1
|
Shen D, Kang S. Comprehensive analysis of mitochondria-related genes indicates that PPP2R2B is a novel biomarker and promotes the progression of bladder cancer via Wnt signaling pathway. Biol Direct 2024; 19:17. [PMID: 38409085 PMCID: PMC10898125 DOI: 10.1186/s13062-024-00461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024] Open
Abstract
Bladder cancer (BC) is the fourth and tenth most common malignancy in men and women worldwide, respectively. The complexity of the molecular biological mechanism behind BC is a major contributor to the lack of effective treatment management of the disease. The development and genesis of BC are influenced by mitochondrial retrograde control and mitochondria-nuclear cross-talk. However, the role of mitochondrial-related genes in BC remains unclear. In this study, we analyzed TCGA datasets and identified 752 DE-MRGs in BC samples, including 313 down-regulated MRGs and 439 up-regulated MRGs. Then, the results of machine-learning screened four critical diagnostic genes, including GLRX2, NMT1, PPP2R2B and TRAF3IP3. Moreover, we analyzed their prognostic value and confirmed that only PPP2R2B was associated with clinical prognosis of BC patients and Cox regression assays validated that PPP2R2B expression was a distinct predictor of overall survival in BC patients. Them, we performed RT-PCR and found that PPP2R2B expression was distinctly decreased in BC specimens and cell lines. Functional experiments revealed that overexpression of PPP2R2B distinctly suppressed the proliferation, migration and invasion of BC cells via Wnt signaling pathway. In summary, these research findings offer potential molecular markers for the diagnosis and prognosis of BC, with the discovery of PPP2R2B particularly holding significant biological and clinical significance. This study provides valuable clues for future in-depth investigations into the molecular mechanisms of BC, as well as the development of new diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Du Shen
- College of Clinic Medical, North China University of Science and Technology, Tangshan, China
| | - Shaosan Kang
- North China of Science and Technology Affiliated Hospital, Tangshan, China.
| |
Collapse
|
2
|
Malvi P, Chava S, Cai G, Hu K, Zhu LJ, Edwards YJK, Green MR, Gupta R, Wajapeyee N. HOXC6 drives a therapeutically targetable pancreatic cancer growth and metastasis pathway by regulating MSK1 and PPP2R2B. Cell Rep Med 2023; 4:101285. [PMID: 37951219 PMCID: PMC10694669 DOI: 10.1016/j.xcrm.2023.101285] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/13/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, which lacks effective therapies. Here, we demonstrate that the transcription factor, homeobox C6 (HOXC6), is overexpressed in most PDACs, and its inhibition blocks PDAC tumor growth and metastasis. HOXC6 transcriptionally activates tumor-promoting kinase MSK1 and suppresses tumor-inhibitory protein PPP2R2B in PDAC. HOXC6-induced PPP2R2B suppression causes mammalian target of rapamycin (mTOR) pathway activation, which facilitates PDAC growth. Also, MSK1 upregulation by HOXC6 is necessary for PDAC growth because of its ability to suppress apoptosis via its substrate DDX17. Combinatorial pharmacological inhibition of MSK1 and mTOR potently suppressed PDAC tumor growth and metastasis in PDAC mouse models. PDAC cells with acquired resistance to MSK1/mTOR-inhibitors displayed activated insulin-like growth factor 1 receptor (IGF1R) signaling and were successfully eradicated by IGF1R inhibitor. Furthermore, MEK inhibitor trametinib enhanced the efficacy of dual MSK1 and mTOR inhibition. Collectively, these results identify therapeutic vulnerabilities of PDAC and an approach to overcome acquired drug resistance to prolong therapeutic benefit.
Collapse
Affiliation(s)
- Parmanand Malvi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Suresh Chava
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Guoping Cai
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kai Hu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yvonne J K Edwards
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Michael R Green
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
3
|
Kitz J, Lefebvre C, Carlos J, Lowes LE, Allan AL. Reduced Zeb1 Expression in Prostate Cancer Cells Leads to an Aggressive Partial-EMT Phenotype Associated with Altered Global Methylation Patterns. Int J Mol Sci 2021; 22:ijms222312840. [PMID: 34884649 PMCID: PMC8657557 DOI: 10.3390/ijms222312840] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer is the most common cancer in American men and the second leading cause of cancer-related death. Most of these deaths are associated with metastasis, a process involving the epithelial-to-mesenchymal (EMT) transition. Furthermore, growing evidence suggests that partial-EMT (p-EMT) may lead to more aggressive disease than complete EMT. In this study, the EMT-inducing transcription factor Zeb1 was knocked down in mesenchymal PC-3 prostate cancer cells (Zeb1KD) and resulting changes in cellular phenotype were assessed using protein and RNA analysis, invasion and migration assays, cell morphology assays, and DNA methylation chip analysis. Inducible knockdown of Zeb1 resulted in a p-EMT phenotype including co-expression of epithelial and mesenchymal markers, a mixed epithelial/mesenchymal morphology, increased invasion and migration, and enhanced expression of p-EMT markers relative to PC-3 mesenchymal controls (p ≤ 0.05). Treatment of Zeb1KD cells with the global de-methylating drug 5-azacytidine (5-aza) mitigated the observed aggressive p-EMT phenotype (p ≤ 0.05). DNA methylation chip analysis revealed 10 potential targets for identifying and/or targeting aggressive p-EMT prostate cancer in the future. These findings provide a framework to enhance prognostic and/or therapeutic options for aggressive prostate cancer in the future by identifying new p-EMT biomarkers to classify patients with aggressive disease who may benefit from 5-aza treatment.
Collapse
Affiliation(s)
- Jenna Kitz
- London Regional Cancer Program, London Health Sciences Centre, Department of Anatomy & Cell Biology, Western University, London, ON N6A 5W9, Canada; (J.K.); (C.L.)
| | - Cory Lefebvre
- London Regional Cancer Program, London Health Sciences Centre, Department of Anatomy & Cell Biology, Western University, London, ON N6A 5W9, Canada; (J.K.); (C.L.)
| | - Joselia Carlos
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada;
| | - Lori E. Lowes
- Flow Cytometry, London Health Sciences Centre, London, ON N6A 5W9, Canada;
| | - Alison L. Allan
- London Regional Cancer Program, London Health Sciences Centre, Department of Anatomy & Cell Biology, Western University, London, ON N6A 5W9, Canada; (J.K.); (C.L.)
- Department of Oncology, Western University, London, ON N6A 5W9, Canada
- Cancer Research Laboratory Program, Lawson Health Research Institute, London, ON N6C 2R5, Canada
- Correspondence: ; Tel.: +1-519-685-8600 (ext. 55134)
| |
Collapse
|
4
|
Alimardani M, Moghbeli M, Rastgar-Moghadam A, Shandiz FH, Abbaszadegan MR. Single nucleotide polymorphisms as the efficient prognostic markers in breast cancer. Curr Cancer Drug Targets 2021; 21:768-793. [PMID: 34036920 DOI: 10.2174/1568009621666210525151846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/15/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Breast cancer (BC) is known as the most common malignancy in women. Environmental and genetic factors are associated with BC progression. Genetic polymorphisms have been reported as important risk factors of BC prognosis and drug response. Main body: Therefore, in the present review, we have summarized all single nucleotide polymorphisms (SNPs) which have been significantly associated with drug response in BC patients around the world. We have also categorized the reported SNPs based on their related genes functions to clarify the molecular biology of drug responses in BC. CONCLUSION The majority of SNPs were reported in detoxifying enzymes, which introduced such genes as the main genetic risk factors during BC drug responses. This review paves the way for introducing a prognostic panel of SNPs for the BC patients in the world.
Collapse
Affiliation(s)
- Maliheh Alimardani
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azam Rastgar-Moghadam
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Homaei Shandiz
- Department of Radiotherapy/Oncology, Omid Hospital, Mashhad University of Medical Science, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Wang Y, Cai H, Luo X, Ai Y, Jiang M, Wen Y. Insight into unique somitogenesis of yak (Bos grunniens) with one additional thoracic vertebra. BMC Genomics 2020; 21:201. [PMID: 32131721 PMCID: PMC7057515 DOI: 10.1186/s12864-020-6598-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/19/2020] [Indexed: 01/23/2023] Open
Abstract
Background The yak is a species of livestock which is crucial for local communities of the Qinghai-Tibet Plateau and adjacent regions and naturally owns one more thoracic vertebra than cattle. Recently, a sub-population of yak termed as the Jinchuan yak has been identified with over half its members own a thoracolumbar vertebral formula of T15L5 instead of the natural T14L5 arrangement. The novel T15L5 positioning is a preferred genetic trait leading to enhanced meat and milk production. Selective breeding of this trait would have great agricultural value and exploration of the molecular mechanisms underlying this trait would both accelerate this process and provide us insight into the development and regulation of somitogenesis. Results Here we investigated the genetic background of the Jinchuan yak through resequencing fifteen individuals, comprising five T15L5 individuals and ten T14L5 individuals with an average sequencing depth of > 10X, whose thoracolumbar vertebral formulae were confirmed by anatomical observation. Principal component analysis, linkage disequilibrium analysis, phylogenetic analysis, and selective sweep analysis were carried out to explore Jinchuan yak’s genetic background. Three hundred and thirty candidate markers were identified as associated with the additional thoracic vertebrae and target sequencing was used to validate seven carefully selected markers in an additional 51 Jinchuan yaks. The accuracies of predicting 15 thoracic vertebrae and 20 thoracolumbar vertebrae with these 7 markers were 100.00 and 33.33% despite they both could only represent 20% of all possible genetic diversity. Two genes, PPP2R2B and TBLR1, were found to harbour the most candidate markers associated with the trait and likely contribute to the unique somitic number and identity according to their reported roles in the mechanism of somitogenesis. Conclusions Our findings provide a clear depiction of the Jinchuan yak’s genetic background and a solid foundation for marker-assistant selection. Further exploitation of this unique population and trait could be promoted with the aid of our genomic resource.
Collapse
Affiliation(s)
- Yu Wang
- College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Haoyang Cai
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Xiaolin Luo
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, China
| | - Yi Ai
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Chengdu, 610041, China
| | - Mingfeng Jiang
- College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, Sichuan, China.
| | - Yongli Wen
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Chengdu, 610041, China.
| |
Collapse
|
6
|
Doğan F, Özateş NP, Bağca BG, Abbaszadeh Z, Söğütlü F, Gasımlı R, Gündüz C, Biray Avcı Ç. Investigation of the effect of telomerase inhibitor BIBR1532 on breast cancer and breast cancer stem cells. J Cell Biochem 2019; 120:1282-1293. [PMID: 30368861 DOI: 10.1002/jcb.27089] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/26/2018] [Indexed: 01/24/2023]
Abstract
It is emphasized that cancer stem cells (CSCs) forming the subpopulation of tumour cells are responsible for tumour growth, metastasis, and cancer drug resistance. Inadequate response to conventional therapy in breast cancer leads researchers to find new treatment methods and literature surveys that support CSC studies. A selective anticancer agent BIBR1532 inhibits the telomerase enzyme. Many of the chemotherapeutic drugs used in clinical trials have harmful effects, but the advantage of telomerase-based inhibitors is that they are less toxic to healthy tissues. The phosphoinositide 3-kinase (PI3K)/serine/threonine kinase (Akt)/mammalian target of rapamycin (mTOR) pathway is common in breast cancer, and the interaction between the mTOR pathway and human telomerase reverse transcriptase (hTERT) is essential for the survival of cancer cells. In our study, we treated MCF-7, breast cancer stem cell (BCSC) and normal breast epithelial cell MCF10A with the BIBR1532 inhibitor. The IC 50 doses for the 48th hour of BIBR1532 treatment were detected as 34.59 μM in MCF-7, 29.91 μM in BCSCs, and 29.07 μM in MCF10A. It has been observed that this agent induces apoptosis in the BCSC and MCF-7 cell lines. According to the results of cell cycle analysis, G 2 /M phase accumulation was observed in BCSC and MCF-7 cell lines. It has also been shown that BIBR1532 suppresses telomerase activity in BCSC and MCF-7. The effect of BIBR1532 on the mTOR signalling pathway has been investigated for the first time in this study. It is thought that the telomerase inhibitor may bring a new approach to the treatment and it may be useful in the treatment of CSCs.
Collapse
Affiliation(s)
- Fatma Doğan
- Department of Medical Biology, Ege University Medical School, Bornova, Turkey
| | | | - Bakiye Göker Bağca
- Department of Medical Biology, Ege University Medical School, Bornova, Turkey
| | - Zeka Abbaszadeh
- Department of Medical Biology, Ege University Medical School, Bornova, Turkey
| | - Fatma Söğütlü
- Department of Medical Biology, Ege University Medical School, Bornova, Turkey
| | - Röya Gasımlı
- Department of Medical Biology, Ege University Medical School, Bornova, Turkey
| | - Cumhur Gündüz
- Department of Medical Biology, Ege University Medical School, Bornova, Turkey
| | - Çığır Biray Avcı
- Department of Medical Biology, Ege University Medical School, Bornova, Turkey
| |
Collapse
|
7
|
Ishibashi K, Ishii K, Sugiyama G, Kamata YU, Suzuki A, Kumamaru W, Ohyama Y, Nakano H, Kiyoshima T, Sumida T, Yamada T, Mori Y. Regulation of β-Catenin Phosphorylation by PR55β in Adenoid Cystic Carcinoma. Cancer Genomics Proteomics 2018; 15:53-60. [PMID: 29275362 DOI: 10.21873/cgp.20064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Adenoid cystic carcinoma (AdCC) is a rare cancer of the salivary gland with high risk of recurrence and metastasis. Wnt signalling is critical for determining tumor grade in AdCC, as it regulates invasion and migration. β-catenin dephosphorylation plays an important role in the Wnt pathway, but its underlying molecular mechanism remains unclear. MATERIALS AND METHODS Because the regulatory subunits of protein phosphatase 2A (PP2A) drive Wnt signalling via target molecules, including β-catenin, we used qRT-PCR and immunoblot analysis to investigate the expression of these subunits in an AdCC cell line (ACCS) and a more aggressive subline (ACCS-M). RESULTS PR55β was highly expressed in ACCS-M, suggesting its functional importance. In addition, PR55β expression was associated with tumor grade, with ACCS-M exhibiting higher PR55β levels. More importantly, knockdown of PR55β in ACCS-M cells significantly reduced invasiveness and metastatic ability. Furthermore, dephosphorylation and total levels of β-catenin were dependent on PR55β in ACCS-M. Finally, we confirmed a correlation between PR55β staining intensity and histopathological type in human AdCC tissues. CONCLUSION Our study provides new insight into the interaction between PR55β and β-catenin and suggests that PR55β may be a target for the clinical treatment of AdCC.
Collapse
Affiliation(s)
- Kana Ishibashi
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kotaro Ishii
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Goro Sugiyama
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Y U Kamata
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Azusa Suzuki
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Wataru Kumamaru
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yukiko Ohyama
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Nakano
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Tomoki Sumida
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Tomohiro Yamada
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yoshihide Mori
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
8
|
Álvarez-Fernández M, Sanz-Flores M, Sanz-Castillo B, Salazar-Roa M, Partida D, Zapatero-Solana E, Ali HR, Manchado E, Lowe S, VanArsdale T, Shields D, Caldas C, Quintela-Fandino M, Malumbres M. Therapeutic relevance of the PP2A-B55 inhibitory kinase MASTL/Greatwall in breast cancer. Cell Death Differ 2018; 25:828-840. [PMID: 29229993 PMCID: PMC5943447 DOI: 10.1038/s41418-017-0024-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/13/2017] [Accepted: 10/12/2017] [Indexed: 01/17/2023] Open
Abstract
PP2A is a major tumor suppressor whose inactivation is frequently found in a wide spectrum of human tumors. In particular, deletion or epigenetic silencing of genes encoding the B55 family of PP2A regulatory subunits is a common feature of breast cancer cells. A key player in the regulation of PP2A/B55 phosphatase complexes is the cell cycle kinase MASTL (also known as Greatwall). During cell division, inhibition of PP2A-B55 by MASTL is required to maintain the mitotic state, whereas inactivation of MASTL and PP2A reactivation is required for mitotic exit. Despite its critical role in cell cycle progression in multiple organisms, its relevance as a therapeutic target in human cancer and its dependence of PP2A activity is mostly unknown. Here we show that MASTL overexpression predicts poor survival and shows prognostic value in breast cancer patients. MASTL knockdown or knockout using RNA interference or CRISPR/Cas9 systems impairs proliferation of a subset of breast cancer cells. The proliferative function of MASTL in these tumor cells requires its kinase activity and the presence of PP2A-B55 complexes. By using a new inducible CRISPR/Cas9 system in breast cancer cells, we show that genetic ablation of MASTL displays a significant therapeutic effect in vivo. All together, these data suggest that the PP2A inhibitory kinase MASTL may have both prognostic and therapeutic value in human breast cancer.
Collapse
Affiliation(s)
| | - María Sanz-Flores
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Belén Sanz-Castillo
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - María Salazar-Roa
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - David Partida
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - H Raza Ali
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Scott Lowe
- Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Todd VanArsdale
- Oncology R&D Group, Pfizer Worldwide Research & Development, Pfizer Inc., New York, USA
| | - David Shields
- Oncology R&D Group, Pfizer Worldwide Research & Development, Pfizer Inc., New York, USA
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Marcos Malumbres
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
9
|
Bossé Y, Amos CI. A Decade of GWAS Results in Lung Cancer. Cancer Epidemiol Biomarkers Prev 2018; 27:363-379. [PMID: 28615365 PMCID: PMC6464125 DOI: 10.1158/1055-9965.epi-16-0794] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/06/2016] [Accepted: 04/20/2017] [Indexed: 01/03/2023] Open
Abstract
Genome-wide association studies (GWAS) were successful to identify genetic factors robustly associated with lung cancer. This review aims to synthesize the literature in this field and accelerate the translation of GWAS discoveries into results that are closer to clinical applications. A chronologic presentation of published GWAS on lung cancer susceptibility, survival, and response to treatment is presented. The most important results are tabulated to provide a concise overview in one read. GWAS have reported 45 lung cancer susceptibility loci with varying strength of evidence and highlighted suspected causal genes at each locus. Some genetic risk loci have been refined to more homogeneous subgroups of lung cancer patients in terms of histologic subtypes, smoking status, gender, and ethnicity. Overall, these discoveries are an important step for future development of new therapeutic targets and biomarkers to personalize and improve the quality of care for patients. GWAS results are on the edge of offering new tools for targeted screening in high-risk individuals, but more research is needed if GWAS are to pay off the investment. Complementary genomic datasets and functional studies are needed to refine the underlying molecular mechanisms of lung cancer preliminarily revealed by GWAS and reach results that are medically actionable. Cancer Epidemiol Biomarkers Prev; 27(4); 363-79. ©2018 AACRSee all articles in this CEBP Focus section, "Genome-Wide Association Studies in Cancer."
Collapse
Affiliation(s)
- Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada.
- Department of Molecular Medicine, Laval University, Quebec, Canada
| | - Christopher I Amos
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
10
|
Kauko O, Westermarck J. Non-genomic mechanisms of protein phosphatase 2A (PP2A) regulation in cancer. Int J Biochem Cell Biol 2018; 96:157-164. [DOI: 10.1016/j.biocel.2018.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 12/03/2017] [Accepted: 01/09/2018] [Indexed: 02/08/2023]
|
11
|
Yang Y, Zhang Y, Qu X, Xia J, Li D, Li X, Wang Y, He Z, Li S, Zhou Y, Xie L, Yang Z. Identification of differentially expressed genes in the development of osteosarcoma using RNA-seq. Oncotarget 2018; 7:87194-87205. [PMID: 27888627 PMCID: PMC5349981 DOI: 10.18632/oncotarget.13554] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/07/2016] [Indexed: 12/26/2022] Open
Abstract
Objective Osteosarcoma (OS) is a malignant bone tumor with high morbidity in young adults and adolescents. This study aimed to discover potential early diagnosis biomarkers in OS. Results In total, 111 differentially expressed genes (DEGs) were identified in primary OS compared with normal controls and 235 DEGs were identified in metastatic OS compared with primary OS. AURKB and PPP2R2B were the significantly up-regulated and down-regulated hub proteins, respectively, in the PPI protein-protein network (PPI) network of primary OS. ISG15 and BTRC were the significantly up-regulated and down-regulated hub proteins, respectively, in the network of metastatic OS. The DEGs in metastatic OS compared with primary OS were significantly enriched in the arachidonic acid metabolism, malaria, and chemokine signaling pathways. Finally, we employed quantitative real-time polymerase chain reaction (qRT-PCR) to validate the expression levels of candidate DEGs and the results indicated that our bioinformatics approach was acceptable. Materials and Methods The mRNA expression profiling of 20 subjects was obtained through high-throughput RNA-sequencing. DEGs were identified between primary OS and normal Control, and between primary OS and metastatic OS, respectively. Functional annotation and PPI networks were used to obtain insights into the functions of DEGs. qRT-PCR was performed to detect the expression levels of dysregulated genes in OS. Conclusions Our work might provide groundwork for the further exploration of tumorigenesis and metastasis mechanisms of OS.
Collapse
Affiliation(s)
- Yihao Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Ya Zhang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Xin Qu
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Junfeng Xia
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Dongqi Li
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Xiaojuan Li
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Yu Wang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Zewei He
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Su Li
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Yonghong Zhou
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Lin Xie
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| |
Collapse
|
12
|
Lashine YA, Salah S, Aboelenein HR, Abdelaziz AI. Correcting the expression of miRNA-155 represses PP2Ac and enhances the release of IL-2 in PBMCs of juvenile SLE patients. Lupus 2014; 24:240-7. [DOI: 10.1177/0961203314552117] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
MicroRNA-155 is involved in immune cell, differentiation, maturation and function. MiR-155 showed variable dysregulated expression in autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) patients. MiR-155 was previously confirmed to directly target CAMP response element binding protein (CREB), which was previously identified as a positive regulator of protein phosphatase 2A (PP2A). PP2A is a key negative regulator of interleukin-2, which is an important immune modulator and was previously shown to be decreased in SLE. In this study we aimed at investigating the regulation of PP2A by miR-155 and hence its role in juvenile SLE disease pathogenesis. MiR-155 showed significant downregulation in PBMCs from juvenile SLE and juvenile familial Mediterranean fever (FMF) and significant upregulation in PBMCs from juvenile idiopathic arthritis (JIA) patients. In SLE, miR-155 expression was negatively correlated with Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) score and proteinuria and was positively correlated with white blood cell (WBC) count. The mRNA of the catalytic subunit of PP2A (PP2Ac) showed significant upregulation in PBMCs from SLE and FMF but not in JIA patients. Additionally, the relative expression of PP2Ac mRNA was positively correlated with SLEDAI score. Forced expression of miR-155 led to decreased relative expression of PP2Ac mRNA and increased IL-2 release in cultured-stimulated PBMCs. This study suggests for the first time the possible role of an miR-155-PP2Ac loop in regulating IL-2 release and identifies miR-155 as a potential therapeutic target in juvenile SLE disease through relieving IL-2 from the inhibitory role of PP2A.
Collapse
Affiliation(s)
- Y A Lashine
- The Molecular Pathology Research Group, the German University in Cairo, Cairo, Egypt
| | - S Salah
- Abou el Reesh Pediatric Hospital, Kasr Al Aini, Cairo University, Cairo, Egypt
| | - H R Aboelenein
- The Molecular Pathology Research Group, the German University in Cairo, Cairo, Egypt
| | - A I Abdelaziz
- The Molecular Pathology Research Group, the German University in Cairo, Cairo, Egypt
| |
Collapse
|
13
|
Yang R, Yang L, Qiu F, Zhang L, Wang H, Yang X, Deng J, Fang W, Zhou Y, Lu J. Functional genetic polymorphisms in PP2A subunit genes confer increased risks of lung cancer in southern and eastern Chinese. PLoS One 2013; 8:e77285. [PMID: 24204789 PMCID: PMC3812212 DOI: 10.1371/journal.pone.0077285] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 09/02/2013] [Indexed: 12/28/2022] Open
Abstract
Protein phosphatase-2A (PP2A) is one of the major cellular serine-threonine phosphatases and functions as a tumor suppressor that negatively regulates the activity of some oncogenic kinases. Recent studies have reported that PP2A expression was suppressed during lung carcinogenesis, we there hypothesized that the single nucleotide polymorphisms (SNPs) in PP2A subunit genes may affect PP2A function and thus contribute to lung cancer susceptibility. In a two-stage case-control study with a total of 1559 lung cancer patients and 1679 controls, we genotyped eight putative functional SNPs and one identified functional SNP (i.e., rs11453459) in seven major PP2A subunits (i.e., PPP2R1A, PPP2R1B, PPP2CA, PPP2R2A, PPP2R2B, PPP2R5C, PPP2R5E) in southern and eastern Chinese. We found that rs11453459G (-G/GG) variant genotypes of PPP2R1A and the rs1255722AA variant genotype of PPP2R5E conferred increased risks of lung cancer (rs11453459, -G/GG vs. –: OR = 1.31, 95% CI = 1.13–1.51; rs1255722, AA vs. AG/GG: OR = 1.27, 95% CI = 1.07–1.51). After combined the two variants, the number of the adverse genotypes was positively associated with lung cancer risk in a dose-response manner (Ptrend = 5.63×10−6). Further functional assay showed that lung cancer tissues carrying rs1255722AA variant genotype had a significantly lower mRNA level of PPP2R5E compared with tissues carrying GG/GA genotypes. However, such effect was not observed for the other SNPs and other combinations. Our findings suggested that the two functional variants in PPP2R1A and PPP2R5E and their combination are associated with lung cancer risk in Chinese, which may be valuable biomarkers to predict risk of lung cancer.
Collapse
Affiliation(s)
- Rongrong Yang
- The Institute for Chemical Carcinogenesis, The State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mehta MS, Dolfi SC, Bronfenbrener R, Bilal E, Chen C, Moore D, Lin Y, Rahim H, Aisner S, Kersellius RD, Teh J, Chen S, Toppmeyer DL, Medina DJ, Ganesan S, Vazquez A, Hirshfield KM. Metabotropic glutamate receptor 1 expression and its polymorphic variants associate with breast cancer phenotypes. PLoS One 2013; 8:e69851. [PMID: 23922822 PMCID: PMC3724883 DOI: 10.1371/journal.pone.0069851] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/12/2013] [Indexed: 12/22/2022] Open
Abstract
Several epidemiological studies have suggested a link between melanoma and breast cancer. Metabotropic glutamate receptor 1 (GRM1), which is involved in many cellular processes including proliferation and differentiation, has been implicated in melanomagenesis, with ectopic expression of GRM1 causing malignant transformation of melanocytes. This study was undertaken to evaluate GRM1 expression and polymorphic variants in GRM1 for associations with breast cancer phenotypes. Three single nucleotide polymorphisms (SNPs) in GRM1 were evaluated for associations with breast cancer clinicopathologic variables. GRM1 expression was evaluated in human normal and cancerous breast tissue and for in vitro response to hormonal manipulation. Genotyping was performed on genomic DNA from over 1,000 breast cancer patients. Rs6923492 and rs362962 genotypes associated with age at diagnosis that was highly dependent upon the breast cancer molecular phenotype. The rs362962 TT genotype also associated with risk of estrogen receptor or progesterone receptor positive breast cancer. In vitro analysis showed increased GRM1 expression in breast cancer cells treated with estrogen or the combination of estrogen and progesterone, but reduced GRM1 expression with tamoxifen treatment. Evaluation of GRM1 expression in human breast tumor specimens demonstrated significant correlations between GRM1 staining with tissue type and molecular features. Furthermore, analysis of gene expression data from primary breast tumors showed that high GRM1 expression correlated with a shorter distant metastasis-free survival as compared to low GRM1 expression in tamoxifen-treated patients. Additionally, induced knockdown of GRM1 in an estrogen receptor positive breast cancer cell line correlated with reduced cell proliferation. Taken together, these findings suggest a functional role for GRM1 in breast cancer.
Collapse
Affiliation(s)
- Madhura S. Mehta
- Division of Medical Oncology, Department of Medicine, The Cancer Institute of New Jersey/University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Sonia C. Dolfi
- Division of Medical Oncology, Department of Medicine, The Cancer Institute of New Jersey/University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Roman Bronfenbrener
- Division of Medical Oncology, Department of Medicine, The Cancer Institute of New Jersey/University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Erhan Bilal
- Division of Medical Oncology, Department of Medicine, The Cancer Institute of New Jersey/University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Chunxia Chen
- Department of Biometrics, The Cancer Institute of New Jersey/University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Dirk Moore
- Department of Biometrics, The Cancer Institute of New Jersey/University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Yong Lin
- Department of Biometrics, The Cancer Institute of New Jersey/University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Hussein Rahim
- Division of Medical Oncology, Department of Medicine, The Cancer Institute of New Jersey/University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Seena Aisner
- Department of Pathology and Laboratory Medicine, University of Medicine and Dentistry of New Jersey - New Jersey Medical School, Newark, New Jersey, United States of America
| | - Romona D. Kersellius
- Division of Medical Oncology, Department of Medicine, The Cancer Institute of New Jersey/University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Jessica Teh
- Department of Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Suzie Chen
- Department of Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Deborah L. Toppmeyer
- Division of Medical Oncology, Department of Medicine, The Cancer Institute of New Jersey/University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Dan J. Medina
- Division of Medical Oncology, Department of Medicine, The Cancer Institute of New Jersey/University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Shridar Ganesan
- Division of Medical Oncology, Department of Medicine, The Cancer Institute of New Jersey/University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Alexei Vazquez
- Department of Radiation Oncology, The Cancer Institute of New Jersey/University of Medicine and Dentistry of New Jersey- Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Kim M. Hirshfield
- Division of Medical Oncology, Department of Medicine, The Cancer Institute of New Jersey/University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
15
|
Jamshidi M, Schmidt MK, Dörk T, Garcia-Closas M, Heikkinen T, Cornelissen S, van den Broek AJ, Schürmann P, Meyer A, Park-Simon TW, Figueroa J, Sherman M, Lissowska J, Keong GTH, Irwanto A, Laakso M, Hautaniemi S, Aittomäki K, Blomqvist C, Liu J, Nevalinna H. Germline variation in TP53 regulatory network genes associates with breast cancer survival and treatment outcome. Int J Cancer 2013; 132:2044-55. [PMID: 23034890 PMCID: PMC4159753 DOI: 10.1002/ijc.27884] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/31/2012] [Indexed: 12/12/2022]
Abstract
Germline variation in the TP53 network genes PRKAG2, PPP2R2B, CCNG1, PIAS1 and YWHAQ was previously suggested to have an impact on drug response in vitro. Here, we investigated the effect on breast cancer survival of germline variation in these genes in 925 Finnish breast cancer patients and further analyzed five single nucleotide polymorphisms (SNPs) in PRKAG2 (rs1029946, rs4726050, rs6464153, rs7789699) and PPP2R2B (rs10477313) for 10-year survival in breast cancer patients, interaction with TP53 R72P and MDM2-SNP309, outcome after specific adjuvant therapy and correlation to tumor characteristics in 4,701 invasive cases from four data sets. We found evidence for carriers of PRKAG2-rs1029946 and PRKAG2-rs4726050 having improved survival in the pooled data (HR 0.53, 95% CI 0.3-0.9; p = 0.023 for homozygous carriers of the rare G-allele and HR 0.85, 95% CI 0.7-0.9; p = 0.049 for carriers of the rare G allele, respectively). PRKAG2-rs4726050 showed a significant interaction with MDM2-SNP309, with PRKAG2-rs4726050 rare G-allele having a dose-dependent effect for better breast cancer survival confined only to MDM2 SNP309 rare G-allele carriers (HR 0.45, 95% CI 0.2-0.7; p = 0.001). This interaction also emerged as an independent predictor of better survival (p = 0.047). PPP2R2B-rs10477313 rare A-allele was found to predict better survival (HR 0.82, 95% CI 0.6-0.9; p = 0.018), especially after hormonal therapy (HR 0.66, 95% CI 0.5-0.9; p = 0.048). These findings warrant further studies and suggest that genetic markers in TP53 network genes such as PRKAG2 and PPP2R2B might affect prognosis and treatment outcome in breast cancer patients.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/genetics
- Adult
- Antineoplastic Agents, Hormonal/therapeutic use
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/mortality
- Carcinoma, Ductal, Breast/drug therapy
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Lobular/drug therapy
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/mortality
- Female
- Gene Regulatory Networks/genetics
- Genotype
- Germ-Line Mutation/genetics
- Humans
- Middle Aged
- Neoplasm Grading
- Neoplasm Invasiveness
- Neoplasm Metastasis
- Nerve Tissue Proteins/genetics
- Polymorphism, Single Nucleotide/genetics
- Prognosis
- Protein Phosphatase 2/genetics
- Proto-Oncogene Proteins c-mdm2/genetics
- RNA, Messenger/genetics
- RNA, Neoplasm/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Rate
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Maral Jamshidi
- Department of Obstetrics and Gynecology, Biomedicum Helsinki, University of Helsinki and Helsinki University Central Hospital, P.O. Box 700, 00029 Helsinki, Finland
| | - Marjanka K Schmidt
- Department of Molecular Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Thilo Dörk
- Clinics of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Montserrat Garcia-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Department of Health and Human Services, Bethesda, Maryland
- Division of Genetics and Epidemiology, Institute of Cancer Research and Breakthrough Breast Cancer Research Centre, London, UK
| | - Tuomas Heikkinen
- Department of Obstetrics and Gynecology, Biomedicum Helsinki, University of Helsinki and Helsinki University Central Hospital, P.O. Box 700, 00029 Helsinki, Finland
| | - Sten Cornelissen
- Department of Molecular Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Alexandra J van den Broek
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Peter Schürmann
- Clinics of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Andreas Meyer
- Clinics of Radiation Oncology, Hannover Medical School, Hannover, Germany
| | | | - Jonine Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892
| | - Mark Sherman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | | | - Astrid Irwanto
- Human Genetics Division, Genome Institute of Singapore, Singapore
| | - Marko Laakso
- Computational Systems Biology Laboratory, Genome-Scale Biology Research Program, Institute of Biomedicine, University of Helsinki, Finland
| | - Sampsa Hautaniemi
- Computational Systems Biology Laboratory, Genome-Scale Biology Research Program, Institute of Biomedicine, University of Helsinki, Finland
| | - Kristiina Aittomäki
- Department of Clinical Genetics, Helsinki University Central Hospital, Helsinki, Finland
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland
| | - Jianjun Liu
- Human Genetics Division, Genome Institute of Singapore, Singapore
| | - Heli Nevalinna
- Department of Obstetrics and Gynecology, Biomedicum Helsinki, University of Helsinki and Helsinki University Central Hospital, P.O. Box 700, 00029 Helsinki, Finland
| |
Collapse
|
16
|
Identification of unbalanced genome copy number abnormalities in patients with multiple myeloma by single-nucleotide polymorphism genotyping microarray analysis. Int J Hematol 2012; 96:492-500. [PMID: 22972171 DOI: 10.1007/s12185-012-1171-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/24/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
Abstract
Single-nucleotide polymorphism genotyping microarray (SNP array) analysis provides detailed information on chromosomal copy number aberrations. To obtain detailed information on genomic abnormalities related to pathogenesis or prognosis of multiple myeloma (MM), we performed 250K SNP array analysis in 39 MM patients and 11 cell lines. We identified an accumulation of deletions and uniparental disomies at 22q12.1. Among the hyperdiploid MM cases, chromosomal imbalance at this locus was associated with poor prognosis. On sequencing, we also found a mutation in the seizure-related 6 homolog (mouse)-like (SEZ6L) gene located at ch.22q12.1 in an MM cell line, NOP1. We further found isolated deletions in 17 genes, five of which are known tumor suppressor genes. Of these, deletion of protein tyrosine phosphatase, receptor type D (PTPRD) was found in three samples, including two patients. Consistent with previous reports, non-hyperdiploid MM, deletion of 13q (del13q) and gain of 1q in non-hyperdiploid MMs were predictive of poor prognosis (p = 0.039, p = 0.049, and p = 0.013, respectively). However, our analysis revealed that unless accompanied by gain of 1q, the prognosis of non-hyperdiploid MM was as good as that of hyperdiploid MM. Thus, SNP array analysis provides significant information useful to understanding the pathogenesis and prognosis of MM.
Collapse
|
17
|
Identification and functional analysis of variant haplotypes in the 5'-flanking region of protein phosphatase 2A-Bδ gene. PLoS One 2012; 7:e35524. [PMID: 22539979 PMCID: PMC3335092 DOI: 10.1371/journal.pone.0035524] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 03/19/2012] [Indexed: 12/31/2022] Open
Abstract
Serine-threonine protein phosphatase 2A (PP2A) is a trimeric holoenzyme that plays an integral role in the regulation of cell growth, differentiation, and apoptosis. The substrate specificity and (sub)cellular localization of the PP2A holoenzymes are highly regulated by interaction with a family of regulatory B subunits (PP2A-Bs). The regulatory subunit PP2A-B/PR55δ (PP2A-Bδ) is involving in the dephosphorylation of PP2A substrates and is crucial for controlling entry into and exit from mitosis. The molecular mechanisms involved in the regulation of expression of PP2A-Bδ gene (PPP2R2D) remain largely unknown. To explore genetic variations in the 5′-flanking region of PPP2R2D gene as well as their frequent haplotypes in the Han Chinese population and determine whether such variations have an impact on transcriptional activity, DNA samples were collected from 70 healthy Chinese donors and sequenced for identifying genetic variants in the 5′-flanking region of PPP2R2D. Four genetic variants were identified in the 1836 bp 5′-flanking region of PPP2R2D. Linkage disequilibrium (LD) patterns and haplotype profiles were constructed for the genetic variants. Using serially truncated human PPP2R2D promoter luciferase constructs, we found that a 601 bp (−540 nt to +61 nt) fragment constitutes the core promoter region. The subcloning of individual 5′-flanking fragment revealed the existence of three haplotypes in the distal promoter of PPP2R2D. The luciferase reporter assay showed that different haplotypes exhibited distinct promoter activities. The EMSA revealed that the −462 G>A variant influences DNA-protein interactions involving the nuclear factor 1 (NF1). In vitro reporter gene assay indicated that cotransfection of NF1/B expression plasmid could positively regulate the activity of PPP2R2D proximal promoter. Introduction of exogenous NF1/B expression plasmid further confirmed that the NF1 involves in the regulation of PPP2R2D gene expression. Our findings suggest that functional genetic variants and their haplotypes in the 5′-flanking region of PPP2R2D are critical for transcriptional regulation of PP2A-Bδ.
Collapse
|
18
|
Liang J, Li T, Zhang YL, Guo ZL, Xu LH. Effect of microcystin-LR on protein phosphatase 2A and its function in human amniotic epithelial cells. J Zhejiang Univ Sci B 2012; 12:951-60. [PMID: 22135143 DOI: 10.1631/jzus.b1100121] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Due to their toxicity, the increased distribution of microcystins (MCs) has become an important worldwide problem. MCs have been recognized as inhibitors of protein phosphatase 2A (PP2A) through their binding to the PP2A catalytic subunit. However, the exact mechanism of MC toxicity has not been elucidated, especially concerning the cellular response and its autoregulation. To further dissect the role of PP2A in MC-induced toxicity, the present study was undertaken to determine the response of PP2A in human amniotic epithelial (FL) cells treated with microcystin-LR (MCLR), one of the MC congeners. The results show that a low-dose treatment of MCLR in FL cells for 6 h induced an increase in PP2A activity, and a high-dose treatment of MCLR for 24 h decreased the activity of PP2A, as expected. The increased mRNA and protein levels of the PP2A C subunit may explain the increased activity of PP2A. Furthermore, MCLR altered microtubule post-translational modifications through PP2A. These results further clarify the underlying mechanism how MCLR affects PP2A and may be helpful for elucidating the complex toxicity of MCLR.
Collapse
Affiliation(s)
- Jing Liang
- Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|