1
|
Tian Y, Wang X, Wu C, Qiao J, Jin H, Li H. A protracted war against cancer drug resistance. Cancer Cell Int 2024; 24:326. [PMID: 39342202 PMCID: PMC11439304 DOI: 10.1186/s12935-024-03510-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Currently, even the most effective anti-cancer therapies are often limited by the development of drug resistance and tumor relapse, which is a major challenge facing current cancer research. A deep understanding of the molecular and biochemical bases of drug efficacy that can help predict the clinical drug resistance, coupled with the evolution of systematic genomic and proteomic technologies, have facilitated studies identifying and elucidating the underlying mechanisms. In this review, we focus on several important issues on cancer drug resistance and provide a framework for understanding the common ways by which cancers develop resistance to therapeutic agents. With the increasing arsenal of novel anticancer agents and techniques, there are now unprecedented opportunities to understand and overcome drug resistance. The proteolysis targeting chimera (PROTAC) technology, immunotherapy, nanomedicine, and real-time monitoring of drug response all provide effective approaches for combating drug resistance. In addition to the advancement of therapeutic technologies, the revolution of treatment concept is also of great importance. We can take advantage of the interplay between drug sensitive and resistant subclones for combating cancer. However, there remains a long way to go in the protracted war against cancer drug resistance.
Collapse
Affiliation(s)
- Yuan Tian
- School of Lifesciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, P.R. China
| | - Xiaowei Wang
- Department of Thoracic Surgery/Clinical Research Center, The First Affiliated Hospital of Navy Medical University, 168 Changhai Road, Shanghai, 200433, P.R. China
| | - Cong Wu
- Department of Thoracic Surgery/Clinical Research Center, The First Affiliated Hospital of Navy Medical University, 168 Changhai Road, Shanghai, 200433, P.R. China
| | - Jiaming Qiao
- School of Lifesciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, P.R. China
| | - Hai Jin
- Department of Thoracic Surgery/Clinical Research Center, The First Affiliated Hospital of Navy Medical University, 168 Changhai Road, Shanghai, 200433, P.R. China.
| | - Huafei Li
- School of Lifesciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, P.R. China.
| |
Collapse
|
2
|
Matsuoka I, Kasai T, Onaga C, Ozaki A, Motomura H, Maemura Y, Tada Y, Mori H, Hara Y, Xiong Y, Sato K, Tamori S, Sasaki K, Ohno S, Akimoto K. Co‑expression of SLC20A1 and ALDH1A3 is associated with poor prognosis, and SLC20A1 is required for the survival of ALDH1‑positive pancreatic cancer stem cells. Oncol Lett 2024; 28:426. [PMID: 39021737 PMCID: PMC11253103 DOI: 10.3892/ol.2024.14558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 02/23/2024] [Indexed: 07/20/2024] Open
Abstract
Solute carrier family 20 member 1 (SLC20A1) is a sodium/inorganic phosphate symporter, which has been identified as a prognostic marker in several types of cancer, including pancreatic cancer. However, to the best of our knowledge, the association between SLC20A1 expression and cancer stem cell (CSC) markers, such as aldehyde dehydrogenase 1 (ALDH1), in pancreatic ductal adenocarcinoma (PDAC), and the role of SLC20A1 in PDAC CSCs remains unclear. In the present study, a genomic dataset of primary pancreatic cancer (The Cancer Genome Atlas, Pan-Cancer Atlas) was downloaded and analyzed. Kaplan-Meier analysis and multivariate Cox regression analysis were performed to evaluate the overall survival, disease-specific survival (DSS), disease-free interval (DFI) and progression-free interval (PFI). Subsequently, SLC20A1 small interfering RNA (siRNA) knockdown (KD) was induced in the PANC-1 and MIA-PaCa-2 PDAC cell lines, and in sorted high ALDH1 activity (ALDH1high) cells, after which, cell viability, in vitro tumor sphere formation, cell death and caspase-3 activity were examined. The results revealed that patients with high expression of SLC20A1 (SLC20A1 high) at tumor stage I had a poor prognosis compared with patients with low expression of SLC20A1 (SLC20A1 low) in terms of DSS, DFI and PFI. In addition, patients with high expression of SLC20A1 and ALDH1A3 (SLC20A1 high ALDH1A3 high) exhibited poorer clinical outcomes than patients with high expression of SLC20A1 and low expression of ALDH1A3 (SLC20A1 high ALDH1A3 low), low expression of SLC20A1 and high expression of ALDH1A3 (SLC20A1 low ALDH1A3 high) and SLC20A1 low ALDH1A3 low. SLC20A1 siRNA KD in ALDH1high cells isolated from PANC-1 and MIA-PaCa-2 cell lines resulted in suppression of in vitro tumorsphere formation, and enhancement of cell death and caspase-3 activity. These results suggested that SLC20A1 was involved in cell survival via the suppression of caspase-3-dependent apoptosis, and contributed to cancer progression and poor clinical outcomes in PDAC. In conclusion, SLC20A1 may be used as a prognostic marker and novel therapeutic target of ALDH1-positive pancreatic CSCs.
Collapse
Affiliation(s)
- Izumi Matsuoka
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Takahiro Kasai
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Chotaro Onaga
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Ayaka Ozaki
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Hitomi Motomura
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yuki Maemura
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yuna Tada
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Haruka Mori
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yasushi Hara
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yuyun Xiong
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Keiko Sato
- Research Division of Medical Data Science, Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
- Department of Information Sciences, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Shoma Tamori
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
- Research Division of Medical Data Science, Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Kazunori Sasaki
- Laboratory of Cancer Biology, Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Shigeo Ohno
- Laboratory of Cancer Biology, Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Kazunori Akimoto
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
- Research Division of Medical Data Science, Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|
3
|
Demir Cevizlidere B, Uysal O, Avci H, Gunes Bagis S, Semerci Sevimli T, Dincer M, Qomi Ekenel E, Kara SG, Soykan MN, Eker Sariboyaci A. Establishment, culture and characterization of gemcitabine hydrochloride‐resistant human non‐small cell lung carcinoma cell line derived cancer stem cells. Cell Biochem Funct 2024; 42. [DOI: 10.1002/cbf.4079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/11/2024] [Indexed: 01/03/2025]
Abstract
AbstractDue to their high expression profile of multi‐drug resistance genes, cancer stem cells (CSCs) are the main source of drug resistance. The aim of this study was to establish a gemcitabine‐hydrochloride‐resistant (rt) human non‐small cell lung cancer (hNSCLC) cell line and their CSC line to be used as disease models in various cancer studies. In the first phase of study, a gemcitabine hydrochloride‐rt hNSCLC line cells was produced by making them rt through periodic exposure to gemcitabine hydrochloride. This acquired gemcitabine‐hydrochloride‐rt hNSCLC cell line was characterized for resistance. Subsequently, a CSC population with a CD326 + CD133 + CD44+ phenotypes was immunoselectively isolated from gemcitabine hydrochloride‐rt hNSCLCs purified from a single cell by colony forming technology. This rt CSC line was characterized for both resistance and stemness. Rt and non‐rt CSCs were analyzed and compared with each other in terms of immunophenotyping the expression profiles of ALDH1, CD90, ABCG2, CD44 and MDR1, which are CSC specific markers, of demonstrating mitotic capacity with growth curve analysis and of their ability to form tumor spheroids in three different 3D cultures. The results of this study demonstrated for the first time the successful generation of both gemcitabine‐hydrochloride‐rt hNSCLC cells and CSCs derived from gemcitabine‐hydrochloride‐rt hNSCLC cells. It was also shown that isolated and characterized rt CSCs could proliferate and form tumor spheres in vitro using three different 3D in vitro techniques. It was shown that the cell surface markers CD326, CD133 and CD44 can serve as an antibody panel for CSCs.
Collapse
Affiliation(s)
- Bahar Demir Cevizlidere
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM Eskisehir Osmangazi University Eskisehir Turkey
- Department of Stem Cell Eskisehir Osmangazi University Eskisehir Turkey
| | - Onur Uysal
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM Eskisehir Osmangazi University Eskisehir Turkey
- Department of Stem Cell Eskisehir Osmangazi University Eskisehir Turkey
- Department of Medical Laboratory Techniques, Vocational School of Health Services Eskisehir Osmangazi University Eskisehir Turkey
| | - Huseyin Avci
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM Eskisehir Osmangazi University Eskisehir Turkey
- Department of Stem Cell Eskisehir Osmangazi University Eskisehir Turkey
- Department of Metallurgical and Materials Engineering, Engineering and Architecture Faculty Eskisehir Osmangazi University Eskisehir Turkey
- Translational Medicine Research and Clinical Center, TATUM Eskisehir Osmangazi University Eskisehir Turkey
| | - Sibel Gunes Bagis
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM Eskisehir Osmangazi University Eskisehir Turkey
- Department of Stem Cell Eskisehir Osmangazi University Eskisehir Turkey
- Department of Medical Laboratory Techniques, Vocational School of Health Services Eskisehir Osmangazi University Eskisehir Turkey
| | - Tugba Semerci Sevimli
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM Eskisehir Osmangazi University Eskisehir Turkey
- Department of Stem Cell Eskisehir Osmangazi University Eskisehir Turkey
| | - Murat Dincer
- Department of Medicinal Oncology, Faculty of Medicine Eskisehir Osmangazi University Eskisehir Turkey
| | - Emilia Qomi Ekenel
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM Eskisehir Osmangazi University Eskisehir Turkey
| | - Suleyman Gokhan Kara
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM Eskisehir Osmangazi University Eskisehir Turkey
- Department of Stem Cell Eskisehir Osmangazi University Eskisehir Turkey
- Department of Emergency Medicine Ministry of Health Eskişehir City Hospital Eskisehir Turkey
| | - Merve Nur Soykan
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM Eskisehir Osmangazi University Eskisehir Turkey
- Department of Stem Cell Eskisehir Osmangazi University Eskisehir Turkey
| | - Ayla Eker Sariboyaci
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM Eskisehir Osmangazi University Eskisehir Turkey
- Department of Stem Cell Eskisehir Osmangazi University Eskisehir Turkey
- Department of Medical Laboratory Techniques, Vocational School of Health Services Eskisehir Osmangazi University Eskisehir Turkey
| |
Collapse
|
4
|
Saleh O, Shihadeh H, Yousef A, Erekat H, Abdallh F, Al-Leimon A, Elsalhy R, Altiti A, Dajani M, AlBarakat MM. The Effect of Intratumor Heterogeneity in Pancreatic Ductal Adenocarcinoma Progression and Treatment. Pancreas 2024; 53:e450-e465. [PMID: 38728212 DOI: 10.1097/mpa.0000000000002342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
BACKGROUND AND OBJECTIVES Pancreatic cancer is one of the most lethal malignancies. Even though many substantial improvements in the survival rates for other major cancer forms were made, pancreatic cancer survival rates have remained relatively unchanged since the 1960s. Even more, no standard classification system for pancreatic cancer is based on cellular biomarkers. This review will discuss and provide updates about the role of stem cells in the progression of PC, the genetic changes associated with it, and the promising biomarkers for diagnosis. MATERIALS AND METHODS The search process used PubMed, Cochrane Library, and Scopus databases to identify the relevant and related articles. Articles had to be published in English to be considered. RESULTS The increasing number of studies in recent years has revealed that the diversity of cancer-associated fibroblasts is far greater than previously acknowledged, which highlights the need for further research to better understand the various cancer-associated fibroblast subpopulations. Despite the huge diversity in pancreatic cancer, some common features can be noted to be shared among patients. Mutations involving CDKN2, P53, and K-RAS can be seen in a big number of patients, for example. Similarly, some patterns of genes and biomarkers expression and the level of their expression can help in predicting cancer behavior such as metastasis and drug resistance. The current trend in cancer research, especially with the advancement in technology, is to sequence everything in hopes of finding disease-related mutations. CONCLUSION Optimizing pancreatic cancer treatment requires clear classification, understanding CAF roles, and exploring stroma reshaping approaches.
Collapse
Affiliation(s)
- Othman Saleh
- From the Faculty of Medicine, The Hashemite University, Zarqa
| | | | | | - Hana Erekat
- School of medicine, University of Jordan, Amman
| | - Fatima Abdallh
- From the Faculty of Medicine, The Hashemite University, Zarqa
| | | | | | | | - Majd Dajani
- From the Faculty of Medicine, The Hashemite University, Zarqa
| | - Majd M AlBarakat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
5
|
Lin Q, Serratore A, Niu J, Shen S, Roy Chaudhuri T, Ma WW, Qu J, Kandel ES, Straubinger RM. Fibroblast growth factor receptor 1 inhibition suppresses pancreatic cancer chemoresistance and chemotherapy-driven aggressiveness. Drug Resist Updat 2024; 73:101064. [PMID: 38387284 DOI: 10.1016/j.drup.2024.101064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/26/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
AIMS Pancreatic ductal adenocarcinoma (PDAC) is often intrinsically-resistant to standard-of-care chemotherapies such as gemcitabine. Acquired gemcitabine resistance (GemR) can arise from treatment of initially-sensitive tumors, and chemotherapy can increase tumor aggressiveness. We investigated the molecular mechanisms of chemoresistance and chemotherapy-driven tumor aggressiveness, which are understood incompletely. METHODS Differential proteomic analysis was employed to investigate chemotherapy-driven chemoresistance drivers and responses of PDAC cells and patient-derived tumor xenografts (PDX) having different chemosensitivities. We also investigated the prognostic value of FGFR1 expression in the efficacy of selective pan-FGFR inhibitor (FGFRi)-gemcitabine combinations. RESULTS Quantitative proteomic analysis of a highly-GemR cell line revealed fibroblast growth factor receptor 1 (FGFR1) as the highest-expressed receptor tyrosine kinase. FGFR1 knockdown or FGFRi co-treatment enhanced gemcitabine efficacy and decreased GemR marker expression, implicating FGFR1 in augmentation of GemR. FGFRi treatment reduced PDX tumor progression and prolonged survival significantly, even in highly-resistant tumors in which neither single-agent showed efficacy. Gemcitabine exacerbated aggressiveness of highly-GemR tumors, based upon proliferation and metastatic markers. Combining FGFRi with gemcitabine or gemcitabine+nab-paclitaxel reversed tumor aggressiveness and progression, and prolonged survival significantly. In multiple PDAC PDXs, FGFR1 expression correlated with intrinsic tumor gemcitabine sensitivity. CONCLUSION FGFR1 drives chemoresistance and tumor aggressiveness, which FGFRi can reverse.
Collapse
Affiliation(s)
- Qingxiang Lin
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Andrea Serratore
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Jin Niu
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Shichen Shen
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Tista Roy Chaudhuri
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Wen Wee Ma
- Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jun Qu
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Eugene S Kandel
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Robert M Straubinger
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA; Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
6
|
Uddin MH, Zhang D, Muqbil I, El-Rayes BF, Chen H, Philip PA, Azmi AS. Deciphering cellular plasticity in pancreatic cancer for effective treatments. Cancer Metastasis Rev 2024; 43:393-408. [PMID: 38194153 DOI: 10.1007/s10555-023-10164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
Cellular plasticity and therapy resistance are critical features of pancreatic cancer, a highly aggressive and fatal disease. The pancreas, a vital organ that produces digestive enzymes and hormones, is often affected by two main types of cancer: the pre-dominant ductal adenocarcinoma and the less common neuroendocrine tumors. These cancers are difficult to treat due to their complex biology characterized by cellular plasticity leading to therapy resistance. Cellular plasticity refers to the capability of cancer cells to change and adapt to different microenvironments within the body which includes acinar-ductal metaplasia, epithelial to mesenchymal/epigenetic/metabolic plasticity, as well as stemness. This plasticity allows heterogeneity of cancer cells, metastasis, and evasion of host's immune system and develops resistance to radiation, chemotherapy, and targeted therapy. To overcome this resistance, extensive research is ongoing exploring the intrinsic and extrinsic factors through cellular reprogramming, chemosensitization, targeting metabolic, key survival pathways, etc. In this review, we discussed the mechanisms of cellular plasticity involving cellular adaptation and tumor microenvironment and provided a comprehensive understanding of its role in therapy resistance and ways to overcome it.
Collapse
Affiliation(s)
- Md Hafiz Uddin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 740, Detroit, MI, 48201, USA.
| | - Dingqiang Zhang
- Department of Natural Sciences, Lawrence Technological University, 21000 W 10 Mile Rd, Southfield, MI, 48075, USA
| | - Irfana Muqbil
- Department of Natural Sciences, Lawrence Technological University, 21000 W 10 Mile Rd, Southfield, MI, 48075, USA
| | - Bassel F El-Rayes
- Division of Hematology and Oncology, Department of Medicine, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, 35233, USA
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Philip A Philip
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 740, Detroit, MI, 48201, USA
- Henry Ford Health Systems, Detroit, MI, 48202, USA
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 740, Detroit, MI, 48201, USA.
| |
Collapse
|
7
|
Guo Y, Cui J, Liang X, Chen T, Lu C, Peng T. Pancreatic cancer stem cell-derived exosomal miR-210 mediates macrophage M2 polarization and promotes gemcitabine resistance by targeting FGFRL1. Int Immunopharmacol 2024; 127:111407. [PMID: 38134594 DOI: 10.1016/j.intimp.2023.111407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/28/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Pancreatic cancer (PC) is a serious threat to human health, with most patients diagnosed at the advanced stages of the disease. Treatment with gemcitabine (GEM) leads to PC GEM resistance. In addition, cancer stem cell (CSC)-derived exosomes play an important role in cancer progression. We aimed to investigate the role and mechanism of action of PC stem cell-derived exosomes in PC drug resistance and progression. CSC-derived exosomes increased the proportion of F4/80+/CD86 + cells and levels of M2 polarization factors. miR-210 is expressed in CSC-derived exosomes. Thus, following co-culture, miR-210 was taken up by macrophages. Transfection or the addition of miR-210 mimics increased the proportion of F4/80+/CD206 + cells and levels of M2 polarization factors. Further, the miR-210 targets inhibited the levels of FGFRL1. The FGFRL1 overexpression plasmid also inhibited miR-210-mediated M2 polarization. After co-culture of THP-M2 cells with PC cells and treatment with GEM, the survival rate, migration rate, and levels of MDR, YB-1, BCRP, p-PI3K, p-AKT, and p-mTOR in PC cells increased. And THP-M2 increased the tumor volume and MDR, YB-1, BCRP, p-PI3K, p-AKT, and p-mTOR levels. Overall, miR-210 from PC stem cell-derived exosome targets and inhibits FGFRL1 to promote macrophage M2 polarization, which activates the p-PI3K/p-AKT/p-mTOR pathway and increases GEM resistance.
Collapse
Affiliation(s)
- Yao Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Cui
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xueyi Liang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Taoyu Chen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chong Lu
- Department of thyroid and breast surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Tao Peng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
8
|
Li F, Qiu F, Fan X, Yu Q, Liu S, Guo Y, Zhu Y, Xi X, Du B. Expression of CD44 is regulated by ELF3 in 5-FU treated colorectal cancer cells. Gene 2024; 892:147896. [PMID: 37832805 DOI: 10.1016/j.gene.2023.147896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The development of chemoresistance in colorectal cancer (CRC) cells was usually thought to be inevitable as a result of continuing exposure to chemotherapeutic drugs. The existence of cancer stem cells (CSCs) within CRC tissues was recently suggested to play importance roles for this process. In this study, in order to mimic a dose schedule used in clinic (continuous infusion), low dose of fluorouracil (IC10 of 5-FU) was used to treat CRC cells. Our results showed that the expression of CD44, including some other CSCs markers were all increased after 5-FU treatment. The stemness properties of survived CRC cells were also observed to be enhanced. RNA-seq analysis revealed that ELF3, one of the members of ETS (E26 transformation-specific) transcription activator family, was increased along with CD44 after 5-FU treatment of CRC cells. Results from dual-luciferase reporter assay revealed that the transcription of CD44 could be activated by ELF3 in CRC cells. The induced CD44 expression in 5-FU treated CRC cells could also be decreased after the expression of ELF3 was inhibited. Moreover, it could be observed that the expression of ELF3 is significantly higher in CD44+ CRC cells. Taken together, our results suggested that CD44 expression might be regulated by ELF3 and could be induced after 5-FU treatment of CRC cells. Inhibition of ELF3 might be a promising treatment method when it was used in combination with chemotherapeutics to overcome chemoresistance formation during CRC treatment in clinic.
Collapse
Affiliation(s)
- Fangzhou Li
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan City, Hubei Province, PR China; Biomedical Research Institute, Hubei University of Medicine, Shiyan City, Hubei Province, PR China
| | - Fen Qiu
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan City, Hubei Province, PR China
| | - Xu Fan
- Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, PR China
| | - Qingqing Yu
- Biomedical Research Institute, Hubei University of Medicine, Shiyan City, Hubei Province, PR China
| | - Shuaitong Liu
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan City, Hubei Province, PR China
| | - Yang Guo
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan City, Hubei Province, PR China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan City, Hubei Province, PR China
| | - Yunhe Zhu
- Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, PR China.
| | - Xueyan Xi
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan City, Hubei Province, PR China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan City, Hubei Province, PR China; Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, PR China.
| | - Boyu Du
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan City, Hubei Province, PR China; Biomedical Research Institute, Hubei University of Medicine, Shiyan City, Hubei Province, PR China; Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, PR China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Shiyan City, Hubei Province, PR China.
| |
Collapse
|
9
|
Tan L, Duan X, Mutyala P, Zhou T, Amin S, Zhang T, Herbst B, Askan G, Itkin T, Xiang Z, Michelassi F, Lieberman MD, Iacobuzio-Donahue CA, Leach SD, Evans T, Chen S. A targetable pathway to eliminate TRA-1-60+/TRA-1-81+ chemoresistant cancer cells. J Mol Cell Biol 2023; 15:mjad039. [PMID: 37327088 PMCID: PMC10847630 DOI: 10.1093/jmcb/mjad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/18/2022] [Accepted: 06/14/2023] [Indexed: 06/18/2023] Open
Abstract
Chemoresistance is a primary cause of treatment failure in pancreatic cancer. Identifying cell surface markers specifically expressed in chemoresistant cancer cells (CCCs) could facilitate targeted therapies to overcome chemoresistance. We performed an antibody-based screen and found that TRA-1-60 and TRA-1-81, two 'stemness' cell surface markers, are highly enriched in CCCs. Furthermore, TRA-1-60+/TRA-1-81+ cells are chemoresistant compared to TRA-1-60-/TRA-1-81- cells. Transcriptome profiling identified UGT1A10, shown to be both necessary and sufficient to maintain TRA-1-60/TRA-1-81 expression and chemoresistance. From a high-content chemical screen, we identified Cymarin, which downregulates UGT1A10, eliminates TRA-1-60/TRA-1-81 expression, and increases chemosensitivity both in vitro and in vivo. Finally, TRA-1-60/TRA-1-81 expression is highly specific in primary cancer tissue and positively correlated with chemoresistance and short survival, which highlights their potentiality for targeted therapy. Therefore, we discovered a novel CCC surface marker regulated by a pathway that promotes chemoresistance, as well as a leading drug candidate to target this pathway.
Collapse
Affiliation(s)
- Lei Tan
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaohua Duan
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY 10065, USA
| | - Pratyusha Mutyala
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ting Zhou
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sadaf Amin
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Tuo Zhang
- Genomic Resource Core Facility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Brian Herbst
- Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gokce Askan
- Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tomer Itkin
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Zhaoying Xiang
- Genomic Resource Core Facility, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | - Steven D Leach
- Dartmouth Cancer Center, Darmouth College, Hanover, NH 03755, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
10
|
Jiang S, Liu W, Shi D, Cheng H, Deng T, Chen G, Ma L, Zhang X, Gong P. Black Phosphorus as a Targeting PPAR-γ Agonist to Reverse Chemoresistance in Patient-derived Organoids, Mice, and Pancreatic Tumor Cells. Adv Healthc Mater 2023; 12:e2301324. [PMID: 37531231 DOI: 10.1002/adhm.202301324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/05/2023] [Indexed: 08/04/2023]
Abstract
Black phosphorus (BP) exhibits significant potential for clinical applications. However, further research is necessary to uncover the unknown biological functions of BP and broaden its applications across various fields. This study investigates the potential of BP as a targeting PPAR-γ agonist to overcome chemoresistance in the treatment of pancreatic adenocarcinoma (PAAD) using 2D and 3D cell lines, patient-derived organoids (PDOs), and mouse models. RNA-sequencing analysis shows that BP treatment enriches differentially expressed genes in the PPAR pathway, and molecular modeling predicts the potential docking site between BP and PPAR-γ. Transcriptional activity assays are further to verify the activation of PPAR-γ. BP-activated PPAR-γ inhibits cancer stem cell (CSC) properties and expression of biomarkers such as CD44 and c-Myc, which are involved in chemoresistance. Notably, CD44 overexpression in tumor cells renders them susceptible to BP while insensitive to gemcitabine. This indicates that BP preferentially targets stem-like cells, which exhibit heightened resistance to chemotherapeutic drugs. A combination treatment strategy involving BP and gemcitabine is developed, demonstrating enhanced treatment efficacy of PAAD in both in vitro and in vivo models. Thus, BP serves as a PPAR-γ agonist capable of reversing chemoresistance, establishing it as a potent anti-tumor approach for the treatment of PAAD.
Collapse
Affiliation(s)
- Shengwei Jiang
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Xueyuan Road 1098, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Xueyuan Road 1066, Shenzhen, 518060, China
| | - Weihan Liu
- Department of Epidemiology, Dalian Medical University, Lvshun Road 9, Dalian, 116044, China
| | - Dan Shi
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Xueyuan Road 1098, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Xueyuan Road 1066, Shenzhen, 518060, China
| | - Huan Cheng
- Department of Epidemiology, Dalian Medical University, Lvshun Road 9, Dalian, 116044, China
| | - Tingwei Deng
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Xueyuan Road 1098, Shenzhen, 518055, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Guoyong Chen
- Hepatobiliary Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, No. 7, Weiwu Road, Zhengzhou, 450003, China
| | - Li Ma
- Department of Epidemiology, Dalian Medical University, Lvshun Road 9, Dalian, 116044, China
| | - Xianbin Zhang
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Xueyuan Road 1098, Shenzhen, 518055, China
| | - Peng Gong
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Xueyuan Road 1098, Shenzhen, 518055, China
- Carson International Cancer Center & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Medical School, Xueyuan Road 1066, Shenzhen, 518060, China
| |
Collapse
|
11
|
Lee YS, Kim HS, Kim HJ, Kang HW, Lee DE, Kim MJ, Hong WC, Kim JH, Kim M, Cheong JH, Park JS. The role of LOXL2 induced by glucose metabolism-activated NF-κB in maintaining drug resistance through EMT and cancer stemness in gemcitabine-resistant PDAC. J Mol Med (Berl) 2023; 101:1449-1464. [PMID: 37737908 PMCID: PMC10663195 DOI: 10.1007/s00109-023-02369-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023]
Abstract
Gemcitabine is considered a standard treatment for pancreatic cancer, but developing drug resistance greatly limits the effectiveness of chemotherapy and increases the rate of recurrence. Lysyl oxide-like 2 (LOXL2) is highly expressed in pancreatic cancer and is involved in carcinogenesis and EMT regulation. However, studies on the role of LOXL2 in drug resistance are limited. Here, we investigated the mechanism of LOXL2 induction and the effect of LOXL2 on EMT and CSC in gemcitabine-resistant pancreatic cancer. Glucose metabolism was activated in gemcitabine-resistant pancreatic cancer cells, and NF-κB signaling was regulated accordingly. Activated NF-κB directly induces transcription by binding to the promoters of LOXL2 and ZEB1. The EMT process was significantly inhibited by the coregulation of ZEB1 and LOXL2. In addition, LOXL2 inhibition reduced the expression of cancer stemness markers and stemness by regulating MAPK signaling activity. LOXL2 inhibits tumor growth of gemcitabine-resistant pancreatic cancer cells and increases the sensitivity to gemcitabine in mouse models. KEY MESSAGES: We identified a specific mechanism for inducing LOXL2 overexpression in gemcitabine-resistant pancreatic cancer. Taken together, our results suggest LOXL2 has an important regulatory role in maintaining gemcitabine resistance and may be an effective therapeutic target to treat pancreatic cancer.
Collapse
Affiliation(s)
- Yun Sun Lee
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyung Sun Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyo Jung Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyeon Woong Kang
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Department of Medical Science, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Da Eun Lee
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Myeong Jin Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Department of Medical Science, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Woosol Chris Hong
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Ju Hyun Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Minsoo Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Department of Medical Science, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
- Department of Medical Science, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Joon Seong Park
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
12
|
Jiang S, Deng T, Cheng H, Liu W, Shi D, Yuan J, He Z, Wang W, Chen B, Ma L, Zhang X, Gong P. Macrophage-organoid co-culture model for identifying treatment strategies against macrophage-related gemcitabine resistance. J Exp Clin Cancer Res 2023; 42:199. [PMID: 37553567 PMCID: PMC10411021 DOI: 10.1186/s13046-023-02756-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/08/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Gemcitabine resistance (GR) is a significant clinical challenge in pancreatic adenocarcinoma (PAAD) treatment. Macrophages in the tumor immune-microenvironment are closely related to GR. Uncovering the macrophage-induced GR mechanism could help devise a novel strategy to improve gemcitabine treatment outcomes in PAAD. Therefore, preclinical models accurately replicating patient tumor properties are essential for cancer research and drug development. Patient-derived organoids (PDOs) represent a promising in vitro model for investigating tumor targets, accelerating drug development, and enabling personalized treatment strategies to improve patient outcomes. METHODS To investigate the effects of macrophage stimulation on GR, co-cultures were set up using PDOs from three PAAD patients with macrophages. To identify signaling factors between macrophages and pancreatic cancer cells (PCCs), a 97-target cytokine array and the TCGA-GTEx database were utilized. The analysis revealed CCL5 and AREG as potential candidates. The role of CCL5 in inducing GR was further investigated using clinical data and tumor sections obtained from 48 PAAD patients over three years, inhibitors, and short hairpin RNA (shRNA). Furthermore, single-cell sequencing data from the GEO database were analyzed to explore the crosstalk between PCCs and macrophages. To overcome GR, inhibitors targeting the macrophage-CCL5-Sp1-AREG feedback loop were evaluated in cell lines, PDOs, and orthotopic mouse models of pancreatic carcinoma. RESULTS The macrophage-CCL5-Sp1-AREG feedback loop between macrophages and PCCs is responsible for GR. Macrophage-derived CCL5 activates the CCR5/AKT/Sp1/CD44 axis to confer stemness and chemoresistance to PCCs. PCC-derived AREG promotes CCL5 secretion in macrophages through the Hippo-YAP pathway. By targeting the feedback loop, mithramycin improves the outcome of gemcitabine treatment in PAAD. The results from the PDO model were corroborated with cell lines, mouse models, and clinical data. CONCLUSIONS Our study highlights that the PDO model is a superior choice for preclinical research and precision medicine. The macrophage-CCL5-Sp1-AREG feedback loop confers stemness to PCCs to facilitate gemcitabine resistance by activating the CCR5/AKT/SP1/CD44 pathway. The combination of gemcitabine and mithramycin shows potential as a therapeutic strategy for treating PAAD in cell lines, PDOs, and mouse models.
Collapse
Affiliation(s)
- Shengwei Jiang
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
- Guangdong Provincial Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Xueyuan Road 1066, Shenzhen, 518060, China
| | - Tingwei Deng
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Huan Cheng
- Department of Epidemiology, Dalian Medical University, Lvshun Road 9, Dalian, 116044, China
| | - Weihan Liu
- Department of Epidemiology, Dalian Medical University, Lvshun Road 9, Dalian, 116044, China
| | - Dan Shi
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
- Guangdong Provincial Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Xueyuan Road 1066, Shenzhen, 518060, China
| | - Jiahui Yuan
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
- Guangdong Provincial Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Xueyuan Road 1066, Shenzhen, 518060, China
| | - Zhiwei He
- Guangdong Provincial Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Xueyuan Road 1066, Shenzhen, 518060, China
| | - Weiwei Wang
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, China
| | - Boning Chen
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, China
| | - Li Ma
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
- Department of Epidemiology, Dalian Medical University, Lvshun Road 9, Dalian, 116044, China.
| | - Xianbin Zhang
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| | - Peng Gong
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China.
- Carson International Cancer Center & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Xueyuan Road 1066, Shenzhen, 518060, China.
| |
Collapse
|
13
|
Zhao Y, Qin C, Zhao B, Wang Y, Li Z, Li T, Yang X, Wang W. Pancreatic cancer stemness: dynamic status in malignant progression. J Exp Clin Cancer Res 2023; 42:122. [PMID: 37173787 PMCID: PMC10182699 DOI: 10.1186/s13046-023-02693-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most aggressive malignancies worldwide. Increasing evidence suggests that the capacity for self-renewal, proliferation, and differentiation of pancreatic cancer stem cells (PCSCs) contribute to major challenges with current PC therapies, causing metastasis and therapeutic resistance, leading to recurrence and death in patients. The concept that PCSCs are characterized by their high plasticity and self-renewal capacities is central to this review. We focused specifically on the regulation of PCSCs, such as stemness-related signaling pathways, stimuli in tumor cells and the tumor microenvironment (TME), as well as the development of innovative stemness-targeted therapies. Understanding the biological behavior of PCSCs with plasticity and the molecular mechanisms regulating PC stemness will help to identify new treatment strategies to treat this horrible disease.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Bangbo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Yuanyang Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Zeru Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Tianyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Xiaoying Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China.
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China.
| |
Collapse
|
14
|
Kuo YC, Kou HW, Hsu CP, Lo CH, Hwang TL. Identification and Clinical Significance of Pancreatic Cancer Stem Cells and Their Chemotherapeutic Drug Resistance. Int J Mol Sci 2023; 24:ijms24087331. [PMID: 37108495 PMCID: PMC10138402 DOI: 10.3390/ijms24087331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Pancreatic cancer ranks in the 10th-11th position among cancers affecting men in Taiwan, besides being a rather difficult-to-treat disease. The overall 5-year survival rate of pancreatic cancer is only 5-10%, while that of resectable pancreatic cancer is still approximately 15-20%. Cancer stem cells possess intrinsic detoxifying mechanisms that allow them to survive against conventional therapy by developing multidrug resistance. This study was conducted to investigate how to overcome chemoresistance and its mechanisms in pancreatic cancer stem cells (CSCs) using gemcitabine-resistant pancreatic cancer cell lines. Pancreatic CSCs were identified from human pancreatic cancer lines. To determine whether CSCs possess a chemoresistant phenotype, the sensitivity of unselected tumor cells, sorted CSCs, and tumor spheroid cells to fluorouracil (5-FU), gemcitabine (GEM), and cisplatin was analyzed under stem cell conditions or differentiating conditions. Although the mechanisms underlying multidrug resistance in CSCs are poorly understood, ABC transporters such as ABCG2, ABCB1, and ABCC1 are believed to be responsible. Therefore, we measured the mRNA expression levels of ABCG2, ABCB1, and ABCC1 by real-time RT-PCR. Our results showed that no significant differences were found in the effects of different concentrations of gemcitabine on CSCs CD44+/EpCAM+ of various PDAC cell line cultures (BxPC-3, Capan-1, and PANC-1). There was also no difference between CSCs and non-CSCs. Gemcitabine-resistant cells exhibited distinct morphological changes, including a spindle-shaped morphology, the appearance of pseudopodia, and reduced adhesion characteristics of transformed fibroblasts. These cells were found to be more invasive and migratory, and showed increased vimentin expression and decreased E-cadherin expression. Immunofluorescence and immunoblotting experiments demonstrated increased nuclear localization of total β-catenin. These alterations are hallmarks of epithelial-to-mesenchymal transition (EMT). Resistant cells showed activation of the receptor protein tyrosine kinase c-Met and increased expression of the stem cell marker cluster of differentiation (CD) 24, CD44, and epithelial specific antigen (ESA). We concluded that the expression of the ABCG2 transporter protein was significantly higher in CD44+ and EpCAM+ CSCs of PDAC cell lines. Cancer stem-like cells exhibited chemoresistance. Gemcitabine-resistant pancreatic tumor cells were associated with EMT, a more aggressive and invasive phenotype of numerous solid tumors. Increased phosphorylation of c-Met may also be related to chemoresistance, and EMT and could be used as an attractive adjunctive chemotherapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Yu-Chi Kuo
- Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Lin-Kou, Taoyuan 333, Taiwan
| | - Hao-Wei Kou
- Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Lin-Kou, Taoyuan 333, Taiwan
| | - Chih-Po Hsu
- Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Lin-Kou, Taoyuan 333, Taiwan
| | - Chih-Hong Lo
- Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Lin-Kou, Taoyuan 333, Taiwan
| | - Tsann-Long Hwang
- Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Lin-Kou, Taoyuan 333, Taiwan
| |
Collapse
|
15
|
Eptaminitaki GC, Zaravinos A, Stellas D, Panagopoulou M, Karaliota S, Baltsavia I, Iliopoulos I, Chatzaki E, Iliopoulos D, Baritaki S. Genome-Wide Analysis of lncRNA-mRNA Co-Expression Networks in CD133+/CD44+ Stem-like PDAC Cells. Cancers (Basel) 2023; 15:cancers15041053. [PMID: 36831395 PMCID: PMC9954787 DOI: 10.3390/cancers15041053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the second most prevalent gastrointestinal malignancy and the most common type of pancreatic cancer is linked with poor prognosis and, eventually, with high mortality rates. Early detection is seldom, while tumor heterogeneity and microarchitectural alterations benefit PDAC resistance to conventional therapeutics. Although emerging evidence suggest the core role of cancer stem cells (CSCs) in PDAC aggressiveness, unique stem signatures are poorly available, thus limiting the efforts of anti-CSC-targeted therapy. Herein, we report the findings of the first genome-wide analyses of mRNA/lncRNA transcriptome profiling and co-expression networks in PDAC cell line-derived CD133+/CD44+ cells, which were shown to bear a CSC-like phenotype in vitro and in vivo. Compared to CD133-/CD44- cells, the CD133+/CD44+ population demonstrated significant expression differences in both transcript pools. Using emerging bioinformatic tools, we performed lncRNA target coding gene prediction analysis, which revealed significant Gene Ontology (GO), pathway, and network enrichments in many dyregulated lncRNA nearby (cis or trans) mRNAs, with reported involvement in the regulation of CSC phenotype and functions. In this context, the construction of lncRNA/mRNA networks by ingenuity platforms identified the lncRNAs ATF2, CHEK1, DCAF8, and PAX8 to interact with "hub" SC-associated mRNAs. In addition, the expressions of the above lncRNAs retrieved by TCGA-normalized RNAseq gene expression data of PAAD were significantly correlated with clinicopathological features of PDAC, including tumor grade and stage, nodal metastasis, and overall survival. Overall, our findings shed light on the identification of CSC-specific lncRNA signatures with potential prognostic and therapeutic significance in PDAC.
Collapse
Affiliation(s)
- Giasemi C. Eptaminitaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Apostolos Zaravinos
- Basic and Translational Cancer Research Center (BTCRC), Genomics and Systems Biology Laboratory, Cancer Genetics, Nicosia 1516, Cyprus
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Dimitris Stellas
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Panagopoulou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, 71410 Heraklion, Greece
| | - Sevasti Karaliota
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ismini Baltsavia
- Laboratory of Computational Biology, Division of Basic Sciences, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ioannis Iliopoulos
- Laboratory of Computational Biology, Division of Basic Sciences, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, 71410 Heraklion, Greece
| | | | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Correspondence: ; Tel.: +30-281-039-4727
| |
Collapse
|
16
|
Kim EY, Lee SU, Kim YH. 1,2,3,4,6-Penta- O-galloyl-β-D-glucose Inhibits CD44v3, a cancer stem cell marker, by regulating its transcription factor, in human pancreatic cancer cell line. Anim Cells Syst (Seoul) 2022; 26:328-337. [PMID: 36605595 PMCID: PMC9809349 DOI: 10.1080/19768354.2022.2152864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Inhibition of cluster of differentiation 44 (CD44), a pancreatic cancer stem cell (CSC) marker, is a potential treatment for pancreatic ductal adenocarcinoma (PDAC). In this study, we evaluated the effect of 1,2,3,4,6-penta-O-galloyl-β-D-glucose (PGG), a gallotannin contained in various medicinal plants, on CD44 standard (CD44s) and CD44 variant 3 (CD44v3) in Mia-PaCa-2, human pancreatic cancer cells and explored the underlying mechanisms. PGG showed cytotoxic effects and inhibited the proliferation of Mia-PaCa-2 cells. It also inhibited clonogenic activity, adhesion to fibronectin, and cell migration, which are characteristics of CSCs. PGG inhibited the expression of CD44s and CD44v3 by inducing the phosphorylation of p53 and suppressing NF-κB and Foxo3. Inhibition of Foxo3 induces CD44v3 ubiquitination. Indeed, PGG increased proteasome activity and promoted CD44v3 ubiquitination. PGG downregulated the CSC regulatory factors Nanog, Oct-4, and Sox-2, which act downstream of CD44v3 signaling. These data indicate that PGG may have therapeutic effects in pancreatic cancer mediated by inhibition of CSC markers.
Collapse
Affiliation(s)
- Eun-Young Kim
- Department of Food and Nutrition, Daegu University, Gyeongsan-si, Republic of Korea
| | - Seong-Uk Lee
- Department of Food and Nutrition, Daegu University, Gyeongsan-si, Republic of Korea
| | - Yoon Hee Kim
- Department of Food and Nutrition, Daegu University, Gyeongsan-si, Republic of Korea, Yoon Hee Kim Department of Food and Nutrition, Daegu University, 201, Daegudae-ro, Gyeongsan-si, Gyeongsangbuk-do38453, Republic of Korea
| |
Collapse
|
17
|
Troumpoukis D, Papadimitropoulou A, Charalampous C, Kogionou P, Palamaris K, Sarantis P, Serafimidis I. Targeting autophagy in pancreatic cancer: The cancer stem cell perspective. Front Oncol 2022; 12:1049436. [PMID: 36505808 PMCID: PMC9730023 DOI: 10.3389/fonc.2022.1049436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Pancreatic cancer is currently the seventh leading cause of cancer-related deaths worldwide, with the estimated death toll approaching half a million annually. Pancreatic ductal adenocarcinoma (PDAC) is the most common (>90% of cases) and most aggressive form of pancreatic cancer, with extremely poor prognosis and very low survival rates. PDAC is initiated by genetic alterations, usually in the oncogene KRAS and tumor suppressors CDKN2A, TP53 and SMAD4, which in turn affect a number of downstream signaling pathways that regulate important cellular processes. One of the processes critically altered is autophagy, the mechanism by which cells clear away and recycle impaired or dysfunctional organelles, protein aggregates and other unwanted components, in order to achieve homeostasis. Autophagy plays conflicting roles in PDAC and has been shown to act both as a positive effector, promoting the survival of pancreatic tumor-initiating cells, and as a negative effector, increasing cytotoxicity in uncontrollably expanding cells. Recent findings have highlighted the importance of cancer stem cells in PDAC initiation, progression and metastasis. Pancreatic cancer stem cells (PaCSCs) comprise a small subpopulation of the pancreatic tumor, characterized by cellular plasticity and the ability to self-renew, and autophagy has been recognised as a key process in PaCSC maintenance and function, simultaneously suggesting new strategies to achieve their selective elimination. In this review we evaluate recent literature that links autophagy with PaCSCs and PDAC, focusing our discussion on the therapeutic implications of pharmacologically targeting autophagy in PaCSCs, as a means to treat PDAC.
Collapse
Affiliation(s)
- Dimitrios Troumpoukis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Chrysanthi Charalampous
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Paraskevi Kogionou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Kostas Palamaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Serafimidis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece,*Correspondence: Ioannis Serafimidis,
| |
Collapse
|
18
|
Lin Q, Shen S, Qian Z, Rasam SS, Serratore A, Jusko WJ, Kandel ES, Qu J, Straubinger RM. Comparative Proteomic Analysis Identifies Key Metabolic Regulators of Gemcitabine Resistance in Pancreatic Cancer. Mol Cell Proteomics 2022; 21:100409. [PMID: 36084875 PMCID: PMC9582795 DOI: 10.1016/j.mcpro.2022.100409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 08/21/2022] [Accepted: 09/04/2022] [Indexed: 01/18/2023] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is highly refractory to treatment. Standard-of-care gemcitabine (Gem) provides only modest survival benefits, and development of Gem resistance (GemR) compromises its efficacy. Highly GemR clones of Gem-sensitive MIAPaCa-2 cells were developed to investigate the molecular mechanisms of GemR and implemented global quantitative differential proteomics analysis with a comprehensive, reproducible ion-current-based MS1 workflow to quantify ∼6000 proteins in all samples. In GemR clone MIA-GR8, cellular metabolism, proliferation, migration, and 'drug response' mechanisms were the predominant biological processes altered, consistent with cell phenotypic alterations in cell cycle and motility. S100 calcium binding protein A4 was the most downregulated protein, as were proteins associated with glycolytic and oxidative energy production. Both responses would reduce tumor proliferation. Upregulation of mesenchymal markers was prominent, and cellular invasiveness increased. Key enzymes in Gem metabolism pathways were altered such that intracellular utilization of Gem would decrease. Ribonucleoside-diphosphate reductase large subunit was the most elevated Gem metabolizing protein, supporting its critical role in GemR. Lower Ribonucleoside-diphosphate reductase large subunit expression is associated with better clinical outcomes in PDAC, and its downregulation paralleled reduced MIAPaCa-2 proliferation and migration and increased Gem sensitivity. Temporal protein-level Gem responses of MIAPaCa-2 versus GemR cell lines (intrinsically GemR PANC-1 and acquired GemR MIA-GR8) implicate adaptive changes in cellular response systems for cell proliferation and drug transport and metabolism, which reduce cytotoxic Gem metabolites, in DNA repair, and additional responses, as key contributors to the complexity of GemR in PDAC. These findings additionally suggest targetable therapeutic vulnerabilities for GemR PDAC patients.
Collapse
Affiliation(s)
- Qingxiang Lin
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA; Center of Excellence in Bioinformatics & Life Science, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA; Center of Excellence in Bioinformatics & Life Science, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Zhicheng Qian
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Sailee S Rasam
- Center of Excellence in Bioinformatics & Life Science, University at Buffalo, State University of New York, Buffalo, New York, USA; Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Andrea Serratore
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - William J Jusko
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Eugene S Kandel
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Jun Qu
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA; Center of Excellence in Bioinformatics & Life Science, University at Buffalo, State University of New York, Buffalo, New York, USA; Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, New York, USA.
| | - Robert M Straubinger
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA; Center of Excellence in Bioinformatics & Life Science, University at Buffalo, State University of New York, Buffalo, New York, USA; Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA.
| |
Collapse
|
19
|
Gemcitabine resistance of pancreatic cancer cells is mediated by IGF1R dependent upregulation of CD44 expression and isoform switching. Cell Death Dis 2022; 13:682. [PMID: 35931675 PMCID: PMC9355957 DOI: 10.1038/s41419-022-05103-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 06/27/2022] [Accepted: 07/14/2022] [Indexed: 01/21/2023]
Abstract
Chemoresistance in pancreatic cancer cells may be caused by the expansion of inherently resistant cancer cells or by the adaptive plasticity of initially sensitive cancer cells. We investigated how CD44 isoforms switching contributed to gemcitabine resistance. Treating CD44 null/low single-cell clones with increasing amounts of gemcitabine caused an increase in expression of CD44 and development of gemcitabine resistant (GR) cells. Drug sensitivity, invasiveness, and EMT process was evaluated by MTT, Matrigel invasion assays, and western blots. Genetic knockdown and pharmacological inhibitors were used to examine the roles of CD44 and IGF1R in mediating gemcitabine resistance. CD44 promoter activity and its interactive EMT-related transcription factors were evaluated by luciferase reporter assay and chromatin immunoprecipitation assay. Kaplan-Meier curve was created by log-rank test to reveal the clinical relevance of CD44 and IGF1R expression in patients. We found silence of CD44 in GR cells partially restored E-cadherin expression, reduced ZEB1 expression, and increased drug sensitivity. The gemcitabine-induced CD44 expressing and isoform switching were associated with an increase in nuclear accumulation of phosphor-cJun, Ets1, and Egr1 and binding of these transcription factors to the CD44 promoter. Gemcitabine treatment induced phosphorylation of IGF1R and increased the expression of phosphor-cJun, Ets1, and Egr1 within 72 h. Stimulation or suppression of IGF1R signaling or its downstream target promoted or blocked CD44 promoter activity. Clinically, patients whose tumors expressed high levels of CD44/IGF1R showed a poor prognosis. This study suggests that IGF1R-dependent CD44 isoform switching confers pancreatic cancer cells to undergo an adaptive change in response to gemcitabine and provides the basis for improved targeted therapy of pancreatic cancer.
Collapse
|
20
|
Zhang J, Li R, Huang S. The immunoregulation effect of tumor microenvironment in pancreatic ductal adenocarcinoma. Front Oncol 2022; 12:951019. [PMID: 35965504 PMCID: PMC9365986 DOI: 10.3389/fonc.2022.951019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Pancreatic cancer has the seventh highest death rate of all cancers. The absence of any serious symptoms, coupled with a lack of early prognostic and diagnostic markers, makes the disease untreatable in most cases. This leads to a delay in diagnosis and the disease progresses so there is no cure. Only about 20% of cases are diagnosed early. Surgical removal is the preferred treatment for cancer, but chemotherapy is standard for advanced cancer, although patients can eventually develop drug resistance and serious side effects. Chemoresistance is multifactorial because of the interaction among pancreatic cancer cells, cancer stem cells, and the tumor microenvironment (TME). Nevertheless, more pancreatic cancer patients will benefit from precision treatment and targeted drugs. This review focuses on the immune-related components of TME and the interactions between tumor cells and TME during the development and progression of pancreatic cancer, including immunosuppression, tumor dormancy and escape. Finally, we discussed a variety of immune components-oriented immunotargeting drugs in TME from a clinical perspective.
Collapse
Affiliation(s)
| | - Renfeng Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuai Huang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Marin JJG, Monte MJ, Macias RIR, Romero MR, Herraez E, Asensio M, Ortiz-Rivero S, Cives-Losada C, Di Giacomo S, Gonzalez-Gallego J, Mauriz JL, Efferth T, Briz O. Expression of Chemoresistance-Associated ABC Proteins in Hepatobiliary, Pancreatic and Gastrointestinal Cancers. Cancers (Basel) 2022; 14:cancers14143524. [PMID: 35884584 PMCID: PMC9320734 DOI: 10.3390/cancers14143524] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary One-third of the approximately 10 million deaths yearly caused by cancer worldwide are due to hepatobiliary, pancreatic, and gastrointestinal tumors. One primary reason for this high mortality is the lack of response of these cancers to pharmacological treatment. More than 100 genes have been identified as responsible for seven mechanisms of chemoresistance, but only a few of them play a critical role. These include ABC proteins (mainly MDR1, MRP1-6, and BCRP), whose expression pattern greatly determines the individual sensitivity of each tumor to pharmacotherapy. Abstract Hepatobiliary, pancreatic, and gastrointestinal cancers account for 36% of the ten million deaths caused by cancer worldwide every year. The two main reasons for this high mortality are their late diagnosis and their high refractoriness to pharmacological treatments, regardless of whether these are based on classical chemotherapeutic agents, targeted drugs, or newer immunomodulators. Mechanisms of chemoresistance (MOC) defining the multidrug resistance (MDR) phenotype of each tumor depend on the synergic function of proteins encoded by more than one hundred genes classified into seven groups (MOC1-7). Among them, the efflux of active agents from cancer cells across the plasma membrane caused by members of the superfamily of ATP-binding cassette (ABC) proteins (MOC-1b) plays a crucial role in determining tumor MDR. Although seven families of human ABC proteins are known, only a few pumps (mainly MDR1, MRP1-6, and BCRP) have been associated with reducing drug content and hence inducing chemoresistance in hepatobiliary, pancreatic, and gastrointestinal cancer cells. The present descriptive review, which compiles the updated information on the expression of these ABC proteins, will be helpful because there is still some confusion on the actual relevance of these pumps in response to pharmacological regimens currently used in treating these cancers. Moreover, we aim to define the MOC pattern on a tumor-by-tumor basis, even in a dynamic way, because it can vary during tumor progression and in response to chemotherapy. This information is indispensable for developing novel strategies for sensitization.
Collapse
Affiliation(s)
- Jose J. G. Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
- Correspondence: (J.J.G.M.); (O.B.); Tel.: +34-663182872 (J.J.G.M.); +34-663056225 (O.B.)
| | - Maria J. Monte
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Rocio I. R. Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Marta R. Romero
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Elisa Herraez
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Sara Ortiz-Rivero
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Candela Cives-Losada
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Javier Gonzalez-Gallego
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, 24071 Leon, Spain
| | - Jose L. Mauriz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, 24071 Leon, Spain
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
- Correspondence: (J.J.G.M.); (O.B.); Tel.: +34-663182872 (J.J.G.M.); +34-663056225 (O.B.)
| |
Collapse
|
22
|
Koltai T, Reshkin SJ, Carvalho TMA, Di Molfetta D, Greco MR, Alfarouk KO, Cardone RA. Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma: A Physiopathologic and Pharmacologic Review. Cancers (Basel) 2022; 14:2486. [PMID: 35626089 PMCID: PMC9139729 DOI: 10.3390/cancers14102486] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive tumor with a poor prognosis and inadequate response to treatment. Many factors contribute to this therapeutic failure: lack of symptoms until the tumor reaches an advanced stage, leading to late diagnosis; early lymphatic and hematic spread; advanced age of patients; important development of a pro-tumoral and hyperfibrotic stroma; high genetic and metabolic heterogeneity; poor vascular supply; a highly acidic matrix; extreme hypoxia; and early development of resistance to the available therapeutic options. In most cases, the disease is silent for a long time, andwhen it does become symptomatic, it is too late for ablative surgery; this is one of the major reasons explaining the short survival associated with the disease. Even when surgery is possible, relapsesare frequent, andthe causes of this devastating picture are the low efficacy ofand early resistance to all known chemotherapeutic treatments. Thus, it is imperative to analyze the roots of this resistance in order to improve the benefits of therapy. PDAC chemoresistance is the final product of different, but to some extent, interconnected factors. Surgery, being the most adequate treatment for pancreatic cancer and the only one that in a few selected cases can achieve longer survival, is only possible in less than 20% of patients. Thus, the treatment burden relies on chemotherapy in mostcases. While the FOLFIRINOX scheme has a slightly longer overall survival, it also produces many more adverse eventsso that gemcitabine is still considered the first choice for treatment, especially in combination with other compounds/agents. This review discusses the multiple causes of gemcitabine resistance in PDAC.
Collapse
Affiliation(s)
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Tiago M. A. Carvalho
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Khalid Omer Alfarouk
- Zamzam Research Center, Zamzam University College, Khartoum 11123, Sudan;
- Alfarouk Biomedical Research LLC, Temple Terrace, FL 33617, USA
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| |
Collapse
|
23
|
Bishnupuri KS, Sainathan SK, Ciorba MA, Houchen CW, Dieckgraefe BK. Reg4 Interacts with CD44 to Regulate Proliferation and Stemness of Colorectal and Pancreatic Cancer Cells. Mol Cancer Res 2022; 20:387-399. [PMID: 34753802 DOI: 10.1158/1541-7786.mcr-21-0224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022]
Abstract
Regenerating Gene 4 (Reg4) is highly upregulated in gastrointestinal (GI) malignancies including colorectal and pancreatic cancers. Numerous studies demonstrated an association between higher Reg4 expression and tumor aggressiveness, intrinsic resistance to apoptotic death, and poor outcomes from GI malignancies. However, the precise receptor and underlying signaling mechanism have remained unknown. Although we previously reported a Reg4-mediated induction of EGFR activity in colorectal cancer cells, a direct interaction between Reg4 and EGFR was not observed. This study is focused on identifying the cell surface binding partner of Reg4 and dissecting its role in colorectal cancer and pancreatic cancer growth and stem cell survival. In vitro models of human colorectal cancer and pancreatic cancer were used to evaluate the results. Results of this study find: (i) Reg4 interacts with CD44, a transmembrane protein expressed by a population of colorectal cancer and pancreatic cancer cells; (ii) Reg4 activates regulated intramembrane proteolysis of CD44 resulting in γ-secretase-mediated cleavage and release of the CD44 intracytoplasmic domain (CD44ICD) that functions as a transcriptional activator of D-type cyclins involved in the regulation of cancer cell proliferation and Klf4 and Sox2 expression involved in regulating pluripotency of cancer stem cells; and (iii) Reg4 significantly increases colorectal cancer and pancreatic cancer cell proliferation and their clonogenic potential in stem cell assays. IMPLICATIONS These results suggest that pro-proliferative and pro-stemness effects of Reg4 are mediated through γ-secretase-mediated CD44/CD44ICD signaling, hence strategies to disrupt Reg4-CD44-γ-secretase-CD44ICD signaling axis may increase cancer cell susceptibility to chemo- and radiotherapeutics.
Collapse
Affiliation(s)
- Kumar S Bishnupuri
- Division of Gastroenterology, Washington University School of Medicine, St Louis, Missouri
- Veteran Affair St Louis Health Care System, St Louis, Missouri
| | - Satheesh K Sainathan
- Division of Gastroenterology, Washington University School of Medicine, St Louis, Missouri
| | - Matthew A Ciorba
- Division of Gastroenterology, Washington University School of Medicine, St Louis, Missouri
| | - Courtney W Houchen
- Section of Digestive Disease and Nutrition, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Brian K Dieckgraefe
- Division of Gastroenterology, Washington University School of Medicine, St Louis, Missouri
- Veteran Affair St Louis Health Care System, St Louis, Missouri
| |
Collapse
|
24
|
Zhao X, Li Z, Gu Z. A new era: tumor microenvironment in chemoresistance of pancreatic cancer. JOURNAL OF CANCER SCIENCE AND CLINICAL THERAPEUTICS 2022; 6:61-86. [PMID: 35187493 DOI: 10.26502/jcsct.5079146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid malignant tumor with an extremely poor prognosis. Gemcitabine (GEM)-based chemotherapy remains one of the most important treatment choices for PDAC. However, either as monotherapy or as a part of the combination chemotherapy, GEM achieved only limited success in improving the survival of patients with advanced PDAC, primarily due to GEM resistance. PDAC is characterized by an extensive desmoplasia in the tumor microenvironment (TME). Increasing evidence indicates that this fibrotic TME not only actively participates in the tumor growth and spread of PDAC but also contributes to the induction of GEM resistance. Here we review the current advances of how TME components are involved in the induction of GEM resistance.
Collapse
Affiliation(s)
- Xueping Zhao
- School of Life Science and Biopharmaceutical, Shenyang Pharmaceutical University, Shenyang, China
| | - Zongze Li
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zongting Gu
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Furusawa A, Okada R, Inagaki F, Wakiyama H, Kato T, Furumoto H, Fukushima H, Okuyama S, Choyke PL, Kobayashi H. CD29 targeted near-infrared photoimmunotherapy (NIR-PIT) in the treatment of a pigmented melanoma model. Oncoimmunology 2022; 11:2019922. [PMID: 35003897 PMCID: PMC8741294 DOI: 10.1080/2162402x.2021.2019922] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 10/25/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment that utilizes an antibody-photoabsorber-conjugate (AbPC) combined with NIR light. The AbPC is injected and binds to the tumor whereupon NIR light irradiation causes a photochemical reaction that selectively kills cancer cells. NIR-PIT is ideal for surface-located skin cancers such as melanoma. However, there is concern that the pigment in melanoma lesions could interfere with light delivery, rendering treatment ineffective. We investigated the efficacy of CD29- and CD44-targeted NIR-PIT (CD29-PIT and CD44-PIT, respectively) in the B16 melanoma model, which is highly pigmented. While CD29-PIT and CD44-PIT killed B16 cells invitro and invivo, CD29-PIT suppressed tumor growth more efficiently. Ki67 expression showed that cells surviving CD29-PIT were less proliferative, suggesting that CD29-PIT was selective for more proliferative cancer cells. CD29-PIT did not kill immune cells, whereas CD44-PIT killed both T and NK cells and most myeloid cells, including DCs, which could interfere with the immune response to NIR-PIT. The addition of anti-CTLA4 antibody immune checkpoint inhibitor (ICI) to CD29-PIT increased the infiltration of CD8 T cells and enhanced tumor suppression with prolonged survival. Such effects were less prominent when the anti-CTLA4 ICI was combined with CD44-PIT. The preservation of immune cells in the tumor microenvironment (TME) after CD29-PIT likely led to a better response when combined with anti-CTLA4 treatment. We conclude that NIR-PIT can be performed in pigmented melanomas and that CD29 is a promising target for NIR-PIT, which is amenable to combination therapy with other immunotherapies.
Collapse
Affiliation(s)
- Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Ryuhei Okada
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Fuyuki Inagaki
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Hideyuki Furumoto
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Shuhei Okuyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
26
|
Ruan Y, Chen L, Xie D, Luo T, Xu Y, Ye T, Chen X, Feng X, Wu X. Mechanisms of Cell Adhesion Molecules in Endocrine-Related Cancers: A Concise Outlook. Front Endocrinol (Lausanne) 2022; 13:865436. [PMID: 35464064 PMCID: PMC9021432 DOI: 10.3389/fendo.2022.865436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Chemotherapy is a critical treatment for endocrine-related cancers; however, chemoresistance and disease recurrence remain a challenge. The interplay between cancer cells and the tumor microenvironment via cell adhesion molecules (CAMs) promotes drug resistance, known as cell adhesion-mediated drug resistance (CAM-DR). CAMs are cell surface molecules that facilitate cell-to-cell or cell-to-extracellular matrix binding. CAMs exert an adhesion effect and trigger intracellular signaling that regulates cancer cell stemness maintenance, survival, proliferation, metastasis, epithelial-mesenchymal transition, and drug resistance. To understand these mechanisms, this review focuses on the role of CD44, cadherins, selectins, and integrins in CAM-DR in endocrine-related cancers.
Collapse
Affiliation(s)
- Yongsheng Ruan
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yongsheng Ruan, ; Xuedong Wu,
| | - Libai Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Danfeng Xie
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Luo
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiqi Xu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Ye
- Department of Endocrinology, Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen, China
| | - Xiaona Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoqin Feng
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuedong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yongsheng Ruan, ; Xuedong Wu,
| |
Collapse
|
27
|
Carvalho TMA, Di Molfetta D, Greco MR, Koltai T, Alfarouk KO, Reshkin SJ, Cardone RA. Tumor Microenvironment Features and Chemoresistance in Pancreatic Ductal Adenocarcinoma: Insights into Targeting Physicochemical Barriers and Metabolism as Therapeutic Approaches. Cancers (Basel) 2021; 13:6135. [PMID: 34885243 PMCID: PMC8657427 DOI: 10.3390/cancers13236135] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, the median overall survival of PDAC patients rarely exceeds 1 year and has an overall 5-year survival rate of about 9%. These numbers are anticipated to worsen in the future due to the lack of understanding of the factors involved in its strong chemoresistance. Chemotherapy remains the only treatment option for most PDAC patients; however, the available therapeutic strategies are insufficient. The factors involved in chemoresistance include the development of a desmoplastic stroma which reprograms cellular metabolism, and both contribute to an impaired response to therapy. PDAC stroma is composed of immune cells, endothelial cells, and cancer-associated fibroblasts embedded in a prominent, dense extracellular matrix associated with areas of hypoxia and acidic extracellular pH. While multiple gene mutations are involved in PDAC initiation, this desmoplastic stroma plays an important role in driving progression, metastasis, and chemoresistance. Elucidating the mechanisms underlying PDAC resistance are a prerequisite for designing novel approaches to increase patient survival. In this review, we provide an overview of the stromal features and how they contribute to the chemoresistance in PDAC treatment. By highlighting new paradigms in the role of the stromal compartment in PDAC therapy, we hope to stimulate new concepts aimed at improving patient outcomes.
Collapse
Affiliation(s)
- Tiago M. A. Carvalho
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (M.R.G.); (S.J.R.); (R.A.C.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (M.R.G.); (S.J.R.); (R.A.C.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (M.R.G.); (S.J.R.); (R.A.C.)
| | | | - Khalid O. Alfarouk
- Al-Ghad International College for Applied Medical Sciences, Al-Madinah Al-Munwarah 42316, Saudi Arabia;
| | - Stephan J. Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (M.R.G.); (S.J.R.); (R.A.C.)
| | - Rosa A. Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (M.R.G.); (S.J.R.); (R.A.C.)
| |
Collapse
|
28
|
Wei W, Wang L, Xu L, Liang J, Teng L. MiR-199 Reverses the Resistance to Gemcitabine in Pancreatic Cancer by Suppressing Stemness through Regulating the Epithelial-Mesenchymal Transition. ACS OMEGA 2021; 6:31435-31446. [PMID: 34869970 PMCID: PMC8637594 DOI: 10.1021/acsomega.1c02945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
PURPOSE the present study aims to investigate the function of miR-199 on gemcitabine (GEM)-resistance in pancreatic cancer, as well as the underlying mechanism. METHODS the GEM-resistant SW1990 cell line (SW1990/SZ) was established. The CCK-8 assay was used to detect the cell viability. The self-renewal of SW1990/SZ cells was evaluated by sphere formation and the colony formation assay. The apoptosis was detected by flow cytometry and the migration ability was measured by the transwell assay. The dual-luciferase gene reporter assay was utilized to confirm the binding between miR-199 and Snail. The expression level of CD44, ALDH1, Nanog, E-cadherin, Vimentin, β-catenin, and Snail was determined by the Western blotting assay. RESULTS the cell sphere formation rate, number of spheres, and expression level of CD44, ALDH1, and Nanog in GEM-treated SW1990/SZ cells were significantly suppressed by miR-199, accompanied by declined proliferation ability, an increased apoptotic rate, inhibited migration ability, and suppressed EMT progression. The binding site between miR-199 and 3'-UTR of Snail was predicted and confirmed. The inhibitory effect of miR-199 on self-renewal of SW1990/GZ cells and the faciliating property of miR-199 on the inhibitory effect of GEM against the proliferation ability, migration ability, and EMT progression were abolished by overexpressing Snail. CONCLUSION MiR-199 reversed the resistance to GEM in pancreatic cancer by suppressing stemness through regulating the EMT.
Collapse
Affiliation(s)
- Weitian Wei
- Department
of Surgical Oncology, Zhejiang University
School of Medicine First Affiliated Hospital, No. 79 Qingchun Road, Shangcheng District, Hangzhou 310009, China
- Department
of Surgical Oncology, Zhejiang Cancer Hospital, No. 1, East Banshan Road, Gongshu District, Hangzhou 310022, China
| | - Liang Wang
- Department
of Surgical Oncology, Zhejiang Cancer Hospital, No. 1, East Banshan Road, Gongshu District, Hangzhou 310022, China
| | - Liwei Xu
- Department
of Surgical Oncology, Zhejiang Cancer Hospital, No. 1, East Banshan Road, Gongshu District, Hangzhou 310022, China
| | - Jinxiao Liang
- Department
of Surgical Oncology, Zhejiang Cancer Hospital, No. 1, East Banshan Road, Gongshu District, Hangzhou 310022, China
| | - Lisong Teng
- Department
of Surgical Oncology, Zhejiang University
School of Medicine First Affiliated Hospital, No. 79 Qingchun Road, Shangcheng District, Hangzhou 310009, China
| |
Collapse
|
29
|
Jo JH, Kim SA, Lee JH, Park YR, Kim C, Park SB, Jung DE, Lee HS, Chung MJ, Song SY. GLRX3, a novel cancer stem cell-related secretory biomarker of pancreatic ductal adenocarcinoma. BMC Cancer 2021; 21:1241. [PMID: 34794402 PMCID: PMC8603516 DOI: 10.1186/s12885-021-08898-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/13/2021] [Indexed: 12/02/2022] Open
Abstract
Background Cancer stem cells (CSCs) are implicated in carcinogenesis, cancer progression, and recurrence. Several biomarkers have been described for pancreatic ductal adenocarcinoma (PDAC) CSCs; however, their function and mechanism remain unclear. Method In this study, secretome analysis was performed in pancreatic CSC-enriched spheres and control adherent cells for biomarker discovery. Glutaredoxin3 (GLRX3), a novel candidate upregulated in spheres, was evaluated for its function and clinical implication. Results PDAC CSC populations, cell lines, patient tissues, and blood samples demonstrated GLRX3 overexpression. In contrast, GLRX3 silencing decreased the in vitro proliferation, migration, clonogenicity, and sphere formation of cells. GLRX3 knockdown also reduced tumor formation and growth in vivo. GLRX3 was found to regulate Met/PI3K/AKT signaling and stemness-related molecules. ELISA results indicated GLRX3 overexpression in the serum of patients with PDAC compared to that in healthy controls. The sensitivity and specificity of GLRX3 for PDAC diagnosis were 80.0 and 100%, respectively. When GLRX3 and CA19–9 were combined, sensitivity was significantly increased to 98.3% compared to that with GLRX3 or CA19–9 alone. High GLRX3 expression was also associated with poor disease-free survival in patients receiving curative surgery. Conclusion Overall, these results indicate GLRX3 as a novel diagnostic marker and therapeutic target for PDAC targeting CSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08898-y.
Collapse
Affiliation(s)
- Jung Hyun Jo
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Sun A Kim
- Cowell Biodigm Co., Ltd, Seoul, South Korea
| | - Jeong Hoon Lee
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Yu Rang Park
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Chanyang Kim
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Soo Been Park
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Dawoon E Jung
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Hee Seung Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Moon Jae Chung
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Si Young Song
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea. .,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
30
|
Lodestijn SC, Miedema DM, Lenos KJ, Nijman LE, Belt SC, El Makrini K, Lecca MC, Waasdorp C, van den Bosch T, Bijlsma MF, Vermeulen L. Marker-free lineage tracing reveals an environment-instructed clonogenic hierarchy in pancreatic cancer. Cell Rep 2021; 37:109852. [PMID: 34686335 DOI: 10.1016/j.celrep.2021.109852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/16/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
Effective treatments for pancreatic ductal adenocarcinoma (PDAC) are lacking, and targeted agents have demonstrated limited efficacy. It has been speculated that a rare population of cancer stem cells (CSCs) drives growth, therapy resistance, and rapid metastatic progression in PDAC. These CSCs demonstrate high clonogenicity in vitro and tumorigenic potential in vivo. However, their relevance in established PDAC tissue has not been determined. Here, we use marker-independent stochastic clonal labeling, combined with quantitative modeling of tumor expansion, to uncover PDAC tissue growth dynamics. We find that in contrast to the CSC model, all PDAC cells display clonogenic potential in situ. Furthermore, the proximity to activated cancer-associated fibroblasts determines tumor cell clonogenicity. This means that the microenvironment is dominant in defining the clonogenic activity of PDAC cells. Indeed, manipulating the stroma by Hedgehog pathway inhibition alters the tumor growth mode, revealing that tumor-stroma crosstalk shapes tumor growth dynamics and clonal architecture.
Collapse
Affiliation(s)
- Sophie C Lodestijn
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Daniël M Miedema
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Kristiaan J Lenos
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Lisanne E Nijman
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Saskia C Belt
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Khalid El Makrini
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Maria C Lecca
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Cynthia Waasdorp
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Tom van den Bosch
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Maarten F Bijlsma
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands.
| | - Louis Vermeulen
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands.
| |
Collapse
|
31
|
Basu M, Philipp LM, Baines JF, Sebens S. The Microbiome Tumor Axis: How the Microbiome Could Contribute to Clonal Heterogeneity and Disease Outcome in Pancreatic Cancer. Front Oncol 2021; 11:740606. [PMID: 34631577 PMCID: PMC8495218 DOI: 10.3389/fonc.2021.740606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant cancers. It is characterized by a poor prognosis with a 5-year survival rate of only around 10% and an ongoing increase in death rate. Due to the lack of early and specific symptoms, most patients are diagnosed at an advanced or even metastasized stage, essentially limiting curative treatment options. However, even curative resection of the primary tumor and adjuvant therapy often fails to provide a long-term survival benefit. One reason for this dismal situation can be seen in the evolution of therapy resistances. Furthermore, PDAC is characterized by high intratumor heterogeneity, pointing towards an abundance of cancer stem cells (CSCs), which are regarded as essential for tumor initiation and drug resistance. Additionally, it was shown that the gut microbiome is altered in PDAC patients, promotes Epithelial-Mesenchymal-Transition (EMT), determines responses towards chemotherapy, and affects survival in PDAC patients. Given the established links between CSCs and EMT as well as drug resistance, and the emerging role of the microbiome in PDAC, we postulate that the composition of the microbiome of PDAC patients is a critical determinant for the abundance and plasticity of CSC populations and thus tumor heterogeneity in PDAC. Unravelling this complex interplay might pave the way for novel treatment strategies.
Collapse
Affiliation(s)
- Meghna Basu
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Section of Evolutionary Medicine, Institute of Experimental Medicine, Kiel University, Kiel, Germany
| | - Lisa-Marie Philipp
- Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel University, Kiel, Germany
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Section of Evolutionary Medicine, Institute of Experimental Medicine, Kiel University, Kiel, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel University, Kiel, Germany
| |
Collapse
|
32
|
Patil K, Khan FB, Akhtar S, Ahmad A, Uddin S. The plasticity of pancreatic cancer stem cells: implications in therapeutic resistance. Cancer Metastasis Rev 2021; 40:691-720. [PMID: 34453639 PMCID: PMC8556195 DOI: 10.1007/s10555-021-09979-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
The ever-growing perception of cancer stem cells (CSCs) as a plastic state rather than a hardwired defined entity has evolved our understanding of the functional and biological plasticity of these elusive components in malignancies. Pancreatic cancer (PC), based on its biological features and clinical evolution, is a prototypical example of a CSC-driven disease. Since the discovery of pancreatic CSCs (PCSCs) in 2007, evidence has unraveled their control over many facets of the natural history of PC, including primary tumor growth, metastatic progression, disease recurrence, and acquired drug resistance. Consequently, the current near-ubiquitous treatment regimens for PC using aggressive cytotoxic agents, aimed at ‘‘tumor debulking’’ rather than eradication of CSCs, have proven ineffective in providing clinically convincing improvements in patients with this dreadful disease. Herein, we review the key hallmarks as well as the intrinsic and extrinsic resistance mechanisms of CSCs that mediate treatment failure in PC and enlist the potential CSC-targeting ‘natural agents’ that are gaining popularity in recent years. A better understanding of the molecular and functional landscape of PCSC-intrinsic evasion of chemotherapeutic drugs offers a facile opportunity for treating PC, an intractable cancer with a grim prognosis and in dire need of effective therapeutic advances.
Collapse
Affiliation(s)
- Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Farheen B Khan
- Department of Biology, College of Science, The United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar. .,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar. .,Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
33
|
Lodestijn SC, van Neerven SM, Vermeulen L, Bijlsma MF. Stem Cells in the Exocrine Pancreas during Homeostasis, Injury, and Cancer. Cancers (Basel) 2021; 13:cancers13133295. [PMID: 34209288 PMCID: PMC8267661 DOI: 10.3390/cancers13133295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/16/2021] [Accepted: 06/26/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Pancreatic cancer is one of the most lethal malignancies. Hence, improved therapies are urgently needed. Recent research indicates that pancreatic cancers depend on cancer stem cells (CSCs) for tumor expansion, metastasis, and therapy resistance. However, the exact functionality of pancreatic CSCs is still unclear. CSCs have much in common with normal pancreatic stem cells that have been better, albeit still incompletely, characterized. In this literature review, we address how pancreatic stem cells influence growth, homeostasis, regeneration, and cancer. Furthermore, we outline which intrinsic and extrinsic factors regulate stem cell functionality during these different processes to explore potential novel targets for treating pancreatic cancer. Abstract Cell generation and renewal are essential processes to develop, maintain, and regenerate tissues. New cells can be generated from immature cell types, such as stem-like cells, or originate from more differentiated pre-existing cells that self-renew or transdifferentiate. The adult pancreas is a dormant organ with limited regeneration capacity, which complicates studying these processes. As a result, there is still discussion about the existence of stem cells in the adult pancreas. Interestingly, in contrast to the classical stem cell concept, stem cell properties seem to be plastic, and, in circumstances of injury, differentiated cells can revert back to a more immature cellular state. Importantly, deregulation of the balance between cellular proliferation and differentiation can lead to disease initiation, in particular to cancer formation. Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a 5-year survival rate of only ~9%. Unfortunately, metastasis formation often occurs prior to diagnosis, and most tumors are resistant to current treatment strategies. It has been proposed that a specific subpopulation of cells, i.e., cancer stem cells (CSCs), are responsible for tumor expansion, metastasis formation, and therapy resistance. Understanding the underlying mechanisms of pancreatic stem cells during homeostasis and injury might lead to new insights to understand the role of CSCs in PDAC. Therefore, in this review, we present an overview of the current literature regarding the stem cell dynamics in the pancreas during health and disease. Furthermore, we highlight the influence of the tumor microenvironment on the growth behavior of PDAC.
Collapse
Affiliation(s)
- Sophie C. Lodestijn
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.C.L.); (S.M.v.N.); (L.V.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Sanne M. van Neerven
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.C.L.); (S.M.v.N.); (L.V.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.C.L.); (S.M.v.N.); (L.V.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Maarten F. Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.C.L.); (S.M.v.N.); (L.V.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
34
|
Hasanali SL, Morera DS, Racine RR, Hennig M, Ghosh S, Lopez LE, Hupe MC, Escudero DO, Wang J, Zhu H, Sarcan S, Azih I, Zhou M, Jordan AR, Terris MK, Kuczyk MA, Merseburger AS, Lokeshwar VB. HYAL4-V1/Chondroitinase (Chase) Drives Gemcitabine Resistance and Predicts Chemotherapy Failure in Patients with Bladder Cancer. Clin Cancer Res 2021; 27:4410-4421. [PMID: 34031055 DOI: 10.1158/1078-0432.ccr-21-0422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/01/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Gemcitabine-based chemotherapy regimens are first-line for several advanced cancers. Because of better tolerability, gemcitabine + cisplatin is a preferred neoadjuvant, adjuvant, and/or palliative chemotherapy regimen for advanced bladder cancer. Nevertheless, predicting treatment failure and overcoming resistance remain unmet clinical needs. We discovered that splice variant (V1) of HYAL-4 is a first-in-class eukaryotic chondroitinase (Chase), and CD44 is its major substrate. V1 is upregulated in bladder cancer and drives a malignant phenotype. In this study, we investigated whether V1 drives chemotherapy resistance. EXPERIMENTAL DESIGN V1 expression was measured in muscle-invasive bladder cancer (MIBC) specimens by qRT-PCR and IHC. HYAL-4 wild-type (Wt) and V1 were stably expressed or silenced in normal urothelial and three bladder cancer cell lines. Transfectants were analyzed for chemoresistance and associated mechanism in preclinical models. RESULTS V1 levels in MIBC specimens of patients who developed metastasis, predicted response to gemcitabine + cisplatin adjuvant/salvage treatment and disease-specific mortality. V1-expressing bladder cells were resistant to gemcitabine but not to cisplatin. V1 expression neither affected gemcitabine influx nor the drug-efflux transporters. Instead, V1 increased gemcitabine metabolism and subsequent efflux of difluorodeoxyuridine, by upregulating cytidine deaminase (CDA) expression through increased CD44-JAK2/STAT3 signaling. CDA inhibitor tetrahydrouridine resensitized V1-expressing cells to gemcitabine. While gemcitabine (25-50 mg/kg) inhibited bladder cancer xenograft growth, V1-expressing tumors were resistant. Low-dose combination of gemcitabine and tetrahydrouridine abrogated the growth of V1 tumors with minimal toxicity. CONCLUSIONS V1/Chase drives gemcitabine resistance and potentially predicts gemcitabine + cisplatin failure. CDA inhibition resensitizes V1-expressing tumors to gemcitabine. Because several chemotherapy regimens include gemcitabine, our study could have broad significance.
Collapse
Affiliation(s)
- Sarrah L Hasanali
- Departments of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia
| | - Daley S Morera
- Departments of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia
| | - Ronny R Racine
- Department of Urology, University of Miami-Miller School of Medicine, Miami, Florida
| | - Martin Hennig
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Santu Ghosh
- Department of Population Health Sciences, Augusta University, Augusta, Georgia
| | - Luis E Lopez
- Departments of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia
| | - Marie C Hupe
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Diogo O Escudero
- Molecular Cell and Developmental Biology Graduate Program, University of Miami-Miller School of Medicine, Miami, Florida
| | - Jiaojiao Wang
- Departments of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia
| | - Huabin Zhu
- Departments of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia
| | - Semih Sarcan
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Ijeoma Azih
- Clinical Trials Office, Augusta University, Augusta, Georgia
| | - Michael Zhou
- Departments of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia
| | - Andre R Jordan
- Departments of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia
| | - Martha K Terris
- Surgery, Division of Urology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Markus A Kuczyk
- Department of Urology and Urologic Oncology, Hannover Medical School, Hannover, Germany
| | - Axel S Merseburger
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Vinata B Lokeshwar
- Departments of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia.
| |
Collapse
|
35
|
Bulanadi JC, Xue A, Gong X, Bean PA, Julovi SM, de Campo L, Smith RC, Moghaddam MJ. Biomimetic Gemcitabine-Lipid Prodrug Nanoparticles for Pancreatic Cancer. Chempluschem 2021; 85:1283-1291. [PMID: 32543086 DOI: 10.1002/cplu.202000253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/15/2020] [Indexed: 12/18/2022]
Abstract
Gemcitabine (Gem) is a key drug for pancreatic cancer, yet limited by high systemic toxicity, low bioavailability and poor pharmacokinetic profiles. To overcome these limitations, Gem prodrug amphiphiles were synthesised with oleyl, linoleyl and phytanyl chains. Self-assembly and lyotropic mesophase behaviour of these amphiphiles were examined using polarised optical microscopy and Synchrotron SAXS (SSAXS). Gem-phytanyl was found to form liquid crystalline inverse cubic mesophase. This prodrug was combined with phospholipids and cholesterol to create biomimetic Gem-lipid prodrug nanoparticles (Gem-LPNP), verified by SSAXS and cryo-TEM to form liposomes. In vitro testing of the Gem-LPNP in several pancreatic cancer cell lines showed lower toxicity than Gem. However, in a cell line-derived pancreatic cancer mouse model Gem-LPNP displayed greater tumour growth inhibition than Gem using a fraction (<6 %) of the clinical dose and without any systemic toxicity. The easy production, improved efficacy and low toxicity of Gem-LPNP represents a promising new nanomedicine for pancreatic cancer.
Collapse
Affiliation(s)
- Jerikho C Bulanadi
- CSIRO Manufacturing, P.O. BOX 52, North Ryde, NSW, 1670, Australia.,Cancer Surgery and Metabolism Group, University of Sydney, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Aiqun Xue
- Cancer Surgery and Metabolism Group, University of Sydney, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Xiaojuan Gong
- CSIRO Manufacturing, P.O. BOX 52, North Ryde, NSW, 1670, Australia.,NanoMed Pty Ltd., 2/11-13 Orion Road, Lane Cove West, NSW, 2066, Australia
| | - Penelope A Bean
- CSIRO Manufacturing, P.O. BOX 52, North Ryde, NSW, 1670, Australia.,NanoMed Pty Ltd., 2/11-13 Orion Road, Lane Cove West, NSW, 2066, Australia
| | - Sohel M Julovi
- Cancer Surgery and Metabolism Group, University of Sydney, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | | | - Ross C Smith
- Cancer Surgery and Metabolism Group, University of Sydney, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia.,NanoMed Pty Ltd., 2/11-13 Orion Road, Lane Cove West, NSW, 2066, Australia
| | - Minoo J Moghaddam
- CSIRO Manufacturing, P.O. BOX 52, North Ryde, NSW, 1670, Australia.,NanoMed Pty Ltd., 2/11-13 Orion Road, Lane Cove West, NSW, 2066, Australia
| |
Collapse
|
36
|
Yaghobi Z, Movassaghpour A, Talebi M, Abdoli Shadbad M, Hajiasgharzadeh K, Pourvahdani S, Baradaran B. The role of CD44 in cancer chemoresistance: A concise review. Eur J Pharmacol 2021; 903:174147. [PMID: 33961871 DOI: 10.1016/j.ejphar.2021.174147] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022]
Abstract
CD44 is a cell surface adhesion molecule, which is overexpressed on cancer stem cells. The interaction of CD44 with hyaluronan is responsible for tumor development, metastasis, and expression of the chemoresistant phenotype. The overexpression of CD44 impedes the cytotoxic effect of chemotherapy medications in various cancers. Therefore, the high expression of CD44 is associated with a poor prognosis in affected patients. This high expression of CD44 in various cancers has provided an ample opportunity for the treatment of patients with chemoresistant malignancy. This review aims to demonstrate the various cross-talk between CD44 and intracellular and extracellular factors and highlight its role in developing chemoresistant tumors in some troublesome cancers.
Collapse
Affiliation(s)
- Zohreh Yaghobi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Shiva Pourvahdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
37
|
Zhang Z, Xu Y, Zhao C. Fzd7/Wnt7b signaling contributes to stemness and chemoresistance in pancreatic cancer. Cancer Med 2021; 10:3332-3345. [PMID: 33934523 PMCID: PMC8124113 DOI: 10.1002/cam4.3819] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/27/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Mining databases and data obtained from assays on human specimens had shown that Fzd7 is closely associated with Wnt7b, that Fzd7/Wnt7b expression is upregulated in pancreatic cancer tissues compared with normal tissues, and its expression is negatively correlated with survival. Fzd7/Wnt7b knockdown in Capan‐2 and Panc‐1 cells reduced the proliferative capacity of pancreatic cancer stem cells (PCSCs), reduced drug resistance, decreased the percentage of CD24+CD44+ subset of cells and the levels of ABCG2, inhibited cell‐sphere formation, and reduced gemcitabine (GEM) resistance. In contrast, Fzd7/Wnt7b overexpression increased the percentage of the CD24+CD44+ subset of cells, and increased the levels of ABCG2 detected in cell spheroids. The gem‐resistant cells exhibited higher levels of Fzd7/Wnt7b expression, an increased percentage of CD24+CD44+ cells, and higher levels of ABCG2 compared with the parental cells. Taken together, Fzd7/Wnt7b knockdown can reduce PDAC cell stemness and chemoresistance by reducing the percentage of CSCs. Mechanistically, Fzd7 binds with Wnt7b and modulates the levels of β‐catenin, and they may exert their role via modulation of the canonical Wnt pathway.
Collapse
Affiliation(s)
- Zhongbo Zhang
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Yuanhong Xu
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Chenghai Zhao
- Department of Pathophysiology, Basic Medical College, China Medical University, Shenyang, P.R. China
| |
Collapse
|
38
|
Barman S, Fatima I, Singh AB, Dhawan P. Pancreatic Cancer and Therapy: Role and Regulation of Cancer Stem Cells. Int J Mol Sci 2021; 22:ijms22094765. [PMID: 33946266 PMCID: PMC8124621 DOI: 10.3390/ijms22094765] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 12/21/2022] Open
Abstract
Despite significant improvements in clinical management, pancreatic cancer (PC) remains one of the deadliest cancer types, as it is prone to late detection with extreme metastatic properties. The recent findings that pancreatic cancer stem cells (PaCSCs) contribute to the tumorigenesis, progression, and chemoresistance have offered significant insight into the cancer malignancy and development of precise therapies. However, the heterogeneity of cancer and signaling pathways that regulate PC have posed limitations in the effective targeting of the PaCSCs. In this regard, the role for K-RAS, TP53, Transforming Growth Factor-β, hedgehog, Wnt and Notch and other signaling pathways in PC progression is well documented. In this review, we discuss the role of PaCSCs, the underlying molecular and signaling pathways that help promote pancreatic cancer development and metastasis with a specific focus on the regulation of PaCSCs. We also discuss the therapeutic approaches that target different PaCSCs, intricate mechanisms, and therapeutic opportunities to eliminate heterogeneous PaCSCs populations in pancreatic cancer.
Collapse
Affiliation(s)
- Susmita Barman
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
| | - Iram Fatima
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
| | - Amar B. Singh
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Correspondence:
| |
Collapse
|
39
|
Gu ZT, Li ZZ, Wang CF. Advances in research of extracellular mechanisms underlying gemcitabine resistance in pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2021; 29:421-434. [DOI: 10.11569/wcjd.v29.i8.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a solid malignant tumor with the worst prognosis worldwide, and about 90% of cases are pancreatic ductal adenocarcinoma (PDAC). Although surgical resection is the only potential way to cure PDAC, the overall survival rate after surgery is still not optimistic. Consequently, gemcitabine (GEM)-based chemotherapy is still one of the most important treatment options for PDAC. However, the survival improvement by GEM monotherapy for advanced PDAC is very limited, and GEM resistance is the key reason. The mechanism underlying gemcitabine resistance is complex and still unclear in PDAC. The extensive and dense fibrous mesenchyme in the tumor microenvironment (TME) is an important feature of PDAC. More and more evidence has shown that TME is not only an active participant in tumor growth and spread, but also a contributor to the induction of GEM resistance. This article will review the recent advances in the understanding of the cellular and molecular mechanisms underlying GEM resistance in PDAC, and discuss potential GEM chemosensitization strategies, in order to improve the effective rate of chemotherapy and the outcome.
Collapse
Affiliation(s)
- Zong-Ting Gu
- Cheng-Feng Wang, State Key Laboratory of Molecular Oncology & Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zong-Ze Li
- Cheng-Feng Wang, State Key Laboratory of Molecular Oncology & Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | | |
Collapse
|
40
|
Pape J, Stamati K, Al Hosni R, Uchegbu IF, Schatzlein AG, Loizidou M, Emberton M, Cheema U. Tissue-Engineering the Fibrous Pancreatic Tumour Stroma Capsule in 3D Tumouroids to Demonstrate Paclitaxel Response. Int J Mol Sci 2021; 22:4289. [PMID: 33924238 PMCID: PMC8074746 DOI: 10.3390/ijms22084289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is a unique cancer in that up to 90% of its tumour mass is composed of a hypovascular and fibrotic stroma. This makes it extremely difficult for chemotherapies to be delivered into the core of the cancer mass. We tissue-engineered a biomimetic 3D pancreatic cancer ("tumouroid") model comprised of a central artificial cancer mass (ACM), containing MIA Paca-2 cells, surrounded by a fibrotic stromal compartment. This stromal compartment had a higher concentration of collagen type I, fibronectin, laminin, and hyaluronic acid (HA) than the ACM. The incorporation of HA was validated with alcian blue staining. Response to paclitaxel was determined in 2D MIA Paca-2 cell cultures, the ACMs alone, and in simple and complex tumouroids, in order to demonstrate drug sensitivity within pancreatic tumouroids of increasing complexity. The results showed that MIA Paca-2 cells grew into the complex stroma and invaded as cell clusters with a maximum distance of 363.7 µm by day 21. In terms of drug response, the IC50 for paclitaxel for MIA Paca-2 cells increased from 0.819 nM in 2D to 3.02 nM in ACMs and to 5.87 nM and 3.803 nM in simple and complex tumouroids respectively, indicating that drug penetration may be significantly reduced in the latter. The results demonstrate the need for biomimetic models during initial drug testing and evaluation.
Collapse
Affiliation(s)
- Judith Pape
- Centre for 3D Models of Health and Disease, Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, London W1W 7TS, UK; (J.P.); (R.A.H.)
| | - Katerina Stamati
- Research Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital Campus, University College London, Rowland Hill Street, London NW3 2PF, UK; (K.S.); (M.L.)
| | - Rawiya Al Hosni
- Centre for 3D Models of Health and Disease, Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, London W1W 7TS, UK; (J.P.); (R.A.H.)
| | - Ijeoma F. Uchegbu
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (I.F.U.); (A.G.S.)
| | - Andreas G. Schatzlein
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (I.F.U.); (A.G.S.)
| | - Marilena Loizidou
- Research Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital Campus, University College London, Rowland Hill Street, London NW3 2PF, UK; (K.S.); (M.L.)
| | - Mark Emberton
- Faculty of Medical Sciences, University College London, Maple House, 149 Tottenham Court Road, London W1T 7TNF, UK;
| | - Umber Cheema
- Centre for 3D Models of Health and Disease, Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, London W1W 7TS, UK; (J.P.); (R.A.H.)
| |
Collapse
|
41
|
Koltai T, Reshkin SJ, Carvalho TMA, Cardone RA. Targeting the Stromal Pro-Tumoral Hyaluronan-CD44 Pathway in Pancreatic Cancer. Int J Mol Sci 2021; 22:3953. [PMID: 33921242 PMCID: PMC8069142 DOI: 10.3390/ijms22083953] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies. Present-day treatments have not shown real improvements in reducing the high mortality rate and the short survival of the disease. The average survival is less than 5% after 5 years. New innovative treatments are necessary to curtail the situation. The very dense pancreatic cancer stroma is a barrier that impedes the access of chemotherapeutic drugs and at the same time establishes a pro-proliferative symbiosis with the tumor, thus targeting the stroma has been suggested by many authors. No ideal drug or drug combination for this targeting has been found as yet. With this goal in mind, here we have explored a different complementary treatment based on abundant previous publications on repurposed drugs. The cell surface protein CD44 is the main receptor for hyaluronan binding. Many malignant tumors show over-expression/over-activity of both. This is particularly significant in pancreatic cancer. The independent inhibition of hyaluronan-producing cells, hyaluronan synthesis, and/or CD44 expression, has been found to decrease the tumor cell's proliferation, motility, invasion, and metastatic abilities. Targeting the hyaluronan-CD44 pathway seems to have been bypassed by conventional mainstream oncological practice. There are existing drugs that decrease the activity/expression of hyaluronan and CD44: 4-methylumbelliferone and bromelain respectively. Some drugs inhibit hyaluronan-producing cells such as pirfenidone. The association of these three drugs has never been tested either in the laboratory or in the clinical setting. We present a hypothesis, sustained by hard experimental evidence, suggesting that the simultaneous use of these nontoxic drugs can achieve synergistic or added effects in reducing invasion and metastatic potential, in PDAC. A non-toxic, low-cost scheme for inhibiting this pathway may offer an additional weapon for treating pancreatic cancer.
Collapse
Affiliation(s)
| | - Stephan Joel Reshkin
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (R.A.C.)
| | - Tiago M. A. Carvalho
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (R.A.C.)
| | - Rosa A. Cardone
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (R.A.C.)
| |
Collapse
|
42
|
Ruiz-Moreno AJ, Reyes-Romero A, Dömling A, Velasco-Velázquez MA. In Silico Design and Selection of New Tetrahydroisoquinoline-Based CD44 Antagonist Candidates. Molecules 2021; 26:molecules26071877. [PMID: 33810348 PMCID: PMC8037692 DOI: 10.3390/molecules26071877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/13/2021] [Accepted: 03/14/2021] [Indexed: 02/07/2023] Open
Abstract
CD44 promotes metastasis, chemoresistance, and stemness in different types of cancer and is a target for the development of new anti-cancer therapies. All CD44 isoforms share a common N-terminal domain that binds to hyaluronic acid (HA). Herein, we used a computational approach to design new potential CD44 antagonists and evaluate their target-binding ability. By analyzing 30 crystal structures of the HA-binding domain (CD44HAbd), we characterized a subdomain that binds to 1,2,3,4-tetrahydroisoquinoline (THQ)-containing compounds and is adjacent to residues essential for HA interaction. By computational combinatorial chemistry (CCC), we designed 168,190 molecules and compared their conformers to a pharmacophore containing the key features of the crystallographic THQ binding mode. Approximately 0.01% of the compounds matched the pharmacophore and were analyzed by computational docking and molecular dynamics (MD). We identified two compounds, Can125 and Can159, that bound to human CD44HAbd (hCD44HAbd) in explicit-solvent MD simulations and therefore may elicit CD44 blockage. These compounds can be easily synthesized by multicomponent reactions for activity testing and their binding mode, reported here, could be helpful in the design of more potent CD44 antagonists.
Collapse
Affiliation(s)
- Angel J. Ruiz-Moreno
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico (UNAM), Ciudad de Mexico 04510, Mexico;
- Unidad Periférica de Investigación en Biomedicina Translacional, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Félix Cuevas 540, Ciudad de Mexico 03229, Mexico
- Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico 04510, Mexico
- Drug Design Group, Department of Pharmacy, University of Groningen, 9700 AD Groningen, The Netherlands;
| | - Atilio Reyes-Romero
- Drug Design Group, Department of Pharmacy, University of Groningen, 9700 AD Groningen, The Netherlands;
| | - Alexander Dömling
- Drug Design Group, Department of Pharmacy, University of Groningen, 9700 AD Groningen, The Netherlands;
- Correspondence: (A.D.); (M.A.V.-V.); Tel.: +31-50-363-330 (A.D.); +52-55-5623-2282 (M.A.V.-V.)
| | - Marco A. Velasco-Velázquez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico (UNAM), Ciudad de Mexico 04510, Mexico;
- Unidad Periférica de Investigación en Biomedicina Translacional, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Félix Cuevas 540, Ciudad de Mexico 03229, Mexico
- Correspondence: (A.D.); (M.A.V.-V.); Tel.: +31-50-363-330 (A.D.); +52-55-5623-2282 (M.A.V.-V.)
| |
Collapse
|
43
|
Abdel Mouti M, Pauklin S. TGFB1/INHBA Homodimer/Nodal-SMAD2/3 Signaling Network: A Pivotal Molecular Target in PDAC Treatment. Mol Ther 2021; 29:920-936. [PMID: 33429081 PMCID: PMC7934636 DOI: 10.1016/j.ymthe.2021.01.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/17/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer remains a grueling disease that is projected to become the second-deadliest cancer in the next decade. Standard treatment of pancreatic cancer is chemotherapy, which mainly targets the differentiated population of tumor cells; however, it paradoxically sets the roots of tumor relapse by the selective enrichment of intrinsically chemoresistant pancreatic cancer stem cells that are equipped with an indefinite capacity for self-renewal and differentiation, resulting in tumor regeneration and an overall anemic response to chemotherapy. Crosstalk between pancreatic tumor cells and the surrounding stromal microenvironment is also involved in the development of chemoresistance by creating a supportive niche, which enhances the stemness features and tumorigenicity of pancreatic cancer cells. In addition, the desmoplastic nature of the tumor-associated stroma acts as a physical barrier, which limits the intratumoral delivery of chemotherapeutics. In this review, we mainly focus on the transforming growth factor beta 1 (TGFB1)/inhibin subunit beta A (INHBA) homodimer/Nodal-SMAD2/3 signaling network in pancreatic cancer as a pivotal central node that regulates multiple key mechanisms involved in the development of chemoresistance, including enhancement of the stem cell-like properties and tumorigenicity of pancreatic cancer cells, mediating cooperative interactions between pancreatic cancer cells and the surrounding stroma, as well as regulating the deposition of extracellular matrix proteins within the tumor microenvironment.
Collapse
Affiliation(s)
- Mai Abdel Mouti
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Headington, University of Oxford, Oxford OX3 7LD, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Headington, University of Oxford, Oxford OX3 7LD, UK.
| |
Collapse
|
44
|
Morphological Heterogeneity in Pancreatic Cancer Reflects Structural and Functional Divergence. Cancers (Basel) 2021; 13:cancers13040895. [PMID: 33672734 PMCID: PMC7924365 DOI: 10.3390/cancers13040895] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Pancreatic cancer has a poor prognosis, which is largely due to resistance to treatment. Tumor heterogeneity is a known cause for treatment failure and has been studied at the molecular level. Morphological heterogeneity is common but has not been investigated, despite the fact that pathology examination is an integral part of clinical diagnostics. This study assessed whether morphological heterogeneity reflects structural and functional diversity in key cancer biological processes. Using archival tissues from resected pancreatic cancer, we selected four common and distinct morphological phenotypes and demonstrated that these differed significantly for a panel of 26 structural and functional features of the cancer-cell and stromal compartments. The strong link between these features and morphological phenotypes allowed prediction of the latter based on the results for the panel of features. The findings of this study indicate that morphological heterogeneity reflects biological diversity and that its assessment may potentially provide clinically relevant information. Abstract Inter- and intratumor heterogeneity is an important cause of treatment failure. In human pancreatic cancer (PC), heterogeneity has been investigated almost exclusively at the genomic and transcriptional level. Morphological heterogeneity, though prominent and potentially easily assessable in clinical practice, remains unexplored. This proof-of-concept study aims at demonstrating that morphological heterogeneity reflects structural and functional divergence. From the wide morphological spectrum of conventional PC, four common and distinctive patterns were investigated in 233 foci from 39 surgical specimens. Twenty-six features involved in key biological processes in PC were analyzed (immuno-)histochemically and morphometrically: cancer cell proliferation (Ki67) and migration (collagen fiber alignment, MMP14), cancer stem cells (CD44, CD133, ALDH1), amount, composition and spatial arrangement of extracellular matrix (epithelial proximity, total collagen, collagen I and III, fibronectin, hyaluronan), cancer-associated fibroblasts (density, αSMA), and cancer-stroma interactions (integrins α2, α5, α1; caveolin-1). All features differed significantly between at least two of the patterns. Stromal and cancer-cell-related features co-varied with morphology and allowed prediction of the morphological pattern. In conclusion, morphological heterogeneity in the cancer-cell and stromal compartments of PC correlates with structural and functional diversity. As such, histopathology has the potential to inform on the operationality of key biological processes in individual tumors.
Collapse
|
45
|
Praharaj PP, Patro BS, Bhutia SK. Dysregulation of mitophagy and mitochondrial homeostasis in cancer stem cells: Novel mechanism for anti-cancer stem cell-targeted cancer therapy. Br J Pharmacol 2021; 179:5015-5035. [PMID: 33527371 DOI: 10.1111/bph.15401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/11/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the potential of cancer medicine, cancer stem cells (CSCs) associated with chemoresistance and disease recurrence are the significant challenges currently opposing the efficacy of available cancer treatment options. Mitochondrial dynamics involving the fission-fusion cycle and mitophagy are the major contributing factors to better adaptation, enabling CSCs to survive and grow better under tumour micro-environment-associated stress. Moreover, mitophagy is balanced with mitochondrial biogenesis to maintain mitochondrial homeostasis in CSCs, which are necessary for the growth and maintenance of CSCs and regulate metabolic switching from glycolysis to oxidative phosphorylation. In this review, we discuss different aspects of mitochondrial dynamics, mitophagy, and mitochondrial homeostasis and their effects on modulating CSCs behaviour during cancer development. Moreover, the efficacy of pharmacological targeting of these cellular processes using anti-CSC drugs in combination with currently available chemotherapeutic drugs improves the patient's survival of aggressive cancer types.
Collapse
Affiliation(s)
- Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | | | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| |
Collapse
|
46
|
Fleming Martinez AK, Döppler HR, Bastea LI, Edenfield B, Patel T, Leitges M, Liou GY, Storz P. Dysfunctional EGFR and oxidative stress-induced PKD1 signaling drive formation of DCLK1+ pancreatic stem cells. iScience 2021; 24:102019. [PMID: 33521594 PMCID: PMC7820128 DOI: 10.1016/j.isci.2020.102019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/25/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Doublecortin-like kinase 1 (DCLK1)-positive pancreatic cancer stem cells develop at a precancerous stage and may contribute to the lack of efficacy of pancreatic cancer therapy. Although PanIN cells express oncogenic KRas and have an increased activity of epidermal growth factor receptor (EGFR), we demonstrate that, in DCLK1+ PanIN cells, EGFR signaling is not propagated to the nucleus. Mimicking blockage of EGFR with erlotinib in PanIN organoid culture or in p48cre;KrasG12D mice led to a significant increase in DCLK1+ PanIN cells. As a mechanism of how EGFR inhibition leads to formation of DCLK1+ cells, we identify an increase in hydrogen peroxide contributing to activation of Protein Kinase D1 (PKD1). Active PKD1 then drives stemness and abundance of DCLK1+ cells in lesions. Our data suggest a signaling mechanism that leads to the development of DCLK1+ pancreatic cancer stem cells, which can be exploited to target this population in potential therapeutic approaches.
Collapse
Affiliation(s)
- Alicia K Fleming Martinez
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Heike R Döppler
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ligia I Bastea
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Brandy Edenfield
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Michael Leitges
- Division of Biomedical Sciences/Faculty of Medicine, Craig L Dobbin Genetics Research Centre, Memorial University of Newfoundland, St. John`s, Newfoundland A1B 3V6, Canada
| | - Geou-Yarh Liou
- Department of Biological Sciences, Center for Cancer Research & Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
47
|
FOLFOX Therapy Induces Feedback Upregulation of CD44v6 through YB-1 to Maintain Stemness in Colon Initiating Cells. Int J Mol Sci 2021; 22:ijms22020753. [PMID: 33451103 PMCID: PMC7828641 DOI: 10.3390/ijms22020753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer initiating cells (CICs) drive tumor formation and drug-resistance, but how they develop drug-resistance characteristics is not well understood. In this study, we demonstrate that chemotherapeutic agent FOLFOX, commonly used for drug-resistant/metastatic colorectal cancer (CRC) treatment, induces overexpression of CD44v6, MDR1, and oncogenic transcription/translation factor Y-box-binding protein-1 (YB-1). Our study revealed that CD44v6, a receptor for hyaluronan, increased the YB-1 expression through PGE2/EP1-mTOR pathway. Deleting CD44v6, and YB-1 by the CRISPR/Cas9 system attenuates the in vitro and in vivo tumor growth of CICs from FOLFOX resistant cells. The results of DNA:CD44v6 immunoprecipitated complexes by ChIP (chromatin-immunoprecipitation) assay showed that CD44v6 maintained the stemness traits by promoting several antiapoptotic and stemness genes, including cyclin-D1,BCL2,FZD1,GINS-1, and MMP9. Further, computer-based analysis of the clones obtained from the DNA:CD44v6 complex revealed the presence of various consensus binding sites for core stemness-associated transcription factors “CTOS” (c-Myc, TWIST1, OCT4, and SOX2). Simultaneous expressions of CD44v6 and CTOS in CD44v6 knockout CICs reverted differentiated CD44v6-knockout CICs into CICs. Finally, this study for the first time describes a positive feedback loop that couples YB-1 induction and CD44 alternative splicing to sustain the MDR1 and CD44v6 expressions, and CD44v6 is required for the reversion of differentiated tumor cells into CICs.
Collapse
|
48
|
Xu XT, Chen J, Ren X, Ma YR, Wang X, Ma YY, Zhao DG, Zhou RP, Zhang K, Goodin S, Li DL, Zheng X. Effects of atorvastatin in combination with celecoxib and tipifarnib on proliferation and apoptosis in pancreatic cancer sphere-forming cells. Eur J Pharmacol 2020; 893:173840. [PMID: 33359649 DOI: 10.1016/j.ejphar.2020.173840] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/21/2022]
Abstract
Cancer stem cell (CSC) plays an important role in pancreatic cancer pathogenesis and treatment failure. CSCs are characterized by their ability to form tumor spheres in serum-free medium and expression of CSC related markers. In the present study, we investigated the effect atorvastatin, celecoxib and tipifarnib in combination on proliferation and apoptosis in Panc-1 sphere-forming cells. The sphere-forming cells were isolated from Panc-1 cells by sphere-forming method. These sphere-forming cells showed CSC properties. The levels of CD44, CD133 and ALDH1A1 in the sphere-forming cells were increased. Moreover, Panc-1 sphere-forming cells were resistant to chemotherapeutic drug gemcitabine. Combined atorvastatin with celecoxib and tipifarnib synergistically decreased the sphere forming ability of Panc-1 cells and the drug combination also strongly inhibited cell proliferation and promoted apoptosis in the sphere-forming cells. The effects of the drug combination on the Panc-1 sphere-forming cells were associated with decreases in the levels of CD44, CD133 and ALDH1A1, and suppression of Akt and NF-κB activation. Results of the present study indicate that the combination of atorvastatin, celecoxib and tipifarnib may represent an effective approach for inhibiting pancreatic CSCs.
Collapse
Affiliation(s)
- Xue-Tao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529020, PR China
| | - Jie Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Xiang Ren
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Yu-Ran Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Xiao Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Yan-Yan Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529020, PR China
| | - Den-Gao Zhao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529020, PR China
| | - Ren-Ping Zhou
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529020, PR China
| | - Susan Goodin
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
| | - Dong-Li Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529020, PR China
| | - Xi Zheng
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
49
|
Role of nitric oxide in the response to photooxidative stress in prostate cancer cells. Biochem Pharmacol 2020; 182:114205. [PMID: 32828802 DOI: 10.1016/j.bcp.2020.114205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022]
Abstract
A continuous state of oxidative stress during inflammation contributes to the development of 25% of human cancers. Epithelial and inflammatory cells release reactive oxygen species (ROS) and reactive nitrogen species (RNS) that can damage DNA. ROS/RNS have biological implications in both chemoresistance and tumor recurrence. As several clinically employed anticancer drugs can generate ROS/RNS, we have addressed herein how inducible nitric oxide synthase and nitric oxide (iNOS/•NO) affect the molecular pathways implicated in the tumor response to oxidative stress. To mimic the oxidative stress associated with chemotherapy, we used a photosensitizer (pheophorbide a) that can generate ROS/RNS in a controlled manner. We investigated how iNOS/•NO modulates the tumor response to oxidative stress by involving the NF-κB and Nrf2 molecular pathways. We found that low levels of iNOS induce the development of a more aggressive tumor population, leading to survival, recurrence and resistance. By contrast, high levels of iNOS/•NO sensitize tumor cells to oxidative treatment, causing cell growth arrest. Our analysis showed that NF-κB and Nrf2, which are activated in response to oxidative stress, communicate with each other through RKIP. For this critical role, RKIP could be an interesting target for anticancer drugs. Our study provides insight into the complex signaling response of cancer cells to oxidative treatments as well as new possibilities for the rational design of new therapeutic strategies.
Collapse
|
50
|
Soltanian S, Sheikhbahaei M, Ziasistani M. Phytol Down-Regulates Expression of Some Cancer Stem Cell Markers and Decreases Side Population Proportion in Human Embryonic Carcinoma NCCIT Cells. Nutr Cancer 2020; 73:1520-1533. [PMID: 32700607 DOI: 10.1080/01635581.2020.1795695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cancer stem cells (CSCs), a subgroup of cancer cells, have self-renewal capacity and differentiation potential and drive tumor growth. CSCs are highly-resistant to conventional chemo-radio therapy. Phytochemicals were shown to be able to eliminate CSCs. Phytol is a diterpene alcohol with demonstrated anticancer effects. The current study compared the effect of phytol with retinoic acid (RA) as a well-known inducers of CSC differentiation and cisplatin, a common chemotherapy drug, on CSC markers in human embryonic carcinoma NCCIT cells. NCCIT cells were exposed to 10 mM RA for 14 day to induce differentiation. Moreover, NCCIT cells were treated with IC50 dose of cisplatin (12 µM) and phytol (40 µM) for 7 day. Real-time PCR showed that phytol was more effective that RA and cisplatin in down-regulating the CSC markers OCT4, NANOG, SOX2, ALDH1, ABCB1, CD44 and CD133. Percentage of SP (13%) and ABCB1+ (0.34%) in NCCIT cells decreased to 7% and 0.1% respectively after treatment with phytol. A very small proportion of NCCIT cells were positive for CD44 (0.2%) and CD133 (0.48%) and this fraction did not change significantly after treatment with three agents. In conclusion, phytol has the greatest inhibitory effect on CSC population and markers than RA and cisplatin.
Collapse
Affiliation(s)
- Sara Soltanian
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mahboubeh Sheikhbahaei
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mahsa Ziasistani
- Pathology and Stem Cell Research Center, Afzalipour Medical School, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|