1
|
Levrier C, Rockstroh A, Gabrielli B, Kavallaris M, Lehman M, Davis RA, Sadowski MC, Nelson CC. Discovery of thalicthuberine as a novel antimitotic agent from nature that disrupts microtubule dynamics and induces apoptosis in prostate cancer cells. Cell Cycle 2019; 17:652-668. [PMID: 28749250 PMCID: PMC5976206 DOI: 10.1080/15384101.2017.1356512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We report for the first time the mechanism of action of the natural product thalicthuberine (TH) in prostate and cervical cancer cells. TH induced a strong accumulation of LNCaP cells in mitosis, severe mitotic spindle defects, and asymmetric cell divisions, ultimately leading to mitotic catastrophe accompanied by cell death through apoptosis. However, unlike microtubule-binding drugs (vinblastine and paclitaxel), TH did not directly inhibit tubulin polymerization when tested in a cell-free system, whereas it reduced cellular microtubule polymer mass in LNCaP cells. This suggests that TH indirectly targets microtubule dynamics through inhibition of a critical regulator or tubulin-associated protein. Furthermore, TH is not a major substrate for P-glycoprotein (Pgp), which is responsible for multidrug resistance in numerous cancers, providing a rationale to further study TH in cancers with Pgp-mediated treatment resistance. The identification of TH's molecular target in future studies will be of great value to the development of TH as potential treatment of multidrug-resistant tumors.
Collapse
Affiliation(s)
- Claire Levrier
- a Australian Prostate Cancer Research Centre-Queensland , School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Princess Alexandra Hospital, Translational Research Institute , Brisbane , QLD , Australia.,b Griffith Institute for Drug Discovery, Griffith University , Brisbane , QLD , Australia
| | - Anja Rockstroh
- a Australian Prostate Cancer Research Centre-Queensland , School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Princess Alexandra Hospital, Translational Research Institute , Brisbane , QLD , Australia
| | - Brian Gabrielli
- c The University of Queensland Diamantina Institute; Translational Research Institute ; Brisbane , QLD , Australia
| | - Maria Kavallaris
- d Tumour Biology and Targeting Program , Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia , Sydney , NSW , Australia.,e ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine , UNSW Australia , Sydney , NSW , Australia
| | - Melanie Lehman
- a Australian Prostate Cancer Research Centre-Queensland , School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Princess Alexandra Hospital, Translational Research Institute , Brisbane , QLD , Australia.,f Vancouver Prostate Centre, Department of Urologic Sciences , University of British Columbia , Vancouver , Canada
| | - Rohan A Davis
- a Australian Prostate Cancer Research Centre-Queensland , School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Princess Alexandra Hospital, Translational Research Institute , Brisbane , QLD , Australia.,b Griffith Institute for Drug Discovery, Griffith University , Brisbane , QLD , Australia
| | - Martin C Sadowski
- a Australian Prostate Cancer Research Centre-Queensland , School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Princess Alexandra Hospital, Translational Research Institute , Brisbane , QLD , Australia
| | - Colleen C Nelson
- a Australian Prostate Cancer Research Centre-Queensland , School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Princess Alexandra Hospital, Translational Research Institute , Brisbane , QLD , Australia
| |
Collapse
|
2
|
Li Z, Ma L, Wu C, Meng T, Ma L, Zheng W, Yu Y, Chen Q, Yang J, Shen J. The Structure of MT189-Tubulin Complex Provides Insights into Drug Design. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180816666181122122655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background:
Drugs that interfere with microtubule dynamics are used widely in cancer
chemotherapy. Microtubules are composed of αβ-tubulin heterodimers, and the colchicine binding
site of tubulin is an important pocket for designing tubulin polymerization inhibitors. We have
previously designed and synthesized a series of colchicine binding site inhibitors (CBSIs). However,
these compounds showed no anticancer activity in vivo. Then, we have used a deconstruction
approach to obtain a new derivative MT189, which showed in vivo anticancer activity.
Methods:
We crystallized a protein complex including two tubulins, one stathmin-like domain of
RB3 and one tubulin tyrosine ligase, and soaked MT189 into the crystals. We collected the
diffraction data and determined the tubulin-MT189 structure to 2.8 Å.
Results:
Here, we report the crystal structure of tubulin complexed with MT189, elucidate how the
small-molecular agent binds to tubulin and inhibits microtubule assembly, and explain previous
results of the structure-activity-relationship studies.
Conclusion:
The tubulin-MT189 complex structure reveals the interactions between this agent and
tubulin and provides insights into the design of new derivatives targeting the colchicine binding site.
Collapse
Affiliation(s)
- Zhongping Li
- Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Lingling Ma
- Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Chengyong Wu
- Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Tao Meng
- Division of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lanping Ma
- Division of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenyue Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yamei Yu
- Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Qiang Chen
- Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Jinliang Yang
- Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Jingkang Shen
- Division of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
3
|
Li Y, Huang JH, Wang JL, Song GT, Tang DY, Yao F, Lin HK, Yan W, Li HY, Xu ZG, Chen ZZ. Diversity-Oriented Synthesis of Imidazo-Dipyridines with Anticancer Activity via the Groebke–Blackburn–Bienaymé and TBAB-Mediated Cascade Reaction in One Pot. J Org Chem 2019; 84:12632-12638. [DOI: 10.1021/acs.joc.9b01385] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yong Li
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Jiu-Hong Huang
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Juan-Li Wang
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Gui-Ting Song
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Dian-Yong Tang
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Fang Yao
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Hui-kuan Lin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Wei Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Hong-yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Zhi-Gang Xu
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Zhong-Zhu Chen
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| |
Collapse
|
4
|
Galal AMF, Soltan MM, Ahmed ER, Hanna AG. Synthesis and biological evaluation of novel 5-chloro- N-(4-sulfamoylbenzyl) salicylamide derivatives as tubulin polymerization inhibitors. MEDCHEMCOMM 2018; 9:1511-1528. [PMID: 30288225 PMCID: PMC6148682 DOI: 10.1039/c8md00214b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/15/2018] [Indexed: 12/28/2022]
Abstract
A novel series of sulfonamide derivatives, coupled with a salicylamide scaffold, was designed and synthesized. The structures of the synthesized compounds were established using 1H NMR, 13C NMR and high-resolution mass spectroscopy. The synthesized compounds were tested in vitro against five types of human cell lines. Two were breast adenocarcinoma, including the hormone-dependent MCF-7 and the hormone-independent MDA-MB-231. The others were the colorectal adenocarcinoma Caco-2, the carcinoma HCT-116 and the immortalized retinal-pigmented epithelium, hTERT-RPE1. Nine sulfonamides were able to inhibit the growth of the four tested cancer cells. Compound 33 was the most active against the selected colon cancer (Caco-2 and HCT-116) subtypes, while compound 24 showed the best efficacy against the examined breast cancer (MCF-7 and MDA-MB-231) cells. The selectivity index introduced compounds 24 and 33 as having the best selectivity among the breast and colon subtypes, respectively. In vitro tubulin polymerization experiments and flow cytometric assays showed that compounds 24 and 33 led to cell cycle arrest at the G2/M phase in a dose-dependent manner by effectively inhibiting tubulin polymerization. Furthermore, the results of the molecular docking studies indicate that this class of compounds can bind to the colchicine-binding site of tubulin.
Collapse
Affiliation(s)
- Alaaeldin M F Galal
- Chemistry of Natural Compounds Department , Pharmaceutical and Drug Industries Research Division , National Research Centre , 33 El Bohouth St. (former El Tahir St.) , Dokki , Giza , 12622 Egypt .
| | - Maha M Soltan
- Biology unit , Central Laboratory for Pharmaceutical and Drug Industries Research Division , Chemistry of Medicinal Plants Department , Pharmaceutical and Drug Industries Research Division , National Research Centre , 33 El Bohouth St. 33 , Dokki , Giza 12622 , Egypt
| | - Esam R Ahmed
- Confirmatory Diagnostic unit , Vacsera , Giza , Egypt
| | - Atef G Hanna
- Chemistry of Natural Compounds Department , Pharmaceutical and Drug Industries Research Division , National Research Centre , 33 El Bohouth St. (former El Tahir St.) , Dokki , Giza , 12622 Egypt .
| |
Collapse
|
5
|
He JX, Wang M, Huan XJ, Chen CH, Song SS, Wang YQ, Liao XM, Tan C, He Q, Tong LJ, Wang YT, Li XH, Su Y, Shen YY, Sun YM, Yang XY, Chen Y, Gao ZW, Chen XY, Xiong B, Lu XL, Ding J, Yang CH, Miao ZH. Novel PARP1/2 inhibitor mefuparib hydrochloride elicits potent in vitro and in vivo anticancer activity, characteristic of high tissue distribution. Oncotarget 2018; 8:4156-4168. [PMID: 27926532 PMCID: PMC5354820 DOI: 10.18632/oncotarget.13749] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 11/23/2016] [Indexed: 12/15/2022] Open
Abstract
The approval of poly(ADP-ribose) polymerase (PARP) inhibitor AZD2281 in 2014 marked the successful establishment of the therapeutic strategy targeting homologous recombination repair defects of cancers in the clinic. However, AZD2281 has poor water solubility, low tissue distribution and relatively weak in vivo anticancer activity, which appears to become limiting factors for its clinical use. In this study, we found that mefuparib hydrochloride (MPH) was a potent PARP inhibitor, possessing prominent in vitro and in vivo anticancer activity. Notably, MPH displayed high water solubility (> 35 mg/ml) and potent PARP1/2 inhibition in a substrate-competitive manner. It reduced poly(ADP-ribose) (PAR) formation, enhanced γH2AX levels, induced G2/M arrest and subsequent apoptosis in homologous recombination repair (HR)-deficient cells. Proof-of-concept studies confirmed the MPH-caused synthetic lethality. MPH showed potent in vitro and in vivo proliferation and growth inhibition against HR-deficient cancer cells and synergistic sensitization of HR-proficient xenografts to the anticancer drug temozolomide. A good relationship between the anticancer activity and the PARP inhibition of MPH suggested that PAR formation and γH2AX accumulation could serve as its pharmacodynamic biomarkers. Its high bioavailability (40%~100%) and high tissue distribution in both monkeys and rats were its most important pharmacokinetic features. Its average concentrations were 33-fold higher in the tissues than in the plasma in rats. Our work supports the further clinical development of MPH as a novel PARP1/2 inhibitor for cancer therapy.
Collapse
Affiliation(s)
- Jin-Xue He
- Division of Anti-Tumor Pharmacology and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Wang
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia-Juan Huan
- Division of Anti-Tumor Pharmacology and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan-Huizi Chen
- Division of Anti-Tumor Pharmacology and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan-Shan Song
- Division of Anti-Tumor Pharmacology and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Qing Wang
- Division of Anti-Tumor Pharmacology and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Mei Liao
- Division of Anti-Tumor Pharmacology and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cun Tan
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian He
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin-Jiang Tong
- Division of Anti-Tumor Pharmacology and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Ting Wang
- Division of Anti-Tumor Pharmacology and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Hua Li
- Division of Anti-Tumor Pharmacology and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Su
- Division of Anti-Tumor Pharmacology and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Yan Shen
- Division of Anti-Tumor Pharmacology and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Ming Sun
- Division of Anti-Tumor Pharmacology and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Ying Yang
- Division of Anti-Tumor Pharmacology and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Division of Anti-Tumor Pharmacology and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Wei Gao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiao-Yan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bing Xiong
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiu-Lian Lu
- Cisen Pharmaceutical Co., LTD, Jining 272073, Shandong, China
| | - Jian Ding
- Division of Anti-Tumor Pharmacology and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-Hao Yang
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ze-Hong Miao
- Division of Anti-Tumor Pharmacology and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Xu L, Wang W, Meng T, Ma LP, Tong LJ, Shen JK, Wang YQ, Miao ZH. New microtubulin inhibitor MT189 suppresses angiogenesis via the JNK-VEGF/VEGFR2 signaling axis. Cancer Lett 2017; 416:57-65. [PMID: 29248713 DOI: 10.1016/j.canlet.2017.12.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/17/2017] [Accepted: 12/12/2017] [Indexed: 12/28/2022]
Abstract
The microtubulin inhibitor MT189 possesses anticancer activity and has been shown to overcome multidrug resistance. Here, we report that MT189 also inhibits angiogenesis. MT189 inhibited the proliferation, migration and differentiation of endothelial cells, with or without VEGF stimulation, and suppressed microvessel formation ex vivo and in vivo. MT189 reduced VEGF expression and secretion in both tumor and endothelial cells, under either hypoxic or normoxic conditions. The activation of VEGFR2 and downstream Src was thus abrogated in the MT189-treated endothelial cells. MT189 subsequently stabilized endothelial cell-cell junctions consist of VE-cadherin, β-catenin, vinculin, and actin. MT189 also disrupted endothelial cell-matrix junctions by inhibiting the turnover of focal adhesions containing FAK, paxillin, vinculin, and actin. Inhibition of JNK reversed MT189-mediated inhibition of endothelial migration and differentiation, JNK activation, the reduction of VEGF expression and secretion, and the decrease of Src and FAK phosphorylation. These results indicate that MT189 suppresses angiogenesis by reducing endothelial proliferation, migration, and differentiation via the JNK-VEGF/VEGFR2 signaling axis. Together with our previous report showing that MT189 exhibited anticancer activity via the JNK-MCL-1 pathway, these new findings further support MT189-based drug development for cancer therapy.
Collapse
Affiliation(s)
- Lin Xu
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China
| | - Wei Wang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tao Meng
- Division of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lan-Ping Ma
- Division of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lin-Jiang Tong
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing-Kang Shen
- Division of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ying-Qing Wang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Ze-Hong Miao
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
7
|
The BET-Bromodomain Inhibitor JQ1 synergized ABT-263 against colorectal cancer cells through suppressing c-Myc-induced miR-1271-5p expression. Biomed Pharmacother 2017; 95:1574-1579. [PMID: 28950657 DOI: 10.1016/j.biopha.2017.09.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 01/27/2023] Open
Abstract
Colorectal cancer (CRC) cells undergo apoptosis in the presence of the small-molecule inhibitor ABT-263 by up-regulating antiapoptotic Bcl-2 family members. However, the resistance to ABT-263 gradually developed in most solid tumors due to its low affinity to Mcl-1. Here, we found the BET-Bromodomain inhibitor JQ1, when combined with ABT-263, synergistically reduced Mcl-1 protein level, induced apoptosis, and decreased cell viability in the CRC HCT-15, HT-29 and SW620 cells. The subsequent mechanism study revealed that a pathway of c-Myc/miR-1271-5p/Noxa/Mcl-1 underlies the synergistic effect of such combination treatment. We discovered that miR-1271-5p, the key mediator for the synergistic effect, is transcriptionally activated by c-Myc, and binds to the 3'-UTR of noxa to inhibit its protein production. The combination treatment of JQ1 and ABT-263 inhibited c-Myc protein level and also c-Myc-driven expression of miR-1271-5p, subsequently increased the protein level of Noxa, and finally promotes the degradation of Mcl-1. Our findings provide an alternative strategy to resolve the resistance during treatment of CRC by JQ1, and also discovered a novel miR-1271-5p-dependent regulatory mechanism for gene expression of noxa.
Collapse
|
8
|
Dicitrinone D, an antimitotic polyketide isolated from the marine-derived fungus Penicillium citrinum. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.08.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Dai X, Hua T, Hong T. Integrated diagnostic network construction reveals a 4-gene panel and 5 cancer hallmarks driving breast cancer heterogeneity. Sci Rep 2017; 7:6827. [PMID: 28754978 PMCID: PMC5533795 DOI: 10.1038/s41598-017-07189-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/23/2017] [Indexed: 12/26/2022] Open
Abstract
Breast cancer encompasses a group of heterogeneous diseases, each associated with distinct clinical implications. Dozens of molecular biomarkers capable of categorizing tumors into clinically relevant subgroups have been proposed which, though considerably contribute in precision medicine, complicate our understandings toward breast cancer subtyping and its clinical translation. To decipher the networking of markers with diagnostic roles on breast carcinomas, we constructed the diagnostic networks by incorporating 6 publically available gene expression datasets with protein interaction data retrieved from BioGRID on previously identified 1015 genes with breast cancer subtyping roles. The Greedy algorithm and mutual information were used to construct the integrated diagnostic network, resulting in 37 genes enclosing 43 interactions. Four genes, FAM134B, KIF2C, ALCAM, KIF1A, were identified having comparable subtyping efficacies with the initial 1015 genes evaluated by hierarchical clustering and cross validations that deploy support vector machine and k nearest neighbor algorithms. Pathway, Gene Ontology, and proliferation marker enrichment analyses collectively suggest 5 primary cancer hallmarks driving breast cancer differentiation, with those contributing to uncontrolled proliferation being the most prominent. Our results propose a 37-gene integrated diagnostic network implicating 5 cancer hallmarks that drives breast cancer heterogeneity and, in particular, a 4-gene panel with clinical diagnostic translation potential.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
| | - Tongyan Hua
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Tingting Hong
- Department of medical oncology, the affiliated hospital of Jiangnan University, the fourth people's hospital of Wuxi, Wuxi, China
| |
Collapse
|
10
|
Yuan B, Ye N, Song SS, Wang YT, Song Z, Chen HD, Chen CH, Huan XJ, Wang YQ, Su Y, Shen YY, Sun YM, Yang XY, Chen Y, Guo SY, Gan Y, Gao ZW, Chen XY, Ding J, He JX, Zhang A, Miao ZH. Poly(ADP-ribose)polymerase (PARP) inhibition and anticancer activity of simmiparib, a new inhibitor undergoing clinical trials. Cancer Lett 2017; 386:47-56. [DOI: 10.1016/j.canlet.2016.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 02/08/2023]
|
11
|
Inactivation of transforming growth factor-β-activated kinase 1 promotes taxol efficacy in ovarian cancer cells. Biomed Pharmacother 2016; 84:917-924. [DOI: 10.1016/j.biopha.2016.09.105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 11/18/2022] Open
|
12
|
Discovery of novel 2-phenyl-imidazo[1,2-a]pyridine analogues targeting tubulin polymerization as antiproliferative agents. Eur J Med Chem 2016; 112:367-372. [DOI: 10.1016/j.ejmech.2016.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/26/2016] [Accepted: 02/02/2016] [Indexed: 11/18/2022]
|
13
|
Yi JM, Huan XJ, Song SS, Zhou H, Wang YQ, Miao ZH. Triptolide Induces Cell Killing in Multidrug-Resistant Tumor Cells via CDK7/RPB1 Rather than XPB or p44. Mol Cancer Ther 2016; 15:1495-503. [PMID: 27197304 DOI: 10.1158/1535-7163.mct-15-0753] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 03/19/2016] [Indexed: 11/16/2022]
Abstract
Multidrug resistance (MDR) is a major cause of tumor treatment failure; therefore, drugs that can avoid this outcome are urgently needed. We studied triptolide, which directly kills MDR tumor cells with a high potency and a broad spectrum of cell death. Triptolide did not inhibit P-glycoprotein (P-gp) drug efflux and reduced P-gp and MDR1 mRNA resulting from transcription inhibition. Transcription factors including c-MYC, SOX-2, OCT-4, and NANOG were not correlated with triptolide-induced cell killing, but RPB1, the largest subunit of RNA polymerase II, was critical in mediating triptolide's inhibition of MDR cells. Triptolide elicited antitumor and anti-MDR activity through a universal mechanism: by activating CDK7 by phosphorylating Thr170 in both parental and MDR cell lines and in SK-OV-3 cells. The CDK7-selective inhibitor BS-181 partially rescued cell killing induced by 72-hour treatment of triptolide, which may be due to partial rescue of RPB1 degradation. We suggest that a precise phosphorylation site on RPB1 (Ser1878) was phosphorylated by CDK7 in response to triptolide. In addition, XPB and p44, two transcription factor TFIIH subunits, did not contribute to triptolide-driven RPB1 degradation and cell killing, although XPB was reported to covalently bind to triptolide. Several clinical trials are underway to test triptolide and its analogues for treating cancer and other diseases, so our data may help expand potential clinical uses of triptolide, as well as offer a compound that overcomes tumor MDR. Future investigations into the primary molecular target(s) of triptolide responsible for RPB1 degradation may suggest novel anti-MDR target(s) for therapeutic development. Mol Cancer Ther; 15(7); 1495-503. ©2016 AACR.
Collapse
Affiliation(s)
- Jun-Mei Yi
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Xia-Juan Huan
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Shan-Shan Song
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Hu Zhou
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Ying-Qing Wang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China.
| | - Ze-Hong Miao
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China.
| |
Collapse
|
14
|
Yi JM, Zhang XF, Huan XJ, Song SS, Wang W, Tian QT, Sun YM, Chen Y, Ding J, Wang YQ, Yang CH, Miao ZH. Dual targeting of microtubule and topoisomerase II by α-carboline derivative YCH337 for tumor proliferation and growth inhibition. Oncotarget 2016; 6:8960-73. [PMID: 25840421 PMCID: PMC4496195 DOI: 10.18632/oncotarget.3264] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 01/31/2015] [Indexed: 12/21/2022] Open
Abstract
Both microtubule and topoisomerase II (Top2) are important anticancer targets and their respective inhibitors are widely used in combination for cancer therapy. However, some combinations could be mutually antagonistic and drug resistance further limits their therapeutic efficacy. Here we report YCH337, a novel α-carboline derivative that targets both microtubule and Top2, eliciting tumor proliferation and growth inhibition and overcoming drug resistance. YCH337 inhibited microtubule polymerization by binding to the colchicine site and subsequently led to mitotic arrest. It also suppressed Top2 and caused DNA double-strand breaks. It disrupted microtubule more potently than Top2. YCH337 induced reversible mitotic arrest at low concentrations but persistent DNA damage. YCH337 caused intrinsic and extrinsic apoptosis and decreased MCL-1, cIAP1 and XIAP proteins. In this aspect, YCH337 behaved differently from the combination of vincristine and etoposide. YCH337 inhibited proliferation of tumor cells with an averaged IC50 of 0.3 μM. It significantly suppressed the growth of HT-29 xenografts in nude mice too. Importantly, YCH337 nearly equally killed different-mechanism-mediated resistant tumor cells and corresponding parent cells. Together with the novelty of its chemical structure, YCH337 could serve as a promising lead for drug development and a prototype for a dual microtubule/Top2 targeting strategy for cancer therapy.
Collapse
Affiliation(s)
- Jun-Mei Yi
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Xiao-Fei Zhang
- Division of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Xia-Juan Huan
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Shan-Shan Song
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Wei Wang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Qian-Ting Tian
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Yi-Ming Sun
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Yi Chen
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Jian Ding
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Ying-Qing Wang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Chun-Hao Yang
- Division of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Ze-Hong Miao
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| |
Collapse
|
15
|
Elmeligie S, Khalil NA, Ahmed EM, Emam SH, Zaitone SAB. Synthesis of New N1-Substituted-5-aryl-3-(3,4,5-trimethoxyphenyl)-2-pyrazoline Derivatives as Antitumor Agents Targeting the Colchicine Site on Tubulin. Biol Pharm Bull 2016; 39:1611-1622. [DOI: 10.1248/bpb.b16-00277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Salwa Elmeligie
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University
| | - Nadia Abdalla Khalil
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University
| | - Eman Mohamed Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University
| | - Soha Hussein Emam
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University
| | | |
Collapse
|
16
|
Ashraf S, Beech RN, Hancock MA, Prichard RK. Ivermectin binds to Haemonchus contortus tubulins and promotes stability of microtubules. Int J Parasitol 2015; 45:647-54. [DOI: 10.1016/j.ijpara.2015.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 11/16/2022]
|
17
|
Tber Z, Hiebel MA, Allouchi H, El Hakmaoui A, Akssira M, Guillaumet G, Berteina-Raboin S. Metal free direct formation of various substituted pyrido[2′,1′:2,3]imidazo[4,5-c]isoquinolin-5-amines and their further functionalization. RSC Adv 2015. [DOI: 10.1039/c5ra03703d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Original substituted pyrido[2′,1′:2,3]imidazo[4,5-c]isoquinolin-5-amines have been easily prepared via an Groebke–Blackburn–Bienaymé MCR, then an N-deprotection followed by a spontaneous final cyclization step.
Collapse
Affiliation(s)
- Z. Tber
- Institut de Chimie Organique et Analytique
- Université d'Orléans
- UMR CNRS 7311
- 45067 Orléans Cédex
- France
| | - M.-A. Hiebel
- Institut de Chimie Organique et Analytique
- Université d'Orléans
- UMR CNRS 7311
- 45067 Orléans Cédex
- France
| | - H. Allouchi
- Laboratoire de Physique
- équipe RICM UMR-ISP 1282
- Université François Rabelais de Tours
- Tours
- France
| | - A. El Hakmaoui
- Equipe de Chimie Bioorganique & Analytique
- URAC 22 Université Hassan II Mohammedia-Casablanca
- 28800 Mohammedia
- Morocco
| | - M. Akssira
- Equipe de Chimie Bioorganique & Analytique
- URAC 22 Université Hassan II Mohammedia-Casablanca
- 28800 Mohammedia
- Morocco
| | - G. Guillaumet
- Institut de Chimie Organique et Analytique
- Université d'Orléans
- UMR CNRS 7311
- 45067 Orléans Cédex
- France
| | - S. Berteina-Raboin
- Institut de Chimie Organique et Analytique
- Université d'Orléans
- UMR CNRS 7311
- 45067 Orléans Cédex
- France
| |
Collapse
|
18
|
Yang F, An W, Qian Z, Yu T, Du Y, Ma L, Wang X, Meng T, Shen J. Ga(OTf)3-promoted synthesis of functionalized 2-carbonyl-imidazo[1,2-a]pyridines derived from ethyl α-benzotriazolyl-α-morpholinoacetate. RSC Adv 2015. [DOI: 10.1039/c5ra02809d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthesis of functionalized 2-carbonyl-imidazo[1,2-a]pyridines derived from ethyl α-benzotriazolyl-α-morpholinoacetate.
Collapse
Affiliation(s)
- Fengxia Yang
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology
- Jinan 250353
- China
- State Key Laboratory of Drug Research
| | - Weiteng An
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Zhiwei Qian
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Ting Yu
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Yongli Du
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology
- Jinan 250353
- China
| | - Lanping Ma
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Xin Wang
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Tao Meng
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Jingkang Shen
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| |
Collapse
|
19
|
Wang W, Wang YQ, Meng T, Yi JM, Huan XJ, Ma LP, Tong LJ, Chen Y, Ding J, Shen JK, Miao ZH. MCL-1 degradation mediated by JNK activation via MEKK1/TAK1-MKK4 contributes to anticancer activity of new tubulin inhibitor MT189. Mol Cancer Ther 2014; 13:1480-91. [PMID: 24688049 DOI: 10.1158/1535-7163.mct-13-0629] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Colchicine site-targeted tubulin inhibitors are a promising type of anticancer drugs. MT189 is a new derivative of MT119, a previously reported colchicine site-binding antitubulin agent. In this study, MT189 was demonstrated to retain the property of MT119 in disrupting microtubulin via binding to the colchicine site, causing mitotic arrest and inducing apoptosis, and to display 8.7-fold enhanced proliferative inhibition in a panel of cancer cells. MT189 was shown to elicit in vivo anticancer effects on MDA-MB-231 xenografts in nude mice, and the tumor growth was suppressed by 35.9% over 14 days. MT189 led to degradation of MCL-1, a member of the antiapoptotic BCL-2 protein family. Its overexpression reduced but its silenced expression increased the apoptotic induction followed by the treatment with MT189. Moreover, the treatment with MT189 caused activation of the MEKK1/TAK1-MKK4-JNK signaling pathway. The activated JNK resulted in phosphorylation of MCL-1, which facilitated its ubiquitination-mediated degradation. Our results show that MT189 inhibits microtubulin polymerization by binding to the colchicine site. Relief of apoptotic suppression by MCL-1 degradation together with mitotic arrest contributes to the anticancer activity of MT189.
Collapse
Affiliation(s)
- Wei Wang
- Authors' Affiliations: Division of Antitumor Pharmacology and Division of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Ying-Qing Wang
- Authors' Affiliations: Division of Antitumor Pharmacology and Division of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Tao Meng
- Authors' Affiliations: Division of Antitumor Pharmacology and Division of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Jun-Mei Yi
- Authors' Affiliations: Division of Antitumor Pharmacology and Division of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Xia-Juan Huan
- Authors' Affiliations: Division of Antitumor Pharmacology and Division of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Lan-Ping Ma
- Authors' Affiliations: Division of Antitumor Pharmacology and Division of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Lin-Jiang Tong
- Authors' Affiliations: Division of Antitumor Pharmacology and Division of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yi Chen
- Authors' Affiliations: Division of Antitumor Pharmacology and Division of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Jian Ding
- Authors' Affiliations: Division of Antitumor Pharmacology and Division of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Jing-Kang Shen
- Authors' Affiliations: Division of Antitumor Pharmacology and Division of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Ze-Hong Miao
- Authors' Affiliations: Division of Antitumor Pharmacology and Division of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|
20
|
Wang XF, Guan F, Ohkoshi E, Guo W, Wang L, Zhu DQ, Wang SB, Wang LT, Hamel E, Yang D, Li L, Qian K, Morris-Natschke SL, Yuan S, Lee KH, Xie L. Optimization of 4-(N-cycloamino)phenylquinazolines as a novel class of tubulin-polymerization inhibitors targeting the colchicine site. J Med Chem 2014; 57:1390-402. [PMID: 24502232 PMCID: PMC3983391 DOI: 10.1021/jm4016526] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The 6-methoxy-1,2,3,4-tetrahydroquinoline moiety in prior leads 2-chloro- and 2-methyl-4-(6-methoxy-3,4-dihydroquinolin-1(2H)-yl)quinazoline (1a and 1b) was modified to produce 4-(N-cycloamino)quinazolines (4a-c and 5a-m). The new compounds were evaluated in cytotoxicity and tubulin inhibition assays, resulting in the discovery of new tubulin-polymerization inhibitors. 7-Methoxy-4-(2-methylquinazolin-4-yl)-3,4-dihydroquinoxalin- 2(1H)-one (5f), the most potent compound, exhibited high in vitro cytotoxic activity (GI50 1.9-3.2 nM), significant potency against tubulin assembly (IC50 0.77 μM), and substantial inhibition of colchicine binding (99% at 5 μM). In mechanism studies, 5f caused cell arrest in G2/M phase, disrupted microtubule formation, and competed mostly at the colchicine site on tubulin. Compound 5f and N-methylated analogue 5g were evaluated in nude mouse MCF7 xenograft models to validate their antitumor activity. Compound 5g displayed significant in vivo activity (tumor inhibitory rate 51%) at a dose of 4 mg/kg without obvious toxicity, whereas 5f unexpectedly resulted in toxicity and death at the same dose.
Collapse
Affiliation(s)
- Xiao-Feng Wang
- Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road, Beijing 100850, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Meng T, Wang W, Zhang Z, Ma L, Zhang Y, Miao Z, Shen J. Synthesis and biological evaluation of 6H-pyrido[2′,1′:2,3]imidazo[4,5-c]isoquinolin-5(6H)-ones as antimitotic agents and inhibitors of tubulin polymerization. Bioorg Med Chem 2014; 22:848-55. [DOI: 10.1016/j.bmc.2013.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/20/2013] [Accepted: 12/03/2013] [Indexed: 11/30/2022]
|
22
|
Zhou H, Wang W, Khorev O, Zhang Y, Miao Z, Meng T, Shen J. Three-Component, One-Pot Sequential Synthesis of Tetracyclic Pyrido[2′,1′:2,3]imidazo[5,1-a]isoquinolinium Compounds as Potent Anticancer Agents. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200542] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Lu Y, Chen J, Xiao M, Li W, Miller DD. An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm Res 2012; 29:2943-71. [PMID: 22814904 DOI: 10.1007/s11095-012-0828-z] [Citation(s) in RCA: 562] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 07/05/2012] [Indexed: 12/13/2022]
Abstract
Tubulin dynamics is a promising target for new chemotherapeutic agents. The colchicine binding site is one of the most important pockets for potential tubulin polymerization destabilizers. Colchicine binding site inhibitors (CBSI) exert their biological effects by inhibiting tubulin assembly and suppressing microtubule formation. A large number of molecules interacting with the colchicine binding site have been designed and synthesized with significant structural diversity. CBSIs have been modified as to chemical structure as well as pharmacokinetic properties, and tested in order to find a highly potent, low toxicity agent for treatment of cancers. CBSIs are believed to act by a common mechanism via binding to the colchicine site on tubulin. The present review is a synopsis of compounds that have been reported in the past decade that have provided an increase in our understanding of the actions of CBSIs.
Collapse
Affiliation(s)
- Yan Lu
- Department of Pharmaceutical Sciences, Health Science Center, University of Tennessee, 847 Monroe Ave, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|