current status of immunotherapies directed toward canine melanoma.
Collapse
Affiliation(s)
- Valentina B. Stevenson
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Shawna Klahn
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - William R. Huckle
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
10
|
Characterization of the tumor-infiltrating lymphocyte landscape in sinonasal mucosal melanoma. Pathol Res Pract 2023; 241:154289. [PMID: 36584498 DOI: 10.1016/j.prp.2022.154289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Tumor-infiltrating lymphocytes (TILs) are important prognostic biomarkers in several types of cancers. The interplay between TIL subgroups and immune checkpoint molecules like programmed cell death ligand 1 (PD-L1) is a promising target for immunotherapy. However, the TIL landscape in sinonasal mucosal melanoma (SNMM) has not been sufficiently characterized yet and the prognostic value of TIL subgroups and PD-L1 expression remains uncertain. Here, we investigated subsets of TILs (CD3+, CD4+, CD8+, CD20+) and PD-L1 expression patterns in SNMM and assessed their prognostic value for recurrence-free and overall survival. METHODS Immunohistochemical staining for CD3, CD4, CD8, CD20 and PD-L1 was performed on tumor tissue from 27 patients with primary SNMM. Patient history was obtained and associations between TIL subgroups or PD-L1 expression and AJCC tumor stage, overall survival, and recurrence-free survival were retrospectively analyzed. RESULTS Patients with high CD3+ and CD8+ TILs in the primary tumor survived significantly longer than patients with SNMMs with a low number of CD3+ and CD8+ TILs. High CD3+ and high CD8+ TILs were associated with the lower T3 stage and increased 5-year survival. PD-L1 positivity in tumor cells was associated with advanced tumor stage. CONCLUSION Our results indicate that high densities of CD3+ and CD8+ TILs are strong positive prognostic biomarkers for survival in SNMM. Prospective studies with larger case numbers are warranted to confirm our findings.
Collapse
|
11
|
Rossi F, Fredericks N, Snowden A, Allegrezza MJ, Moreno-Nieves UY. Next Generation Natural Killer Cells for Cancer Immunotherapy. Front Immunol 2022; 13:886429. [PMID: 35720306 PMCID: PMC9202478 DOI: 10.3389/fimmu.2022.886429] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022] Open
Abstract
In recent years, immunotherapy for cancer has become mainstream with several products now authorized for therapeutic use in the clinic and are becoming the standard of care for some malignancies. Chimeric antigen receptor (CAR)-T cell therapies have demonstrated substantial efficacy for the treatment of hematological malignancies; however, they are complex and currently expensive to manufacture, and they can generate life-threatening adverse events such as cytokine release syndrome (CRS). The limitations of current CAR-T cells therapies have spurred an interest in alternative immunotherapy approaches with safer risk profiles and with less restrictive manufacturing constraints. Natural killer (NK) cells are a population of immune effector cells with potent anti-viral and anti-tumor activity; they have the capacity to swiftly recognize and kill cancer cells without the need of prior stimulation. Although NK cells are naturally equipped with cytotoxic potential, a growing body of evidence shows the added benefit of engineering them to better target tumor cells, persist longer in the host, and be fitter to resist the hostile tumor microenvironment (TME). NK-cell-based immunotherapies allow for the development of allogeneic off-the-shelf products, which have the potential to be less expensive and readily available for patients in need. In this review, we will focus on the advances in the development of engineering of NK cells for cancer immunotherapy. We will discuss the sourcing of NK cells, the technologies available to engineer NK cells, current clinical trials utilizing engineered NK cells, advances on the engineering of receptors adapted for NK cells, and stealth approaches to avoid recipient immune responses. We will conclude with comments regarding the next generation of NK cell products, i.e., armored NK cells with enhanced functionality, fitness, tumor-infiltration potential, and with the ability to overcome tumor heterogeneity and immune evasion.
Collapse
Affiliation(s)
- Fiorella Rossi
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, United States
| | - Nathaniel Fredericks
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, United States
| | - Andrew Snowden
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, United States
| | - Michael J Allegrezza
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, United States
| | - Uriel Y Moreno-Nieves
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, United States
| |
Collapse
|
12
|
Gorris MAJ, van der Woude LL, Kroeze LI, Bol K, Verrijp K, Amir AL, Meek J, Textor J, Figdor CG, de Vries IJM. Paired primary and metastatic lesions of patients with ipilimumab-treated melanoma: high variation in lymphocyte infiltration and HLA-ABC expression whereas tumor mutational load is similar and correlates with clinical outcome. J Immunother Cancer 2022; 10:e004329. [PMID: 35550553 PMCID: PMC9109111 DOI: 10.1136/jitc-2021-004329] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICI) can lead to long-term responses in patients with metastatic melanoma. Still many patients with melanoma are intrinsically resistant or acquire secondary resistance. Previous studies have used primary or metastatic tumor tissue for biomarker assessment. Especially in melanoma, metastatic lesions are often present at different anatomical sites such as skin, lymph nodes, and visceral organs. The anatomical site may directly affect the tumor microenvironment (TME). To evaluate the impact of tumor evolution on the TME and on ICI treatment outcome, we directly compared paired primary and metastatic melanoma lesions for tumor mutational burden (TMB), HLA-ABC status, and tumor infiltrating lymphocytes (TILs) of patients that received ipilimumab. METHODS TMB was analyzed by sequencing primary and metastatic melanoma lesions using the TruSight Oncology 500 assay. Tumor tissues were subjected to multiplex immunohistochemistry to assess HLA-ABC status and for the detection of TIL subsets (B cells, cytotoxic T cells, helper T cells, and regulatory T cells), by using a machine-learning algorithm. RESULTS While we observed a very good agreement between TMB of matched primary and metastatic melanoma lesions (intraclass coefficient=0.921), such association was absent for HLA-ABC status, TIL density, and subsets thereof. Interestingly, analyses of different metastatic melanoma lesions within a single patient revealed that TIL density and composition agreed remarkably well, rejecting the hypothesis that the TME of different anatomical sites affects TIL infiltration. Similarly, the HLA-ABC status between different metastatic lesions within patients was also comparable. Furthermore, high TMB, of either primary or metastatic melanoma tissue, directly correlated with response to ipilimumab, whereas lymphocyte density or composition did not. Loss of HLA-ABC in the metastatic lesion correlated to a shorter progression-free survival on ipilimumab. CONCLUSIONS We confirm the link between TMB and HLA-ABC status and the response to ipilimumab-based immunotherapy in melanoma, but no correlation was found for TIL density, neither in primary nor metastatic lesions. Our finding that TMB between paired primary and metastatic melanoma lesions is highly stable, demonstrates its independency of the time point and location of acquisition. TIL and HLA-ABC status in metastatic lesions of different anatomical sites are highly similar within an individual patient.
Collapse
Affiliation(s)
- Mark A J Gorris
- Tumor Immunology, Radboudumc, Nijmegen, The Netherlands
- Oncode Institute, Nijmegen, The Netherlands
| | - Lieke L van der Woude
- Tumor Immunology, Radboudumc, Nijmegen, The Netherlands
- Oncode Institute, Nijmegen, The Netherlands
- Pathology, Radboudumc, Nijmegen, The Netherlands
| | | | - Kalijn Bol
- Medical Oncology, Radboudumc, Nijmegen, The Netherlands
| | - Kiek Verrijp
- Oncode Institute, Nijmegen, The Netherlands
- Pathology, Radboudumc, Nijmegen, The Netherlands
| | | | - Jelena Meek
- Tumor Immunology, Radboudumc, Nijmegen, The Netherlands
| | - Johannes Textor
- Department of Tumor Immunology, Radboudumc, Nijmegen, The Netherlands
- Data Science Group, Institute for Computing and Information Sciences, Radboud Universiteit, Nijmegen, The Netherlands
| | - Carl G Figdor
- Tumor Immunology, Radboudumc, Nijmegen, The Netherlands
- Oncode Institute, Nijmegen, The Netherlands
| | | |
Collapse
|
13
|
Liu J, Xu J, Luo B, Tang J, Hou Z, Zhu Z, Zhu L, Yao G, Li C. Immune Landscape and an RBM38-Associated Immune Prognostic Model with Laboratory Verification in Malignant Melanoma. Cancers (Basel) 2022; 14:cancers14061590. [PMID: 35326741 PMCID: PMC8946480 DOI: 10.3390/cancers14061590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The primary treatment of malignant melanoma is a classical regimen of surgery combined with chemotherapy, targeted drugs, and immunotherapy. The purpose of this study was to explore the immune response mechanism of RNA binding protein RBM38 in the development of melanoma with the screening of effective immunodiagnostic models and targeted therapy. We found that RBM38, as an oncogene, promotes the proliferation, invasion, and migration of melanoma cells and is associated with immune infiltration and pathways. Our investigation presented the prognostic significance of RBM38-associated immune signature. In addition, this model may provide a potential strategy for improving the survival and immunotherapy of melanoma patients. Abstract Background: Current studies have revealed that RNA-binding protein RBM38 is closely related to tumor development, while its role in malignant melanoma remains unclear. Therefore, this research aimed to investigate the function of RBM38 in melanoma and the prognosis of the disease. Methods: Functional experiments (CCK-8 assay, cell colony formation, transwell cell migration/invasion experiment, wound healing assay, nude mouse tumor formation, and immunohistochemical analysis) were applied to evaluate the role of RBM38 in malignant melanoma. Immune-associated differentially expressed genes (DEGs) on RBM38 related immune pathways were comprehensively analyzed based on RNA sequencing results. Results: We found that high expression of RBM38 promoted melanoma cell proliferation, invasion, and migration, and RBM38 was associated with immune infiltration. Then, a five-gene (A2M, NAMPT, LIF, EBI3, and ERAP1) model of RBM38-associated immune DEGs was constructed and validated. Our signature showed superior prognosis capacity compared with other melanoma prognostic signatures. Moreover, the risk score of our signature was connected with the infiltration of immune cells, immune-regulatory proteins, and immunophenoscore in melanoma. Conclusions: We constructed an immune prognosis model using RBM38-related immune DEGs that may help evaluate melanoma patient prognosis and immunotherapy modalities.
Collapse
Affiliation(s)
- Jinfang Liu
- Department of Plastic and Burns Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 GuangZhou Rd, Nanjing 210029, China; (J.L.); (B.L.); (J.T.); (Z.H.); (Z.Z.)
| | - Jun Xu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Soochow 213000, China;
| | - Binlin Luo
- Department of Plastic and Burns Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 GuangZhou Rd, Nanjing 210029, China; (J.L.); (B.L.); (J.T.); (Z.H.); (Z.Z.)
| | - Jian Tang
- Department of Plastic and Burns Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 GuangZhou Rd, Nanjing 210029, China; (J.L.); (B.L.); (J.T.); (Z.H.); (Z.Z.)
| | - Zuoqiong Hou
- Department of Plastic and Burns Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 GuangZhou Rd, Nanjing 210029, China; (J.L.); (B.L.); (J.T.); (Z.H.); (Z.Z.)
| | - Zhechen Zhu
- Department of Plastic and Burns Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 GuangZhou Rd, Nanjing 210029, China; (J.L.); (B.L.); (J.T.); (Z.H.); (Z.Z.)
| | - Lingjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China;
| | - Gang Yao
- Department of Plastic and Burns Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 GuangZhou Rd, Nanjing 210029, China; (J.L.); (B.L.); (J.T.); (Z.H.); (Z.Z.)
- Correspondence: (G.Y.); (C.L.)
| | - Chujun Li
- Department of Plastic and Burns Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 GuangZhou Rd, Nanjing 210029, China; (J.L.); (B.L.); (J.T.); (Z.H.); (Z.Z.)
- Correspondence: (G.Y.); (C.L.)
| |
Collapse
|
14
|
Morand S, Devanaboyina M, Staats H, Stanbery L, Nemunaitis J. Ovarian Cancer Immunotherapy and Personalized Medicine. Int J Mol Sci 2021; 22:6532. [PMID: 34207103 PMCID: PMC8234871 DOI: 10.3390/ijms22126532] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer response to immunotherapy is limited; however, the evaluation of sensitive/resistant target treatment subpopulations based on stratification by tumor biomarkers may improve the predictiveness of response to immunotherapy. These markers include tumor mutation burden, PD-L1, tumor-infiltrating lymphocytes, homologous recombination deficiency, and neoantigen intratumoral heterogeneity. Future directions in the treatment of ovarian cancer include the utilization of these biomarkers to select ideal candidates. This paper reviews the role of immunotherapy in ovarian cancer as well as novel therapeutics and study designs involving tumor biomarkers that increase the likelihood of success with immunotherapy in ovarian cancer.
Collapse
Affiliation(s)
- Susan Morand
- Department of Medicine, University of Toledo, Toledo, OH 43614, USA; (S.M.); (M.D.); (H.S.)
| | - Monika Devanaboyina
- Department of Medicine, University of Toledo, Toledo, OH 43614, USA; (S.M.); (M.D.); (H.S.)
| | - Hannah Staats
- Department of Medicine, University of Toledo, Toledo, OH 43614, USA; (S.M.); (M.D.); (H.S.)
| | | | | |
Collapse
|
15
|
Scognamiglio G, Capone M, Sabbatino F, Di Mauro A, Cantile M, Cerrone M, Madonna G, Grimaldi AM, Mallardo D, Palla M, Sarno S, Anniciello AM, Di Bonito M, Ascierto PA, Botti G. The Ratio of GrzB + - FoxP3 + over CD3 + T Cells as a Potential Predictor of Response to Nivolumab in Patients with Metastatic Melanoma. Cancers (Basel) 2021; 13:cancers13102325. [PMID: 34066146 PMCID: PMC8150779 DOI: 10.3390/cancers13102325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 01/14/2023] Open
Abstract
Simple Summary Despite the recent success of immunotherapy in the treatment of malignant melanoma, many patients still do not benefit from these treatments, due to their failure to activate an antitumor immune response them. There is therefore a need to select patients who can truly benefit from these treatments. We have focused our study on immune cells present in the tumor microenvironment, and we have developed a formula (ratio) that correlates with the response to anti-PD1 therapy and progression-free and overall survival, based on the numerical difference between GRZB+ and FOXP3+ cells over the total CD3+ lymphocytes. This developed ratio could be useful to better select patients that may or may not benefit from anti-PD-1 treatment. Abstract The understanding of the molecular pathways involved in the dynamic modulation of the tumor microenvironment (TME) has led to the development of innovative treatments for advanced melanoma, including immune checkpoint blockade therapies. These approaches have revolutionized the treatment of melanoma, but are not effective in all patients, resulting in responder and non-responder populations. Physical interactions among immune cells, tumor cells and all the other components of the TME (i.e., cancer-associated fibroblasts, keratinocytes, adipocytes, extracellular matrix, etc.) are essential for effective antitumor immunotherapy, suggesting the need to define an immune score model which can help to predict an efficient immunotherapeutic response. In this study, we performed a multiplex immunostaining of CD3, FOXP3 and GRZB on both primary and unmatched in-transit metastatic melanoma lesions and defined a novel ratio between different lymphocyte subpopulations, demonstrating its potential prognostic role for cancer immunotherapy. The application of the suggested ratio can be useful for the stratification of melanoma patients that may or may not benefit from anti-PD-1 treatment.
Collapse
Affiliation(s)
- Giosuè Scognamiglio
- Pathology Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (G.S.); (A.D.M.); (M.C.); (M.C.); (A.M.A.); (M.D.B.)
| | - Mariaelena Capone
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (G.M.); (A.M.G.); (D.M.); (M.P.); (P.A.A.)
- Correspondence:
| | - Francesco Sabbatino
- Oncology Unit, AOU San Giovanni di Dio e Ruggi d’Aragona, 84125 Salerno, Italy;
| | - Annabella Di Mauro
- Pathology Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (G.S.); (A.D.M.); (M.C.); (M.C.); (A.M.A.); (M.D.B.)
| | - Monica Cantile
- Pathology Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (G.S.); (A.D.M.); (M.C.); (M.C.); (A.M.A.); (M.D.B.)
| | - Margherita Cerrone
- Pathology Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (G.S.); (A.D.M.); (M.C.); (M.C.); (A.M.A.); (M.D.B.)
| | - Gabriele Madonna
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (G.M.); (A.M.G.); (D.M.); (M.P.); (P.A.A.)
| | - Antonio Maria Grimaldi
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (G.M.); (A.M.G.); (D.M.); (M.P.); (P.A.A.)
| | - Domenico Mallardo
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (G.M.); (A.M.G.); (D.M.); (M.P.); (P.A.A.)
| | - Marco Palla
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (G.M.); (A.M.G.); (D.M.); (M.P.); (P.A.A.)
| | - Sabrina Sarno
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy;
| | - Anna Maria Anniciello
- Pathology Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (G.S.); (A.D.M.); (M.C.); (M.C.); (A.M.A.); (M.D.B.)
| | - Maurizio Di Bonito
- Pathology Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (G.S.); (A.D.M.); (M.C.); (M.C.); (A.M.A.); (M.D.B.)
| | - Paolo Antonio Ascierto
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (G.M.); (A.M.G.); (D.M.); (M.P.); (P.A.A.)
| | - Gerardo Botti
- Scientific Direction, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy;
| |
Collapse
|
16
|
The role of tumor heterogeneity in immune-tumor interactions. Cancer Metastasis Rev 2021; 40:377-389. [PMID: 33682030 DOI: 10.1007/s10555-021-09957-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/23/2021] [Indexed: 12/23/2022]
Abstract
The development of cancer stems from genetic instability and changes in genomic sequences, and hence, the heterogeneity exhibited by tumors is integral to the nature of cancer itself. Tumor heterogeneity can be further altered by factors that are not cancer cell intrinsic, i.e., by the microenvironment, including the patient's immune responses to tumors and administered therapies (immunotherapies, chemotherapies, and/or radiation therapies). The focus of this review is the impact of tumor heterogeneity on the interactions between immune cells and the tumor, taking into account that heterogeneity can exist at several levels. These levels include heterogeneity within an individual tumor, within an individual patient (particularly between the primary tumor and metastatic lesions), among the subtypes of a specific type of cancer, or within cancers that originate from different tissues. Because of the potential for immunity (either the natural immune system or via immunotherapeutics) to halt the progression of cancer, major clinical significance exists in understanding the impact of tumor heterogeneity on the associations between immune cells and tumor cells. Increased knowledge of why, whether, and how immune-tumor interactions occur provides the means to guide these interactions and improve outcomes for patients.
Collapse
|
17
|
Hillen LM, Vandyck HLD, Leunissen DJG, de Greef BTA, Bosisio FM, zur Hausen A, van den Oord J, Winnepenninckx V. Integrative histopathological and immunophenotypical characterisation of the inflammatory microenvironment in spitzoid melanocytic neoplasms. Histopathology 2021; 78:607-626. [PMID: 32970867 PMCID: PMC7894529 DOI: 10.1111/his.14259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
AIMS The role of inflammation in conventional cutaneous melanoma has been extensively studied, whereas only little is known about the inflammatory microenvironment and immunogenic properties of spitzoid melanocytic neoplasms. The composition of infiltrating immune cells and the architectural distribution of the inflammation, in particular, are still obscure. This is the first study, to our knowledge, to systematically characterise the inflammatory patterns and the leucocyte subsets in spitzoid melanocytic lesions. METHODS AND RESULTS We examined 79 spitzoid neoplasms including banal Spitz naevi (SN, n = 50), atypical Spitz tumours (AST, n = 17) and malignant Spitz tumours (MST, n = 12) using histopathological analysis and immunohistochemistry. Spitzoid melanocytic lesions showed a high frequency (67.1%, n = 53 of 79) of inflammation. Four inflammatory patterns were identified according to architectural composition, distribution and intensity of inflammation. The majority of the inflammatory infiltrate corresponded to CD3+ /CD8+ T lymphocytes (56.1%), followed by CD3+ /CD4+ T cells (35.7%) and CD68+ histiocytes (20.3%). CD3+ /TIA-1+ cytotoxic T lymphocytes constituted 3.7% of inflammatory cells. Rarely, CD3+ / granzyme B+ cytotoxic T lymphocytes (2.7%) and CD138+ plasma cells (0.5%) were detected in the infiltrating immune cells. There was no significant difference in the inflammatory cellular composition among the spitzoid melanocytic subgroups (SN versus AST versus MST). CONCLUSION Our findings demonstrate that Spitz tumours are highly immunogenic lesions. Inflammation with the presence of lymphocytic aggregates predominated in SN, but was not distinctive for this melanocytic category. A strong and intense inflammation was suggestive of an underlying malignancy. The infiltrating cytotoxic T lymphocyte subsets in Spitz tumours deserve further investigation in larger study cohorts to elucidate prognostic and immuno-oncological therapeutic relevance.
Collapse
Affiliation(s)
- Lisa M Hillen
- Department of PathologyGROW School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Hendrik L D Vandyck
- Department of PathologyGROW School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Daphne J G Leunissen
- Department of PathologyGROW School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Bianca T A de Greef
- Department of Clinical Epidemiology and Medical Technology AssessmentMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Francesca M Bosisio
- Laboratory for Translational Cell and Tissue Research (TCTR)University of LeuvenKULLeuvenBelgium
| | - Axel zur Hausen
- Department of PathologyGROW School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Joost van den Oord
- Laboratory for Translational Cell and Tissue Research (TCTR)University of LeuvenKULLeuvenBelgium
- Department of PathologyUniversity HospitalsLeuvenBelgium
| | - Véronique Winnepenninckx
- Department of PathologyGROW School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtthe Netherlands
| |
Collapse
|
18
|
Garg M, Couturier DL, Nsengimana J, Fonseca NA, Wongchenko M, Yan Y, Lauss M, Jönsson GB, Newton-Bishop J, Parkinson C, Middleton MR, Bishop DT, McDonald S, Stefanos N, Tadross J, Vergara IA, Lo S, Newell F, Wilmott JS, Thompson JF, Long GV, Scolyer RA, Corrie P, Adams DJ, Brazma A, Rabbie R. Tumour gene expression signature in primary melanoma predicts long-term outcomes. Nat Commun 2021; 12:1137. [PMID: 33602918 PMCID: PMC7893180 DOI: 10.1038/s41467-021-21207-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 01/15/2021] [Indexed: 02/08/2023] Open
Abstract
Adjuvant systemic therapies are now routinely used following resection of stage III melanoma, however accurate prognostic information is needed to better stratify patients. We use differential expression analyses of primary tumours from 204 RNA-sequenced melanomas within a large adjuvant trial, identifying a 121 metastasis-associated gene signature. This signature strongly associated with progression-free (HR = 1.63, p = 5.24 × 10-5) and overall survival (HR = 1.61, p = 1.67 × 10-4), was validated in 175 regional lymph nodes metastasis as well as two externally ascertained datasets. The machine learning classification models trained using the signature genes performed significantly better in predicting metastases than models trained with clinical covariates (pAUROC = 7.03 × 10-4), or published prognostic signatures (pAUROC < 0.05). The signature score negatively correlated with measures of immune cell infiltration (ρ = -0.75, p < 2.2 × 10-16), with a higher score representing reduced lymphocyte infiltration and a higher 5-year risk of death in stage II melanoma. Our expression signature identifies melanoma patients at higher risk of metastases and warrants further evaluation in adjuvant clinical trials.
Collapse
Affiliation(s)
- Manik Garg
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, UK
| | - Dominique-Laurent Couturier
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | - Jérémie Nsengimana
- University of Leeds School of Medicine, Leeds, United Kingdom
- Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Nuno A Fonseca
- CIBIO/InBIO-Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Rua Padre Armando Quintas, 4485-601, Vairão, Portugal
| | - Matthew Wongchenko
- Oncology Biomarker Development, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Yibing Yan
- Oncology Biomarker Development, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Martin Lauss
- Lund University Cancer Center, Lund University, Lund, Sweden
| | - Göran B Jönsson
- Lund University Cancer Center, Lund University, Lund, Sweden
| | | | - Christine Parkinson
- Cambridge Cancer Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Mark R Middleton
- Oxford NIHR Biomedical Research Centre and Department of Oncology, University of Oxford, Oxford, UK
| | | | - Sarah McDonald
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Nikki Stefanos
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - John Tadross
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ismael A Vergara
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Serigne Lo
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Felicity Newell
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - John F Thompson
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Discipline of Surgery, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Royal North Shore and Mater Hospitals, Sydney, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and New South Wales Health Pathology, Sydney, NSW, Australia
| | - Pippa Corrie
- Cambridge Cancer Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - David J Adams
- Experimental Cancer Genetics, The Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Alvis Brazma
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, UK
| | - Roy Rabbie
- Cambridge Cancer Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
- Experimental Cancer Genetics, The Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK.
| |
Collapse
|
19
|
Identification of Prognostic Biomarkers of Cutaneous Melanoma Based on Analysis of Tumor Mutation Burden. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:8836493. [PMID: 33273963 PMCID: PMC7683164 DOI: 10.1155/2020/8836493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 01/10/2023]
Abstract
Background Immunotherapy offers a novel approach for the treatment of cutaneous melanoma, but the clinical efficiency varies for individual patients. In consideration of the high cost and adverse effects of immunotherapy, it is essential to explore the predictive biomarkers of outcomes. Recently, the tumor mutation burden (TMB) has been proposed as a predictive prognosticator of the immune response. Method RNA-seq and somatic mutation datasets of 472 cutaneous melanoma patients were downloaded from The Cancer Genome Atlas (TCGA) database to analyze mutation type and TMB. Differently expressed genes (DEGs) were identified for functional analysis. TMB-related signatures were identified via LASSO and multivariate Cox regression analysis. The association between mutants of signatures and immune cells was evaluated from the TIMER database. Furthermore, the Wilcox test was applied to assess the difference in immune infiltration calculated by the CIBERSORT algorithm in risk groupings. Results C>T substitutions and TTN were the most common SNV and mutated gene, respectively. Patients with low TMB presented poor prognosis. DEGs were mainly implicated in skin development, cell cycle, DNA replication, and immune-associated crosstalk pathways. Furthermore, a prognostic model consisting of eight TMB-related genes was developed, which was found to be an independent risk factor for treatment outcome. The mutational status of eight TMB-related genes was associated with a low level of immune infiltration. In addition, the immune infiltrates of CD4+ and CD8+ T cells, NK cells, and M1 macrophages were higher in the low-risk group, while those of M0 and M2 macrophages were higher in the high-risk group. Conclusion Our study demonstrated that a higher TMB was associated with favorable survival outcome in cutaneous melanoma. Moreover, a close association between prognostic model and immune infiltration was identified, providing a new potential target for immunotherapy.
Collapse
|
20
|
Attrill GH, Ferguson PM, Palendira U, Long GV, Wilmott JS, Scolyer RA. The tumour immune landscape and its implications in cutaneous melanoma. Pigment Cell Melanoma Res 2020; 34:529-549. [PMID: 32939993 DOI: 10.1111/pcmr.12926] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/01/2020] [Accepted: 08/23/2020] [Indexed: 12/21/2022]
Abstract
The field of tumour immunology has rapidly advanced in the last decade, leading to the advent of effective immunotherapies for patients with advanced cancers. This highlights the critical role of the immune system in determining tumour development and outcome. The tumour immune microenvironment (TIME) is highly heterogeneous, and the interactions between tumours and the immune system are vastly complex. Studying immune cell function in the TIME will provide an improved understanding of the mechanisms underpinning these interactions. This review examines the role of immune cell populations in the TIME based on their phenotype, function and localisation, as well as contextualising their position in the dynamic relationship between tumours and the immune system. We discuss the function of immune cell populations, examine their impact on patient outcome and highlight gaps in current understanding of their roles in the TIME, both in cancers in general and specifically in melanoma. Studying the TIME by evaluating both pro-tumour and anti-tumour effects may elucidate the conditions which lead to tumour growth and metastasis or immune-mediated tumour regression. Moreover, an in-depth understanding of these conditions could contribute to improved prognostication, more effective use of current immunotherapies and guide the development of novel treatment strategies and therapies.
Collapse
Affiliation(s)
- Grace H Attrill
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Peter M Ferguson
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and New South Wales Health Pathology, Sydney, Australia
| | - Umaimainthan Palendira
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Mater and North Shore Hospitals, Sydney, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and New South Wales Health Pathology, Sydney, Australia
| |
Collapse
|
21
|
Sabbatino F, Scognamiglio G, Liguori L, Marra A, Anniciello AM, Polcaro G, Dal Col J, Caputo A, Peluso AL, Botti G, Zeppa P, Ferrone S, Pepe S. Peritumoral Immune Infiltrate as a Prognostic Biomarker in Thin Melanoma. Front Immunol 2020; 11:561390. [PMID: 33117345 PMCID: PMC7550791 DOI: 10.3389/fimmu.2020.561390] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Thin melanomas are tumors less than 1 mm thick according to Breslow classification. Their prognosis is in most cases excellent. However, a small subset of these tumors relapses. These clinical findings emphasize the need of novel prognostic biomarkers to identify this subset of tumors. Characterization of tumor immune microenvironment (TIME) is currently investigated as a prognostic and predictive biomarker for cancer immunotherapy in several solid tumors including melanoma. Here, taking into account the limited availability of tumor tissues, by characterizing some of the characteristics of TIME such as number of infiltrating lymphocytes, HLA class I antigen and PD-L1 expression, we show that number of infiltrating CD8+ and FOXP3+ T cells as well as CD8+/FOXP3+ T cell ratio can represent a useful prognostic biomarker in thin melanoma. Although further investigations in a larger patient cohort are needed, these findings have potential clinical significance since they can be used to define subgroups of thin melanoma patients who have a worse prognosis and might need different treatment modalities.
Collapse
Affiliation(s)
- Francesco Sabbatino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
- Oncology Unit, San Giovanni di Dio e Ruggi D’Aragona University Hospital, Salerno, Italy
| | - Giosuè Scognamiglio
- Pathology Unit, Istituto Nazionale Tumori, IRCSS, “Fondazione G. Pascale”, Naples, Italy
| | - Luigi Liguori
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Antonio Marra
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology, Milan, Italy
| | - Anna Maria Anniciello
- Pathology Unit, Istituto Nazionale Tumori, IRCSS, “Fondazione G. Pascale”, Naples, Italy
| | - Giovanna Polcaro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Alessandro Caputo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
- Pathology Unit, San Giovanni di Dio e Ruggi D’Aragona University Hospital, Salerno, Italy
| | - Anna Lucia Peluso
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
- Pathology Unit, San Giovanni di Dio e Ruggi D’Aragona University Hospital, Salerno, Italy
| | - Gerardo Botti
- Scientific Direction, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Pio Zeppa
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
- Pathology Unit, San Giovanni di Dio e Ruggi D’Aragona University Hospital, Salerno, Italy
| | - Soldano Ferrone
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Stefano Pepe
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
- Oncology Unit, San Giovanni di Dio e Ruggi D’Aragona University Hospital, Salerno, Italy
| |
Collapse
|
22
|
Maibach F, Sadozai H, Seyed Jafari SM, Hunger RE, Schenk M. Tumor-Infiltrating Lymphocytes and Their Prognostic Value in Cutaneous Melanoma. Front Immunol 2020; 11:2105. [PMID: 33013886 PMCID: PMC7511547 DOI: 10.3389/fimmu.2020.02105] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022] Open
Abstract
Recent breakthroughs in tumor immunotherapy such as immune checkpoint blockade (ICB) antibodies, have demonstrated the capacity of the immune system to fight cancer in a number of malignancies such as melanoma and lung cancer. The numbers, localization and phenotypes of tumor-infiltrating lymphocytes (TIL) are not only predictive of response to immunotherapy but also key modulators of disease progression. In this review, we focus on TIL profiling in cutaneous melanoma using histopathological approaches and highlight the observed prognostic value of the primary TIL subsets. The quantification of TIL in formalin-fixed tumor samples ranges from visual scoring of lymphocytic infiltrates in H&E to multiplex immunohistochemistry and immunofluorescence followed by enumeration using image analysis software. Nevertheless, TIL enumeration in the current literature primarily relies upon single marker immunohistochemistry analyses of major lymphocyte subsets such as conventional T cells (CD3, CD4, CD8), regulatory T cells (FOXP3) and B cells (CD20). We review key studies in the literature on associations between TIL subsets and patient survival. We also cover recent findings with respect to the existence of ectopic lymphoid aggregates found in the TME which are termed tertiary lymphoid structures (TLS) and are generally a positive prognostic feature. In addition to their prognostic significance, the existence of various TIL sub-populations has also been reported to predict a patient's response to ICB. Thus, the literature on the predictive potential of TIL subsets in melanoma patients receiving ICB has also been discussed. Finally, we describe recently developed state-of-the-art profiling approaches for tumor infiltrating immune cells such as digital pathology scoring algorithms (e.g., Immunoscore) and multiplex proteomics-based immunophenotyping platforms (e.g., imaging mass cytometry). Translating these novel technologies have the potential to revolutionize tumor immunopathology leading to altering our current understanding of cancer immunology and dramatically improving outcomes for patients.
Collapse
Affiliation(s)
- Fabienne Maibach
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| | - Hassan Sadozai
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| | | | - Robert E. Hunger
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Mirjam Schenk
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Abstract
On the basis of the autologous tumor-infiltrating lymphocytes (TILs) or genetically modified TILs for adoptive cell therapy have received more attention. Programmed cell death protein 1 (PD-1) expression on the T cells exert complex response during the tumor immune response. But the composition and function of PD-1T-cell subsets in TILs from human lung cancer still limited. In blood and TILs from human lung cancer patients, we confirmed that PD-1 is expressed in higher levels in CD4T-cell subsets than in CD8T-cell subsets. To further analyze the function of PD-1T cells in TILs, we observed the cytokine production in different T-cell subsets. We found that higher interferon-γ and granzyme B production in CD4/CD8PD-1T-cell subsets in TILs than in peripheral blood mononuclear cells (PBMCs); except for PD-1Tscm, higher tumor necrosis factor-α production was observed in PD-1T-cell subsets in TILs than in PBMCs; the expression level of interleukin-17 were lower in PD-1T cells in TILs than in PBMCs; and perforin expression was significantly reduced in CD4PD-1T cells subsets in TILs compared with peripheral blood. Clarify elucidating the composition and function of PD-1T-cell subsets in TILs will have great value in clinical application for evaluating the sensitivity to PD-1 blockade and selecting the promising candidate T-cell subsets in TILs for combination immunotherapy in human lung cancer.
Collapse
|
24
|
MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12071760. [PMID: 32630675 PMCID: PMC7409324 DOI: 10.3390/cancers12071760] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022] Open
Abstract
In recent years, major advances have been made in cancer immunotherapy. This has led to significant improvement in prognosis of cancer patients, especially in the hematological setting. Nonetheless, translation of these successes to solid tumors was found difficult. One major mechanism through which solid tumors can avoid anti-tumor immunity is the downregulation of major histocompatibility complex class I (MHC-I), which causes reduced recognition by- and cytotoxicity of CD8+ T-cells. Downregulation of MHC-I has been described in 40-90% of human tumors, often correlating with worse prognosis. Epigenetic and (post-)transcriptional dysregulations relevant in the stabilization of NFkB, IRFs, and NLRC5 are often responsible for MHC-I downregulation in cancer. The intrinsic reversible nature of these dysregulations provides an opportunity to restore MHC-I expression and facilitate adaptive anti-tumor immunity. In this review, we provide an overview of the mechanisms underlying reversible MHC-I downregulation and describe potential strategies to counteract this reduction in MHC-I antigen presentation in cancer.
Collapse
|
25
|
Gibellini L, De Biasi S, Porta C, Lo Tartaro D, Depenni R, Pellacani G, Sabbatini R, Cossarizza A. Single-Cell Approaches to Profile the Response to Immune Checkpoint Inhibitors. Front Immunol 2020; 11:490. [PMID: 32265933 PMCID: PMC7100547 DOI: 10.3389/fimmu.2020.00490] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/03/2020] [Indexed: 12/26/2022] Open
Abstract
Novel treatments based upon the use of immune checkpoint inhibitors have an impressive efficacy in different types of cancer. Unfortunately, most patients do not derive benefit or lasting responses, and the reasons for the lack of therapeutic success are not known. Over the past two decades, a pressing need to deeply profile either the tumor microenvironment or cells responsible for the immune response has led investigators to integrate data obtained from traditional approaches with those obtained with new, more sophisticated, single-cell technologies, including high parameter flow cytometry, single-cell sequencing and high resolution imaging. The introduction and use of these technologies had, and still have a prominent impact in the field of cancer immunotherapy, allowing delving deeper into the molecular and cellular crosstalk between cancer and immune system, and fostering the identification of predictive biomarkers of response. In this review, besides the molecular and cellular cancer-immune system interactions, we are discussing how cutting-edge single-cell approaches are helping to point out the heterogeneity of immune cells in the tumor microenvironment and in blood.
Collapse
Affiliation(s)
- Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Camillo Porta
- Department of Internal Medicine and Therapeutics, Division of Translational Oncology, IRCCS Istituti Clinici Scientifici Maugeri, University of Pavia, Pavia, Italy
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberta Depenni
- Department of Oncology, Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Pellacani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto Sabbatini
- Department of Oncology, Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy.,Section of Modena, Istituto Nazionale per le Ricerche Cardiovascolari, Bologna, Italy
| |
Collapse
|
26
|
Normalization Cancer Immunotherapy for Melanoma. J Invest Dermatol 2020; 140:1134-1142. [PMID: 32092349 DOI: 10.1016/j.jid.2020.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/26/2019] [Accepted: 02/05/2020] [Indexed: 12/28/2022]
Abstract
Today, we are witnessing a revolution in the treatment of cancer using immunotherapy. In the past decade, work from many laboratories and clinicians has unequivocally demonstrated that the immune system can eradicate established cancers and enhance patient survival. However, immunotherapies have distinct tumor response-to-toxicity profiles owing to distinct mechanisms of action. We have previously termed immunotherapies that activate a general systemic immune response as enhancement cancer immunotherapy and those that target a specific dysfunctional immune response, especially within the tumor microenvironment, as normalization cancer immunotherapy. In this perspective, we provide a framework for normalization cancer immunotherapy in the context of melanoma.
Collapse
|
27
|
Pruessmann W, Rytlewski J, Wilmott J, Mihm MC, Attrill GH, Dyring-Andersen B, Fields P, Zhan Q, Colebatch AJ, Ferguson PM, Thompson JF, Kallenbach K, Yusko E, Clark RA, Robins H, Scolyer RA, Kupper TS. Molecular analysis of primary melanoma T cells identifies patients at risk for metastatic recurrence. NATURE CANCER 2020; 1:197-209. [PMID: 33305293 PMCID: PMC7725220 DOI: 10.1038/s43018-019-0019-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/10/2019] [Indexed: 12/25/2022]
Abstract
Primary melanomas >1 mm thickness are potentially curable by resection, but can recur metastatically. We assessed the prognostic value of T cell fraction (TCFr) and repertoire T cell clonality, measured by high-throughput-sequencing of the T cell receptor beta chain (TRB) in T2-T4 primary melanomas (n=199). TCFr accurately predicted progression-free survival (PFS) and was independent of thickness, ulceration, mitotic rate, or age. TCFr was second only to tumor thickness in its predictive value, using a gradient boosted model. For accurate PFS prediction, adding TCFr to tumor thickness was superior to adding any other histopathological variable. Furthermore, a TCFr >20% was protective regardless of tumor ulceration status, mitotic rate or presence of nodal disease. TCFr is a quantitative molecular assessment that predicts metastatic recurrence in primary melanoma patients whose disease has been resected surgically. This study suggests that a successful T cell-mediated antitumor response can be present in primary melanomas.
Collapse
Affiliation(s)
- Wiebke Pruessmann
- Department of Dermatology and Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Department of Dermatology, University of Luebeck, Luebeck, Germany
| | | | - James Wilmott
- Melanoma Institute Australia, University of Sydney, Sydney, New South Wales, Australia
| | - Martin C Mihm
- Department of Dermatology and Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Grace H Attrill
- Melanoma Institute Australia, University of Sydney, Sydney, New South Wales, Australia
| | - Beatrice Dyring-Andersen
- Department of Dermatology and Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Qian Zhan
- Department of Dermatology and Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Andrew J Colebatch
- Melanoma Institute Australia, University of Sydney, Sydney, New South Wales, Australia
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Peter M Ferguson
- Melanoma Institute Australia, University of Sydney, Sydney, New South Wales, Australia
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - John F Thompson
- Melanoma Institute Australia, University of Sydney, Sydney, New South Wales, Australia
- Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Klaus Kallenbach
- Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Erik Yusko
- Adaptive Biotechnologies, Seattle, WA, USA
| | - Rachael A Clark
- Department of Dermatology and Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Harlan Robins
- Adaptive Biotechnologies, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Richard A Scolyer
- Melanoma Institute Australia, University of Sydney, Sydney, New South Wales, Australia
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Thomas S Kupper
- Department of Dermatology and Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
28
|
Wijesekera DPH, Yuba E, De Silva NH, Watanabe SI, Tsukamoto M, Ichida C, Izawa T, Itoh K, Kanegi R, Hatoya S, Yamate J, Inaba T, Sugiura K. Manipulation of the tumor microenvironment by cytokine gene transfection enhances dendritic cell-based immunotherapy. FASEB Bioadv 2020; 2:5-17. [PMID: 32123853 PMCID: PMC6996313 DOI: 10.1096/fba.2019-00052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 06/21/2019] [Accepted: 11/06/2019] [Indexed: 01/21/2023] Open
Abstract
The tumor microenvironment strongly influences clinical outcomes of immunotherapy. By transfecting genes of relevant cytokines into tumor cells, we sought to manipulate the microenvironment so as to elicit activation of T helper type 1 (Th1) responses and the maturation of dendritic cells (DCs). Using a synthetic vehicle, the efficiency of in vivo transfection of GFP-cDNA into tumor cells was about 7.5% by intratumoral injection and about 11.5% by intravenous injection. Survival was significantly improved by both intratumoral and intravenous injection of the plasmid containing cDNA of interferon-gamma, followed by intratumoral injection of DCs presenting the tumor antigens. Also, tumor growth was inhibited by these treatments. A more significant effect on survival and tumor growth inhibition was observed following injection of the plasmid containing cDNA of CD40 ligand, which is a potent inducer of DC-maturation. Furthermore, the co-injection of both IFNγ- and CD40 ligand-encoding cDNA-plasmids, followed by DC treatment, gave rise to further marked and enhancement, including 100% survival and more than 50% complete remission. This treatment regimen elicited significant increases in mature DCs and types of cells contributing to Th1 responses, and significant decreases in immune suppressor cells in the tumor. In the spleen, the treatment significantly increased activities of tumor-specific killer and natural killer cells, but no alteration was observed in mature DCs or suppressor cells. These results indicate that transfection of these cytokine genes into tumor cells significantly alter the tumor microenvironment and improve the therapeutic results of DC-based immunotherapy.
Collapse
Affiliation(s)
- Daluthgamage Patsy Himali Wijesekera
- Department of Advanced Pathobiology Graduate School of Life and Environmental Sciences Osaka Prefecture University Izumisano Japan
- Present address: Department of Pathobiology Faculty of Veterinary Medicine and Animal Science University of Peradeniya Peradeniya Sri Lanka
| | - Eiji Yuba
- Department of Applied Chemistry Graduate School of Engineering Osaka Prefecture University Sakai Japan
| | - Nadeeka Harshini De Silva
- Department of Advanced Pathobiology Graduate School of Life and Environmental Sciences Osaka Prefecture University Izumisano Japan
| | - Shun-Ichi Watanabe
- Department of Advanced Pathobiology Graduate School of Life and Environmental Sciences Osaka Prefecture University Izumisano Japan
| | - Masaya Tsukamoto
- Department of Advanced Pathobiology Graduate School of Life and Environmental Sciences Osaka Prefecture University Izumisano Japan
| | - Chihiro Ichida
- Department of Advanced Pathobiology Graduate School of Life and Environmental Sciences Osaka Prefecture University Izumisano Japan
| | - Takeshi Izawa
- Department of Integrated Structural Biosciences Graduate School of Life and Environmental Sciences Osaka Prefecture University Izumisano Osaka Japan
| | - Kazuyuki Itoh
- Research Institute Nozaki Tokushukai Daitou City Japan
| | - Ryoji Kanegi
- Department of Advanced Pathobiology Graduate School of Life and Environmental Sciences Osaka Prefecture University Izumisano Japan
| | - Shingo Hatoya
- Department of Advanced Pathobiology Graduate School of Life and Environmental Sciences Osaka Prefecture University Izumisano Japan
| | - Jyoji Yamate
- Department of Integrated Structural Biosciences Graduate School of Life and Environmental Sciences Osaka Prefecture University Izumisano Osaka Japan
| | - Toshio Inaba
- Department of Advanced Pathobiology Graduate School of Life and Environmental Sciences Osaka Prefecture University Izumisano Japan
| | - Kikuya Sugiura
- Department of Advanced Pathobiology Graduate School of Life and Environmental Sciences Osaka Prefecture University Izumisano Japan
| |
Collapse
|
29
|
Porcellato I, Silvestri S, Menchetti L, Recupero F, Mechelli L, Sforna M, Iussich S, Bongiovanni L, Lepri E, Brachelente C. Tumour-infiltrating lymphocytes in canine melanocytic tumours: An investigation on the prognostic role of CD3 + and CD20 + lymphocytic populations. Vet Comp Oncol 2019; 18:370-380. [PMID: 31750993 DOI: 10.1111/vco.12556] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022]
Abstract
The study of the immune response in several types of tumours has been rapidly increasing in recent years with the dual aim of understanding the interactions between neoplastic and immune cells and their importance in cancer pathogenesis and progression, as well as identifying targets for cancer immunotherapy. Despite being considered one of the most immunogenic tumour types, melanoma can progress in the presence of abundant lymphocytic infiltration, therefore suggesting that the immune response is not able to efficiently control tumour growth. The purpose of this study was to investigate whether the density, distribution and grade of tumour-infiltrating lymphocytes (TILs) in 97 canine melanocytic tumours is associated with histologic indicators of malignancy and can be considered a prognostic factor in the dog. As a further step in the characterization of the immune response in melanocytic tumours, an immunohistochemical investigation was performed to evaluate the two main populations of TILs, T-lymphocytes (CD3+ ) and B-lymphocytes (CD20+ ). The results of our study show that TILs are present in a large proportion of canine melanocytic tumours, especially in oral melanomas, and that the infiltrate is usually mild. The quantity of CD20+ TILs was significantly associated with some histologic prognostic factors, such as the mitotic count, the cellular pleomorphism and the percentage of pigmented cells. Remarkably, a high infiltration of CD20+ TILs was associated with tumour-related death, presence of metastasis/recurrence, shorter overall and disease-free survival, increased hazard of death and of developing recurrence/metastasis, hence representing a potential new negative prognostic factor in canine melanocytic tumours.
Collapse
Affiliation(s)
- Ilaria Porcellato
- Department of Veterinary Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Serenella Silvestri
- Department of Veterinary Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Laura Menchetti
- Department of Veterinary Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Francesca Recupero
- Department of Veterinary Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Luca Mechelli
- Department of Veterinary Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Monica Sforna
- Department of Veterinary Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Selina Iussich
- Department of Veterinary Science, Università degli Studi di Torino, Turin, Italy
| | - Laura Bongiovanni
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Elvio Lepri
- Department of Veterinary Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Chiara Brachelente
- Department of Veterinary Medicine, Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
30
|
Horak V, Palanova A, Cizkova J, Miltrova V, Vodicka P, Kupcova Skalnikova H. Melanoma-Bearing Libechov Minipig (MeLiM): The Unique Swine Model of Hereditary Metastatic Melanoma. Genes (Basel) 2019; 10:E915. [PMID: 31717496 PMCID: PMC6895830 DOI: 10.3390/genes10110915] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
National cancer databases document that melanoma is the most aggressive and deadly cutaneous malignancy with worldwide increasing incidence in the Caucasian population. Around 10% of melanomas occur in families. Several germline mutations were identified that might help to indicate individuals at risk for preventive interventions and early disease detection. More than 50% of sporadic melanomas carry mutations in Ras/Raf/mitogen-activated protein kinase (MAPK/MEK) pathway, which may represent aims of novel targeted therapies. Despite advances in targeted therapies and immunotherapies, the outcomes in metastatic tumor are still unsatisfactory. Here, we review animal models that help our understanding of melanoma development and treatment, including non-vertebrate, mouse, swine, and other mammal models, with an emphasis on those with spontaneously developing melanoma. Special attention is paid to the melanoma-bearing Libechov minipig (MeLiM). This original swine model of hereditary metastatic melanoma enables studying biological processes underlying melanoma progression, as well as spontaneous regression. Current histological, immunohistochemical, biochemical, genetic, hematological, immunological, and skin microbiome findings in the MeLiM model are summarized, together with development of new therapeutic approaches based on tumor devitalization. The ongoing study of molecular and immunological base of spontaneous regression in MeLiM model has potential to bring new knowledge of clinical importance.
Collapse
Affiliation(s)
| | | | | | | | | | - Helena Kupcova Skalnikova
- Czech Academy of Sciences, Institute of Animal Physiology and Genetics, Laboratory of Applied Proteome Analyses and Research Center PIGMOD, 277 21 Libechov, Czech Republic; (V.H.); (A.P.); (J.C.); (V.M.); (P.V.)
| |
Collapse
|
31
|
Targeting Immune-Related Biological Processes in Solid Tumors: We do Need Biomarkers. Int J Mol Sci 2019; 20:ijms20215452. [PMID: 31683784 PMCID: PMC6862285 DOI: 10.3390/ijms20215452] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy has become the standard-of-care in many solid tumors. Despite the significant recent achievements in the diagnosis and treatment of cancer, several issues related to patients’ selection for immunotherapy remain unsolved. Multiple lines of evidence suggest that, in this setting, the vision of a single biomarker is somewhat naïve and imprecise, given that immunotherapy does not follow the rules that we have experienced in the past for targeted therapies. On the other hand, additional immune-related biomarkers that are reliable in real-life clinical practice remain to be identified. Recently, the immune-checkpoint blockade has been approved in the US irrespective of the tumor site of origin. Further histology-agnostic approvals, coupled with with tumor-specific companion diagnostics and guidelines, are expected in this field. In addition, immune-related biomarkers can also have a significant prognostic value. In this review, we provide an overview of the role of these biomarkers and their characterization in the management of lung cancer, melanoma, colorectal cancer, gastric cancer, head and neck cancer, renal cell carcinoma, urothelial cancers, and breast cancer.
Collapse
|
32
|
Yan Y, Leontovich AA, Gerdes MJ, Desai K, Dong J, Sood A, Santamaria-Pang A, Mansfield AS, Chadwick C, Zhang R, Nevala WK, Flotte TJ, Ginty F, Markovic SN. Understanding heterogeneous tumor microenvironment in metastatic melanoma. PLoS One 2019; 14:e0216485. [PMID: 31166985 PMCID: PMC6550385 DOI: 10.1371/journal.pone.0216485] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/22/2019] [Indexed: 01/05/2023] Open
Abstract
A systemic analysis of the tumor-immune interactions within the heterogeneous tumor microenvironment is of particular importance for understanding the antitumor immune response. We used multiplexed immunofluorescence to elucidate cellular spatial interactions and T-cell infiltrations in metastatic melanoma tumor microenvironment. We developed two novel computational approaches that enable infiltration clustering and single cell analysis-cell aggregate algorithm and cell neighborhood analysis algorithm-to reveal and to compare the spatial distribution of various immune cells relative to tumor cell in sub-anatomic tumor microenvironment areas. We showed that the heterogeneous tumor human leukocyte antigen-1 expressions differently affect the magnitude of cytotoxic T-cell infiltration and the distributions of CD20+ B cells and CD4+FOXP3+ regulatory T cells within and outside of T-cell infiltrated tumor areas. In a cohort of 166 stage III melanoma samples, high tumor human leukocyte antigen-1 expression is required but not sufficient for high T-cell infiltration, with significantly improved overall survival. Our results demonstrate that tumor cells with heterogeneous properties are associated with differential but predictable distributions of immune cells within heterogeneous tumor microenvironment with various biological features and impacts on clinical outcomes. It establishes tools necessary for systematic analysis of the tumor microenvironment, allowing the elucidation of the "homogeneous patterns" within the heterogeneous tumor microenvironment.
Collapse
Affiliation(s)
- Yiyi Yan
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Alexey A. Leontovich
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Michael J. Gerdes
- Diagnostics, Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, United States of America
| | - Keyur Desai
- Diagnostics, Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, United States of America
| | - Jinhong Dong
- Clinical Immunology and Immunotherapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Anup Sood
- Diagnostics, Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, United States of America
| | - Alberto Santamaria-Pang
- Diagnostics, Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, United States of America
| | - Aaron S. Mansfield
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Chrystal Chadwick
- Diagnostics, Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, United States of America
| | - Rong Zhang
- Diagnostics, Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, United States of America
| | - Wendy K. Nevala
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Thomas J. Flotte
- Division of Anatomic Pathology and Division of Dermatopathology and Cutaneous Immunopathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Fiona Ginty
- Diagnostics, Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, United States of America
| | - Svetomir N. Markovic
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
33
|
Yam AO, Chtanova T. The Ins and Outs of Chemokine-Mediated Immune Cell Trafficking in Skin Cancer. Front Immunol 2019; 10:386. [PMID: 30899263 PMCID: PMC6416210 DOI: 10.3389/fimmu.2019.00386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/14/2019] [Indexed: 12/14/2022] Open
Abstract
Recent studies of the patterns of chemokine-mediated immune cell recruitment into solid tumors have enhanced our understanding of the role played by various immune cell subsets both in amplifying and inhibiting tumor cell growth and spread. Here we discuss how the chemokine/chemokine receptor networks bring together immune cells within the microenvironment of skin tumors, particularly melanomas, including their effect on disease progression, prognosis and therapeutic options.
Collapse
Affiliation(s)
- Andrew O. Yam
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Tatyana Chtanova
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
34
|
Ramspott JP, Bekkat F, Bod L, Favier M, Terris B, Salomon A, Djerroudi L, Zaenker KS, Richard Y, Molinier-Frenkel V, Castellano F, Avril MF, Prévost-Blondel A. Emerging Role of IL-4–Induced Gene 1 as a Prognostic Biomarker Affecting the Local T-Cell Response in Human Cutaneous Melanoma. J Invest Dermatol 2018; 138:2625-2634. [DOI: 10.1016/j.jid.2018.06.178] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/04/2018] [Accepted: 06/18/2018] [Indexed: 12/28/2022]
|
35
|
Bujak JK, Pingwara R, Nelson MH, Majchrzak K. Adoptive cell transfer: new perspective treatment in veterinary oncology. Acta Vet Scand 2018; 60:60. [PMID: 30305130 PMCID: PMC6180494 DOI: 10.1186/s13028-018-0414-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 10/02/2018] [Indexed: 12/26/2022] Open
Abstract
Cancer immunotherapy is recently considered the most promising treatment for human patients with advanced tumors and could be effectively combined with conventional therapies such as chemotherapy or radiotherapy. Patients with hematological malignancies and melanoma have benefited greatly from immunotherapies such as, adoptive cell transfer therapy, experiencing durable remissions and prolonged survival. In the face of increasing enthusiasm for immunotherapy, particularly for the administration of tumor-specific T lymphocytes, the question arises whether this method could be employed to improve treatment outcomes for canine patients. It is warranted to determine whether veterinary clinical trials could support comparative oncology research and thus facilitate the development of new cell-based therapies for humans. Herein, we discuss adoptive transfer of T lymphocytes and lymphokine-activated cells for application in veterinary oncology, in the context of human medicine achievements. Furthermore, we discuss potential benefits of using domestic dog as a model for immunotherapy and its advantages for translational medicine. We also focus on an emerging genome-editing technology as a useful tool to improve a T cells’ phenotype.
Collapse
|
36
|
van de Loosdrecht AA, van Wetering S, Santegoets SJAM, Singh SK, Eeltink CM, den Hartog Y, Koppes M, Kaspers J, Ossenkoppele GJ, Kruisbeek AM, de Gruijl TD. A novel allogeneic off-the-shelf dendritic cell vaccine for post-remission treatment of elderly patients with acute myeloid leukemia. Cancer Immunol Immunother 2018; 67:1505-1518. [PMID: 30039426 PMCID: PMC6182404 DOI: 10.1007/s00262-018-2198-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 06/29/2018] [Indexed: 01/31/2023]
Abstract
In elderly acute myeloid leukemia (AML) patients post-remission treatment options are associated with high comorbidity rates and poor survival. Dendritic cell (DC)-based immunotherapy is a promising alternative treatment strategy. A novel allogeneic DC vaccine, DCP-001, was developed from an AML-derived cell line that uniquely combines the positive features of allogeneic DC vaccines and expression of multi-leukemia-associated antigens. Here, we present data from a phase I study conducted with DCP-001 in 12 advanced-stage elderly AML patients. Patients enrolled were in complete remission (CR1/CR2) (n = 5) or had smoldering disease (n = 7). All patients were at high risk of relapse and ineligible for post-remission intensification therapies. A standard 3 + 3 dose escalation design with extension to six patients in the highest dose was performed. Patients received four biweekly intradermal DCP-001 injections at different dose levels (10, 25, and 50 million cells DCP-001) and were monitored for clinical and immunological responses. Primary objectives of the study (feasibility and safety) were achieved with 10/12 patients completing the vaccination program. Treatment was well tolerated. A clear-cut distinction between patients with and without detectable circulating leukemic blasts during the vaccination period was noted. Patients with no circulating blasts showed an unusually prolonged survival [median overall survival 36 months (range 7–63) from the start of vaccination] whereas patients with circulating blasts, died within 6 months. Long-term survival was correlated with maintained T cell levels and induction of multi-functional immune responses. It is concluded that DCP-001 in elderly AML patients is safe, feasible and generates both cellular and humoral immune responses.
Collapse
Affiliation(s)
- Arjan A van de Loosdrecht
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | - Saskia J A M Santegoets
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.,Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Corien M Eeltink
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Yvonne den Hartog
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Malika Koppes
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Jorn Kaspers
- DCPrime BV, Galileiweg 8, 2333 BD, Leiden, The Netherlands
| | - Gert J Ossenkoppele
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
37
|
Jean Wrobel L, Bod L, Lengagne R, Kato M, Prévost-Blondel A, Le Gal FA. Propranolol induces a favourable shift of anti-tumor immunity in a murine spontaneous model of melanoma. Oncotarget 2018; 7:77825-77837. [PMID: 27788481 PMCID: PMC5363624 DOI: 10.18632/oncotarget.12833] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/12/2016] [Indexed: 12/16/2022] Open
Abstract
In a previous study on a xenograft model of melanoma, we showed that the beta-adrenergic receptor antagonist propranolol inhibits melanoma development by modulating angiogenesis, proliferation and cell survival. Stress hormones can influence tumor development in different ways and norepinephrine was shown to downregulate antitumor immune responses by favoring the accumulation of immunosuppressive cells, impairing the function of lymphocytes. We assessed the effect of propranolol on antitumor immune response in the MT/Ret mouse model of melanoma. Propranolol treatment delayed primary tumor growth and metastases development in MT/Ret mice. Consistent with our previous observations in human melanoma xenografts, propranolol induces a decrease in cell proliferation and vessel density in the primary tumors and in metastases. In this immunocompetent model, propranolol significantly reduced the infiltration of myeloid cells, particularly neutrophils, in the primary tumor. Inversely, cytotoxic tumor infiltrating lymphocytes were more frequent in the tumor stroma of treated mice. In a consistent manner, we observed the same shift in the proportions of infiltrating leukocytes in the metastases of treated mice. Our results suggest that propranolol, by decreasing the infiltration of immunosuppressive myeloid cells in the tumor microenvironment, restores a better control of the tumor by cytotoxic cells.
Collapse
Affiliation(s)
- Ludovic Jean Wrobel
- Hôpitaux Universitaires de Genève, Service de Dermatologie, Genève, Switzerland
| | - Lloyd Bod
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Renée Lengagne
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Armelle Prévost-Blondel
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | | |
Collapse
|
38
|
Kersh AE, Ng S, Chang YM, Sasaki M, Thomas SN, Kissick HT, Lesinski GB, Kudchadkar RR, Waller EK, Pollack BP. Targeted Therapies: Immunologic Effects and Potential Applications Outside of Cancer. J Clin Pharmacol 2018; 58:7-24. [PMID: 29136276 PMCID: PMC5972536 DOI: 10.1002/jcph.1028] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022]
Abstract
Two pharmacologic approaches that are currently at the forefront of treating advanced cancer are those that center on disrupting critical growth/survival signaling pathways within tumor cells (commonly referred to as "targeted therapies") and those that center on enhancing the capacity of a patient's immune system to mount an antitumor response (immunotherapy). Maximizing responses to both of these approaches requires an understanding of the oncogenic events present in a given patient's tumor and the nature of the tumor-immune microenvironment. Although these 2 modalities were developed and initially used independently, combination regimens are now being tested in clinical trials, underscoring the need to understand how targeted therapies influence immunologic events. Translational studies and preclinical models have demonstrated that targeted therapies can influence immune cell trafficking, the production of and response to chemokines and cytokines, antigen presentation, and other processes relevant to antitumor immunity and immune homeostasis. Moreover, because these and other effects of targeted therapies occur in nonmalignant cells, targeted therapies are being evaluated for use in applications outside of oncology.
Collapse
Affiliation(s)
- Anna E. Kersh
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Spencer Ng
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yun Min Chang
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Atlanta, GA
| | | | - Susan N. Thomas
- Emory University Winship Cancer Institute, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Haydn T. Kissick
- Emory University Winship Cancer Institute, Atlanta, GA, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gregory B. Lesinski
- Emory University Winship Cancer Institute, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ragini R. Kudchadkar
- Emory University Winship Cancer Institute, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Edmund K. Waller
- Emory University Winship Cancer Institute, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Brian P. Pollack
- Atlanta VA Medical Center, Atlanta, GA, USA
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
- Emory University Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|
39
|
Castaneda CA, Torres-Cabala C, Castillo M, Villegas V, Casavilca S, Cano L, Sanchez J, Dunstan J, Calderon G, De La Cruz M, Cotrina JM, Gomez HL, Galvez R, Abugattas J. Tumor infiltrating lymphocytes in acral lentiginous melanoma: a study of a large cohort of cases from Latin America. Clin Transl Oncol 2017; 19:1478-1488. [PMID: 28577153 DOI: 10.1007/s12094-017-1685-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/24/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE Acral lentiginous melanoma (ALM) is a poor prognosis subtype and is the most prevalent in non-Caucasian populations. The presence of tumor infiltrating lymphocytes (TILs) has been associated with poor prognosis in melanoma. A large cohort of ALM cases was studied to determine status of TIL and its association with outcome. METHODS All patients with cutaneous melanoma presenting from 2005 to 2012 at Instituto Nacional de Enfermedades Neoplasicas in Peru were retrospectively identified. Clinicopathological information was obtained from the medical charts. A prospective evaluation of TIL was performed. Analysis of association between ALM and clinicopathological features including TIL as well as survival analysis compared the outcome of ALM to whole group and extremity NALM was performed. RESULTS 537 ALM from a total of 824 cutaneous melanoma cases were studied. Older age (p = 0.022), higher Breslow (p = 0.008) and ulceration (p < 0.001) were found to be more frequent in ALM. Acral had worse overall survival (OS) compared with the whole group (p = 0.04). Clinical stage (CS) I-II patients had a median OS of 5.3 (95% CI 4.3-6.2) for ALM and 9.2 (95% CI 5.0-7.0) for extremity NALM (p = 0.016). Grade 0 (absence of TIL), I, II and III were found in 7.5, 34.5, 32.1, and 25.9%, respectively. Lower TIL grade was associated with larger tumor size (p = 0.003), higher Breslow (p = 0.001), higher Clark level (p = 0.007), higher CS (p = 0.002), extremity location (p = 0.048), histological subtype ALM (p = 0.024) and better OS (p = 0.001). CONCLUSIONS ALM is highly prevalent in Peru and carries poor outcome. Lower TIL levels were associated with poor outcome and ALM.
Collapse
Affiliation(s)
- C A Castaneda
- Medical Oncology Department, Instituto Nacional de Enfermedades Neoplasicas, Av. Angamos Este 2520, Surquillo, 15038, Lima, Peru.
- Research Department, Instituto Nacional de Enfermedades Neoplasicas, Av. Angamos Este 2520, Surquillo, 15038, Lima, Peru.
| | - C Torres-Cabala
- Departments of Pathology and Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - M Castillo
- Research Department, Instituto Nacional de Enfermedades Neoplasicas, Av. Angamos Este 2520, Surquillo, 15038, Lima, Peru
| | - V Villegas
- Research Department, Instituto Nacional de Enfermedades Neoplasicas, Av. Angamos Este 2520, Surquillo, 15038, Lima, Peru
| | - S Casavilca
- Pathology Department, Instituto Nacional de Enfermedades Neoplasicas, Av. Angamos Este 2520, Surquillo, 15038, Lima, Peru
| | - L Cano
- Research Department, Instituto Nacional de Enfermedades Neoplasicas, Av. Angamos Este 2520, Surquillo, 15038, Lima, Peru
| | - J Sanchez
- Research Department, Instituto Nacional de Enfermedades Neoplasicas, Av. Angamos Este 2520, Surquillo, 15038, Lima, Peru
| | - J Dunstan
- Breast Cancer Surgery Department, Instituto Nacional de Enfermedades Neoplasicas, Av. Angamos Este 2520, Surquillo, 15038, Lima, Peru
| | - G Calderon
- Breast Cancer Surgery Department, Instituto Nacional de Enfermedades Neoplasicas, Av. Angamos Este 2520, Surquillo, 15038, Lima, Peru
| | - M De La Cruz
- Breast Cancer Surgery Department, Instituto Nacional de Enfermedades Neoplasicas, Av. Angamos Este 2520, Surquillo, 15038, Lima, Peru
| | - J M Cotrina
- Breast Cancer Surgery Department, Instituto Nacional de Enfermedades Neoplasicas, Av. Angamos Este 2520, Surquillo, 15038, Lima, Peru
| | - H L Gomez
- Medical Oncology Department, Instituto Nacional de Enfermedades Neoplasicas, Av. Angamos Este 2520, Surquillo, 15038, Lima, Peru
| | - R Galvez
- Research Department, Instituto Nacional de Enfermedades Neoplasicas, Av. Angamos Este 2520, Surquillo, 15038, Lima, Peru
| | - J Abugattas
- Breast Cancer Surgery Department, Instituto Nacional de Enfermedades Neoplasicas, Av. Angamos Este 2520, Surquillo, 15038, Lima, Peru
| |
Collapse
|
40
|
Hendry S, Salgado R, Gevaert T, Russell PA, John T, Thapa B, Christie M, van de Vijver K, Estrada MV, Gonzalez-Ericsson PI, Sanders M, Solomon B, Solinas C, Van den Eynden GGGM, Allory Y, Preusser M, Hainfellner J, Pruneri G, Vingiani A, Demaria S, Symmans F, Nuciforo P, Comerma L, Thompson EA, Lakhani S, Kim SR, Schnitt S, Colpaert C, Sotiriou C, Scherer SJ, Ignatiadis M, Badve S, Pierce RH, Viale G, Sirtaine N, Penault-Llorca F, Sugie T, Fineberg S, Paik S, Srinivasan A, Richardson A, Wang Y, Chmielik E, Brock J, Johnson DB, Balko J, Wienert S, Bossuyt V, Michiels S, Ternes N, Burchardi N, Luen SJ, Savas P, Klauschen F, Watson PH, Nelson BH, Criscitiello C, O’Toole S, Larsimont D, de Wind R, Curigliano G, André F, Lacroix-Triki M, van de Vijver M, Rojo F, Floris G, Bedri S, Sparano J, Rimm D, Nielsen T, Kos Z, Hewitt S, Singh B, Farshid G, Loibl S, Allison KH, Tung N, Adams S, Willard-Gallo K, Horlings HM, Gandhi L, Moreira A, Hirsch F, Dieci MV, Urbanowicz M, Brcic I, Korski K, Gaire F, Koeppen H, Lo A, Giltnane J, Ziai J, Rebelatto MC, Steele KE, Zha J, Emancipator K, Juco JW, Denkert C, Reis-Filho J, Loi S, Fox SB. Assessing Tumor-Infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method from the International Immuno-Oncology Biomarkers Working Group: Part 2: TILs in Melanoma, Gastrointestinal Tract Carcinomas, Non-Small Cell Lung Carcinoma and Mesothelioma, Endometrial and Ovarian Carcinomas, Squamous Cell Carcinoma of the Head and Neck, Genitourinary Carcinomas, and Primary Brain Tumors. Adv Anat Pathol 2017; 24:311-335. [PMID: 28777143 PMCID: PMC5638696 DOI: 10.1097/pap.0000000000000161] [Citation(s) in RCA: 481] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Assessment of the immune response to tumors is growing in importance as the prognostic implications of this response are increasingly recognized, and as immunotherapies are evaluated and implemented in different tumor types. However, many different approaches can be used to assess and describe the immune response, which limits efforts at implementation as a routine clinical biomarker. In part 1 of this review, we have proposed a standardized methodology to assess tumor-infiltrating lymphocytes (TILs) in solid tumors, based on the International Immuno-Oncology Biomarkers Working Group guidelines for invasive breast carcinoma. In part 2 of this review, we discuss the available evidence for the prognostic and predictive value of TILs in common solid tumors, including carcinomas of the lung, gastrointestinal tract, genitourinary system, gynecologic system, and head and neck, as well as primary brain tumors, mesothelioma and melanoma. The particularities and different emphases in TIL assessment in different tumor types are discussed. The standardized methodology we propose can be adapted to different tumor types and may be used as a standard against which other approaches can be compared. Standardization of TIL assessment will help clinicians, researchers and pathologists to conclusively evaluate the utility of this simple biomarker in the current era of immunotherapy.
Collapse
Affiliation(s)
- Shona Hendry
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Roberto Salgado
- Breast Cancer Translational Research Laboratory/Breast International Group, Institut Jules Bordet, Brussels, Belgium
- Department of Pathology and TCRU, GZA, Antwerp, Belgium
| | - Thomas Gevaert
- Department of Development and Regeneration, Laboratory of Experimental Urology, KU Leuven, Leuven, Belgium
- Department of Pathology, AZ Klina, Brasschaat, Belgium
| | - Prudence A. Russell
- Department of Anatomical Pathology, St Vincent’s Hospital Melbourne, Fitzroy, Australia
- Department of Pathology, University of Melbourne, Parkville, Australia
| | - Tom John
- Department of Medical Oncology, Austin Health, Heidelberg, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Australia
| | - Bibhusal Thapa
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
- Department of Medicine, University of Melbourne, Parkville, Australia
| | - Michael Christie
- Department of Anatomical Pathology, Royal Melbourne Hospital, Parkville, Australia
| | - Koen van de Vijver
- Divisions of Diagnostic Oncology & Molecular Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - M. Valeria Estrada
- Department of Pathology, School of Medicine, University of California, San Diego, USA
| | | | - Melinda Sanders
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, USA
| | - Benjamin Solomon
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Cinzia Solinas
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Gert GGM Van den Eynden
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Department of Pathology, GZA Ziekenhuizen, Antwerp, Belgium
| | - Yves Allory
- Université Paris-Est, Créteil, France
- INSERM, UMR 955, Créteil, France
- Département de pathologie, APHP, Hôpital Henri-Mondor, Créteil, France
| | - Matthias Preusser
- Department of Medicine, Clinical Division of Oncology, Comprehensive Cancer Centre Vienna, Medical University of Vienna, Vienna, Austria
| | - Johannes Hainfellner
- Institute of Neurology, Comprehensive Cancer Centre Vienna, Medical University of Vienna, Vienna, Austria
| | - Giancarlo Pruneri
- European Institute of Oncology, Milan, Italy
- University of Milan, School of Medicine, Milan, Italy
| | - Andrea Vingiani
- European Institute of Oncology, Milan, Italy
- University of Milan, School of Medicine, Milan, Italy
| | - Sandra Demaria
- New York University Medical School, New York, USA
- Perlmutter Cancer Center, New York, USA
| | - Fraser Symmans
- Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, USA
| | - Paolo Nuciforo
- Molecular Oncology Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Laura Comerma
- Molecular Oncology Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | | | - Sunil Lakhani
- Centre for Clinical Research and School of Medicine, The University of Queensland, Brisbane, Australia
- Pathology Queensland, Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - Seong-Rim Kim
- National Surgical Adjuvant Breast and Bowel Project Operations Center/NRG Oncology, Pittsburgh, Pennsylvania
| | - Stuart Schnitt
- Cancer Research Institute and Department of Pathology, Beth Israel Deaconess Cancer Center, Boston, USA
- Harvard Medical School, Boston, USA
| | - Cecile Colpaert
- Department of Pathology, GZA Ziekenhuizen, Sint-Augustinus, Wilrijk, Belgium
| | - Christos Sotiriou
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Stefan J. Scherer
- Academic Medical Innovation, Novartis Pharmaceuticals Corporation, East Hanover, USA
| | - Michail Ignatiadis
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Sunil Badve
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, USA
| | - Robert H. Pierce
- Cancer Immunotherapy Trials Network, Central Laboratory and Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Giuseppe Viale
- Department of Pathology, Istituto Europeo di Oncologia, University of Milan, Milan, Italy
| | - Nicolas Sirtaine
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Frederique Penault-Llorca
- Department of Surgical Pathology and Biopathology, Jean Perrin Comprehensive Cancer Centre, Clermont-Ferrand, France
- University of Auvergne UMR1240, Clermont-Ferrand, France
| | - Tomohagu Sugie
- Department of Surgery, Kansai Medical School, Hirakata, Japan
| | - Susan Fineberg
- Montefiore Medical Center, Bronx, New York, USA
- The Albert Einstein College of Medicine, Bronx, New York, USA
| | - Soonmyung Paik
- National Surgical Adjuvant Breast and Bowel Project Operations Center/NRG Oncology, Pittsburgh, Pennsylvania
- Severance Biomedical Science Institute and Department of Medical Oncology, Yonsei University College of Medicine, Seoul, South Korea
| | - Ashok Srinivasan
- National Surgical Adjuvant Breast and Bowel Project Operations Center/NRG Oncology, Pittsburgh, Pennsylvania
| | - Andrea Richardson
- Harvard Medical School, Boston, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, USA
| | - Yihong Wang
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Providence, USA
- Warren Alpert Medical School of Brown University, Providence, USA
| | - Ewa Chmielik
- Tumor Pathology Department, Maria Sklodowska-Curie Memorial Cancer Center, Gliwice, Poland
- Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Jane Brock
- Harvard Medical School, Boston, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, USA
| | - Douglas B. Johnson
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
- Vanderbilt Ingram Cancer Center, Nashville, USA
| | - Justin Balko
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
- Vanderbilt Ingram Cancer Center, Nashville, USA
| | - Stephan Wienert
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany
- VMscope GmbH, Berlin, Germany
| | - Veerle Bossuyt
- Department of Pathology, Yale University School of Medicine, New Haven, USA
| | - Stefan Michiels
- Service de Biostatistique et d’Epidémiologie, Gustave Roussy, CESP, Inserm U1018, Université-Paris Sud, Université Paris-Saclay, Villejuif, France
| | - Nils Ternes
- Service de Biostatistique et d’Epidémiologie, Gustave Roussy, CESP, Inserm U1018, Université-Paris Sud, Université Paris-Saclay, Villejuif, France
| | | | - Stephen J. Luen
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Peter Savas
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | - Peter H. Watson
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- Trev & Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, British Columbia, Canada
| | - Brad H. Nelson
- Trev & Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, British Columbia, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
- Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Sandra O’Toole
- The Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Australia
- Australian Clinical Labs, Bella Vista, Australia
| | - Denis Larsimont
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Roland de Wind
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Fabrice André
- INSERM Unit U981, and Department of Medical Oncology, Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université Paris Sud, Kremlin-Bicêtre, France
| | - Magali Lacroix-Triki
- INSERM Unit U981, and Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Mark van de Vijver
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Federico Rojo
- Pathology Department, IIS-Fundacion Jimenez Diaz, UAM, Madrid, Spain
| | - Giuseppe Floris
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Shahinaz Bedri
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Doha, Qatar
| | - Joseph Sparano
- Department of Oncology, Montefiore Medical Centre, Albert Einstein College of Medicine, Bronx, USA
| | - David Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, USA
| | - Torsten Nielsen
- Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Zuzana Kos
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Canada
| | - Stephen Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Baljit Singh
- Department of Pathology, New York University Langone Medical Centre, New York, USA
| | - Gelareh Farshid
- Directorate of Surgical Pathology, SA Pathology, Adelaide, Australia
- Discipline of Medicine, Adelaide University, Adelaide, Australia
| | | | | | - Nadine Tung
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, USA
| | - Sylvia Adams
- New York University Medical School, New York, USA
- Perlmutter Cancer Center, New York, USA
| | - Karen Willard-Gallo
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Hugo M. Horlings
- Department of Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Leena Gandhi
- Perlmutter Cancer Center, New York, USA
- Dana-Farber Cancer Institute, Boston, USA
| | - Andre Moreira
- Pulmonary Pathology, New York University Center for Biospecimen Research and Development, New York University, New York, USA
| | - Fred Hirsch
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Maria Urbanowicz
- European Organisation for Research and Treatment of Cancer (EORTC) Headquarters, Brussels, Belgium
| | - Iva Brcic
- Institute of Pathology, Medical University of Graz, Austria
| | - Konstanty Korski
- Pathology and Tissue Analytics, Roche Innovation Centre Munich, Penzberg, Germany
| | - Fabien Gaire
- Pathology and Tissue Analytics, Roche Innovation Centre Munich, Penzberg, Germany
| | - Hartmut Koeppen
- Research Pathology, Genentech Inc., South San Francisco, USA
| | - Amy Lo
- Research Pathology, Genentech Inc., South San Francisco, USA
- Department of Pathology, Stanford University, Palo Alto, USA
| | | | - James Ziai
- Research Pathology, Genentech Inc., South San Francisco, USA
| | | | | | - Jiping Zha
- Translational Sciences, MedImmune, Gaithersberg, USA
| | | | | | - Carsten Denkert
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jorge Reis-Filho
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Sherene Loi
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Stephen B. Fox
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| |
Collapse
|
41
|
Tas F, Erturk K. Tumor Infiltrating Lymphocytes (TILs) May be Only an Independent Predictor of Nodal Involvement but not for Recurrence and Survival in Cutaneous Melanoma Patients. Cancer Invest 2017; 35:501-505. [PMID: 28799813 DOI: 10.1080/07357907.2017.1351984] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Tumor infiltrating lymphocytes (TILs) invade and disrupt melanoma cells and their clinical roles remain controversial. In this study, we aimed to determine the clinical significance of the TILs status in cutaneous melanoma patients (CMPs). Of 750 CMPs enrolled into this study 486 (64.8%) had lesions with TILs. The patients with TILs more likely had nodular histology, presence of histological regression, and absence of regional lymph node involvement. However, its presence was not associated with outcome. In conclusion, presence of TILs may be only an independent predictor for absence of nodal involvement but it is not associated with recurrence and survival in CMPs.
Collapse
Affiliation(s)
- Faruk Tas
- a Institute of Oncology , University of Istanbul , Istanbul , Turkey
| | - Kayhan Erturk
- a Institute of Oncology , University of Istanbul , Istanbul , Turkey
| |
Collapse
|
42
|
Lardone RD, Chan AA, Lee AF, Foshag LJ, Faries MB, Sieling PA, Lee DJ. Mycobacterium bovis Bacillus Calmette-Guérin Alters Melanoma Microenvironment Favoring Antitumor T Cell Responses and Improving M2 Macrophage Function. Front Immunol 2017; 8:965. [PMID: 28848560 PMCID: PMC5554507 DOI: 10.3389/fimmu.2017.00965] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/28/2017] [Indexed: 01/07/2023] Open
Abstract
Intralesional Mycobacterium bovis bacillus Calmette-Guérin (BCG) has long been a relatively inexpensive therapy for inoperable cutaneous metastatic melanoma (CMM), although intralesional BCG skin mechanisms remain understudied. We analyzed intralesional BCG-treated CMM lesions combined with in vitro studies to further investigate BCG-altered pathways. Since macrophages play a pivotal role against both cancer and mycobacterial infections, we hypothesized BCG regulates macrophages to promote antitumor immunity. Tumor-associated macrophages (M2) infiltrate melanomas and impair antitumor immunity. BCG-treated, in vitro-polarized M2 (M2-BCG) showed transcriptional changes involving inflammation, immune cell recruitment, cross talk, and activation pathways. Mechanistic network analysis indicated M2-BCG potential to improve interferon gamma (IFN-γ) responses. Accordingly, frequency of IFN-γ-producing CD4+ T cells responding to M2-BCG vs. mock-treated M2 increased (p < 0.05). Moreover, conditioned media from M2-BCG vs. M2 elevated the frequency of granzyme B-producing CD8+ tumor-infiltrating lymphocytes (TILs) facing autologous melanoma cell lines (p < 0.01). Furthermore, transcriptome analysis of intralesional BCG-injected CMM relative to uninjected lesions showed immune function prevalence, with the most enriched pathways representing T cell activation mechanisms. In vitro-infected MM-derived cell lines stimulated higher frequency of IFN-γ-producing TIL from the same melanoma (p < 0.05). Our data suggest BCG favors antitumor responses in CMM through direct/indirect effects on tumor microenvironment cell types including macrophages, T cells, and tumor itself.
Collapse
Affiliation(s)
- Ricardo D Lardone
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, United States
| | - Alfred A Chan
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, United States.,Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Agnes F Lee
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, United States
| | - Leland J Foshag
- Division of Surgical Oncology, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, United States
| | - Mark B Faries
- Melanoma Research Program, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, United States
| | - Peter A Sieling
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, United States
| | - Delphine J Lee
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, United States.,Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States
| |
Collapse
|
43
|
Integrative clinical genomics of metastatic cancer. Nature 2017; 548:297-303. [PMID: 28783718 PMCID: PMC5995337 DOI: 10.1038/nature23306] [Citation(s) in RCA: 595] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 06/25/2017] [Indexed: 02/08/2023]
Abstract
Metastasis is the primary cause of cancer-related deaths. Although The Cancer Genome Atlas has sequenced primary tumour types obtained from surgical resections, much less comprehensive molecular analysis is available from clinically acquired metastatic cancers. Here we perform whole-exome and -transcriptome sequencing of 500 adult patients with metastatic solid tumours of diverse lineage and biopsy site. The most prevalent genes somatically altered in metastatic cancer included TP53, CDKN2A, PTEN, PIK3CA, and RB1. Putative pathogenic germline variants were present in 12.2% of cases of which 75% were related to defects in DNA repair. RNA sequencing complemented DNA sequencing to identify gene fusions, pathway activation, and immune profiling. Our results show that integrative sequence analysis provides a clinically relevant, multi-dimensional view of the complex molecular landscape and microenvironment of metastatic cancers.
Collapse
|
44
|
Rajabi P, Bagheri A, Hani M. Intratumoral and Peritumoral Mast Cells in Malignant Melanoma: An Immunohistochemical Study. Adv Biomed Res 2017; 6:39. [PMID: 28503494 PMCID: PMC5414406 DOI: 10.4103/2277-9175.204592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The aim of the current study was to determine mast cell infiltration in malignant melanoma by immunohistochemistry method and its relationship with some of the cancer prognostic factors, including age, sex, and depth of the tumor. MATERIALS AND METHODS In this retrospective analytic cross-sectional study, paraffin-embedded tissue blocks of patients with cutaneous malignant melanoma who had undergone excisional biopsy were studied. Mast cells count in studied cases in different stages of the tumor depth was evaluated by mast cell tryptase immunohistochemistry method. Mast cells infiltration was evaluated both inside the tumor and peritumoral area. Tumor infiltrating lymphocytes (TILs) was also determined. Distribution of intratumoral and peritumoral mast cells and TILs was compared in different stages tof tumor depth. RESULTS In this study, 51 cases with melanoma were studied. Mean ± standard deviation (SD) of intratumoral mast cells in stages 1, 2, and 3 was 9.4 ± 4.2, 10.8 ± 5.1, and 2.1 ± 2.3, respectively (P = 0.000). Mean ± SD of peritumoral mast cells in stages 1, 2 and 3 was 13.4 ± 2.4, 16.6 ± 2.4 and 8.2 ± 4.6, respectively (P = 0.000). There was a significant direct relationship between depth of the tumor and TIL (P = 0.000) and distribution of intratumoral (P = 0.000) and peritumoral mast cells (P = 0.000). CONCLUSION Lower distribution of intratumoral and peritumoral mast cells and TILs in higher stages of tumor depth in malignant melanoma suggests a possible inhibitory effect of infiltrating mast cells and lymphocytes on the progression of this tumor.
Collapse
Affiliation(s)
- Parvin Rajabi
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azam Bagheri
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohssen Hani
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
45
|
Zito Marino F, Ascierto PA, Rossi G, Staibano S, Montella M, Russo D, Alfano R, Morabito A, Botti G, Franco R. Are tumor-infiltrating lymphocytes protagonists or background actors in patient selection for cancer immunotherapy? Expert Opin Biol Ther 2017; 17:735-746. [PMID: 28318336 DOI: 10.1080/14712598.2017.1309387] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Tumor-infiltrating lymphocytes (TILs) are frequently observed in several tumors, reflecting the dynamic process of '"cancer immunoediting"'. Prognostic and predictive values of TILs have been demonstrated in different cancers, proving their pivotal role in clinical outcome. In recent years, new therapies targeting immune checkpoint inhibitors, especially CTLA-4 and PD-1/PDL-1 pathways, have been introduced into clinical practice. In this context, TILs may even have a possible utility as a predictive biomarker for immunotherapy response. Areas covered: In this review, the authors summarize the most relevant knowledge related to TILs. This includes their prognostic and predictive significance in various types of tumour and the recent findings about their potential role in the cancer immunotherapy. Expert opinion: TILs evaluation could lead to a predictive biomarker for immunotherapy effectiveness in several cancer types. Furthermore, typing of TILs subpopulation could have clinical relevance in patient selection for treatment with immune checkpoint inhibitors. However further studies are still needed.
Collapse
Affiliation(s)
- Federica Zito Marino
- a Pathology Unit , Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS , Naples , Italy.,b Pathology Unit , Università della campania 'Luigi Vanvitelli' , Naples , Italy
| | | | - Giulio Rossi
- d Unit of Pathologic Anatomy , Azienda USL Valle d'Aosta , Aosta , Italy
| | - Stefania Staibano
- e Departmentof Biomorphological and Functional Sciences , University of Naples 'Federico II' , Naples , Italy
| | - Marco Montella
- b Pathology Unit , Università della campania 'Luigi Vanvitelli' , Naples , Italy
| | - Daniela Russo
- e Departmentof Biomorphological and Functional Sciences , University of Naples 'Federico II' , Naples , Italy
| | - Roberto Alfano
- f Department of Anesthesiology , Surgery and Emergency, Università della Campania 'Luigi Vanvitelli' , Naples , Italy
| | - Alessandro Morabito
- g Medical Oncology Unit, Department of Thoracic Surgical and Medical Oncology , Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS , Naples , Italy
| | - Gerardo Botti
- a Pathology Unit , Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS , Naples , Italy
| | - Renato Franco
- b Pathology Unit , Università della campania 'Luigi Vanvitelli' , Naples , Italy
| |
Collapse
|
46
|
Tan LY, Martini C, Fridlender ZG, Bonder CS, Brown MP, Ebert LM. Control of immune cell entry through the tumour vasculature: a missing link in optimising melanoma immunotherapy? Clin Transl Immunology 2017; 6:e134. [PMID: 28435677 PMCID: PMC5382436 DOI: 10.1038/cti.2017.7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 12/25/2022] Open
Abstract
Metastatic melanoma remains a fatal disease to many worldwide, even after the breakthrough introduction of targeted therapies such as BRAF inhibitors and immune checkpoint blockade therapies such as CTLA-4 and PD-1 inhibitors. With advances in our understanding of this disease, as well as the increasing data gathered from patient studies, the significance of the host immune response to cancer progression and response to treatment is becoming clear. More specifically, the presence of intratumoral CD8+ cytotoxic T-cells correlates with better prognosis whereas the accumulation of monocytes/macrophages and neutrophils in the tumour is often associated with worse prognosis. Access and infiltration of circulating leukocytes into the tumour is governed by adhesion molecules and chemokines expressed by the endothelial cells of the vasculature. This review focuses on the adhesion molecules and chemokines which control the homing of CD8+ cytotoxic T-cells, monocytes and neutrophils to peripheral tissues, including tumours. We discuss the role of these leukocyte subsets in regulating melanoma growth, and detail the mechanisms used by tumours to selectively recruit or exclude these leukocytes for their own advantage. In doing so, we bring to light an underappreciated component of tumour biology which should be considered in combination with current treatments to selectively alter the leukocyte composition of tumours and ultimately enhance treatment outcome.
Collapse
Affiliation(s)
- Lih Yin Tan
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Carmela Martini
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Zvi G Fridlender
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Claudine S Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Michael P Brown
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.,Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia.,Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Lisa M Ebert
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
47
|
Pedersen MH, Hood BL, Beck HC, Conrads TP, Ditzel HJ, Leth-Larsen R. Downregulation of antigen presentation-associated pathway proteins is linked to poor outcome in triple-negative breast cancer patient tumors. Oncoimmunology 2017. [PMID: 28638726 DOI: 10.1080/2162402x.2017.1305531] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous subtype with varying disease outcomes. Tumor-infiltrating lymphocytes (TILs) are frequent in TNBC and have been shown to correlate with outcome, suggesting an immunogenic component in this subtype. However, other factors intrinsic to the cancer cells may also influence outcome. To identify proteins and molecular pathways associated with recurrence in TNBC, 34 formalin-fixed paraffin-embedded (FFPE) primary TNBC tumors were investigated by global proteomic profiling using mass spectrometry. Approximately, half of the patients were lymph node-negative and remained free of local or distant metastasis within 10 y follow-up, while the other half developed distant metastasis. Proteomic profiling identified >4,000 proteins, of which 63 exhibited altered expression in primary tumors of recurrence versus recurrence-free patients. Importantly, downregulation of proteins in the major histocompatibility complex (MHC) class I antigen presentation pathways were enriched, including TAP1, TAP2, CALR, HLA-A, ERAP1 and TAPBP, and were associated with significantly shorter recurrence-free and overall survival. In addition, proteins involved in cancer cell proliferation and growth, including GBP1, RAD23B, WARS and STAT1, also exhibited altered expression in primary tumors of recurrence versus recurrence-free patients. The association between the antigen-presentation pathway and outcome were validated in a second sample set of 10 primary TNBC tumors and corresponding metastases using proteomics and in a large public gene expression database of 249 TNBC and 580 basal-like breast cancer cases. Our study demonstrates that downregulation of antigen presentation is a key mechanism for TNBC cells to avoid immune surveillance, allowing continued growth and spread.
Collapse
Affiliation(s)
- Martin H Pedersen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Brian L Hood
- Womens Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Henry Jackson Foundation for the Advancement of Military Medicine, Annandale, VA, USA
| | - Hans Christian Beck
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark
| | - Thomas P Conrads
- Womens Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Henry Jackson Foundation for the Advancement of Military Medicine, Annandale, VA, USA
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark.,Department of Oncology, Odense University Hospital, Odense C, Denmark
| | - Rikke Leth-Larsen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
48
|
Jacquelot N, Pitt JM, Enot DP, Roberti MP, Duong CPM, Rusakiewicz S, Eggermont AM, Zitvogel L. Immune biomarkers for prognosis and prediction of responses to immune checkpoint blockade in cutaneous melanoma. Oncoimmunology 2017; 6:e1299303. [PMID: 28919986 DOI: 10.1080/2162402x.2017.1299303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/19/2017] [Indexed: 01/05/2023] Open
Abstract
Existing clinical, anatomopathological and molecular biomarkers fail to reliably predict the prognosis of cutaneous melanoma. Biomarkers for determining which patients receive adjuvant therapies are needed. The emergence of new technologies and the discovery of new immune populations with different prognostic values allow the immune network in the tumor to be better understood. Importantly, new molecules identified and expressed by immune cells have been shown to reduce the antitumor immune efficacy of therapies, prompting researchers to develop antibodies targeting these so-called "immune checkpoints", which have now entered the oncotherapeutic armamentarium.
Collapse
Affiliation(s)
- Nicolas Jacquelot
- Gustave Roussy, Université Paris-Saclay, INSERM U1015, Villejuif, F-94805, France
| | - Jonathan M Pitt
- Gustave Roussy, Université Paris-Saclay, INSERM U1015, Villejuif, F-94805, France
| | - David P Enot
- Gustave Roussy, Université Paris-saclay, Metabolomics and Cell Biology Platforms, Villejuif, F-94805, France
| | - Maria Paula Roberti
- Gustave Roussy, Université Paris-Saclay, INSERM U1015, Villejuif, F-94805, France
| | - Connie P M Duong
- Gustave Roussy, Université Paris-Saclay, INSERM U1015, Villejuif, F-94805, France
| | - Sylvie Rusakiewicz
- Gustave Roussy, Université Paris-Saclay, INSERM U1015, Villejuif, F-94805, France.,Gustave Roussy, Université Paris-saclay, CIC Biothérapie IGR Curie CIC 1428, Villejuif, F-94805, France
| | | | - Laurence Zitvogel
- Gustave Roussy, Université Paris-Saclay, INSERM U1015, Villejuif, F-94805, France.,Gustave Roussy, Université Paris-saclay, CIC Biothérapie IGR Curie CIC 1428, Villejuif, F-94805, France
| |
Collapse
|
49
|
Maia MC, Hansen AR. A comprehensive review of immunotherapies in prostate cancer. Crit Rev Oncol Hematol 2017; 113:292-303. [PMID: 28427519 DOI: 10.1016/j.critrevonc.2017.02.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 01/21/2023] Open
Abstract
Prostate cancer is the second most common malignant neoplasm in men worldwide and the fifth cause of cancer-related death. Although multiple new agents have been approved for metastatic castration resistant prostate cancer over the last decade, it is still an incurable disease. New strategies to improve cancer control are needed and agents targeting the immune system have shown encouraging results in many tumor types. Despite being attractive for immunotherapies due to the expression of various tumor associated antigens, the microenvironment in prostate cancer is relatively immunosuppressive and may be responsible for the failures of various agents targeting the immune system in this disease. To date, sipuleucel-T is the only immunotherapy that has shown significant clinical efficacy in this setting, although the high cost and potential trial flaws have precluded its widespread incorporation into clinical practice. Issues with patient selection and trial design may have contributed to the multiple failures of immunotherapy in prostate cancer and provides an opportunity to tailor future studies to evaluate these agents more accurately. We have reviewed all the completed immune therapy trials in prostate cancer and highlight important considerations for the next generation of clinical trials.
Collapse
Affiliation(s)
- Manuel Caitano Maia
- Department of Medical Oncology, Instituto do Câncer do Estado de São Paulo (ICESP), Av. Dr Arnaldo, 251, Cerqueira César, CEP 01246-000, São Paulo, Brazil.
| | - Aaron R Hansen
- Department of Medical Oncology and Hematology, Princess Margaret Hospital, 610 University Ave, Toronto, ON, Canada; Department of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Cir#3172, Toronto, ON, Canada
| |
Collapse
|
50
|
Giavina-Bianchi MH, Giavina-Bianchi Junior PF, Festa Neto C. Melanoma: tumor microenvironment and new treatments. An Bras Dermatol 2017; 92:156-166. [PMID: 28538872 PMCID: PMC5429098 DOI: 10.1590/abd1806-4841.20176183] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/28/2016] [Indexed: 01/22/2023] Open
Abstract
In the recent past years, many discoveries in the tumor microenvironment have led to changes in the management of melanoma and it is rising up hopes, specially, to those in advanced stages. FDA approved seven new drugs from 2011 to 2014. They are: Vemurafenib, Dabrafenib and Trametinib, kinases inhibitors used for patients that have BRAFV600E mutation; Ipilimumab (anti-CTLA4), Pembrolizumab (anti-PD-1) and Nivolumab (anti-PD-1), monoclonal antibodies that stimulate the immune system; and Peginterferon alfa-2b, an anti-proliferative cytokine used as adjuvant therapy. In this article, we will review the molecular bases for these new metastatic melanoma therapeutic agents cited above and also analyze new molecular discoveries in melanoma study, as Cancer-Testis antigens (CT). They are capable of induce humoral and cellular immune responses in cancer patients and because of this immunogenicity and their restrict expression in normal tissues, they are considered an ideal candidate for vaccine development against cancer. Among CT antigens, NY-ESO-1 is the best characterized in terms of expression patterns and immunogenicity. It is expressed in 20-40% of all melanomas, more in metastatic lesions than in primary ones, and it is very heterogeneous inter and intratumoral. Breslow index is associate with NY-ESO-1 expression in primary cutaneous melanomas, but its relation to patient survival remains controversial.
Collapse
Affiliation(s)
| | | | - Cyro Festa Neto
- Dermatology Department of Universidade de São Paulo Medical
School (FMUSP) – São Paulo (SP), Brazil
| |
Collapse
|