1
|
Grywalska E, Mielnik M, Podgajna M, Hymos A, Ludian J, Rolińska A, Gosik K, Kwaśniewski W, Sosnowska-Pasiarska B, Smok-Kalwat J, Pasiarski M, Stelmach-Gołdyś A, Góźdź S, Roliński J. Expression of CTLA-4 and CD86 Antigens and Epstein-Barr Virus Reactivation in Chronic Lymphocytic Leukemia-Any Link with Known Prognostic Factors? Cancers (Basel) 2022; 14:cancers14030672. [PMID: 35158937 PMCID: PMC8833759 DOI: 10.3390/cancers14030672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/04/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Chronic lymphocytic leukemia (CLL) accounts for one-third of all leukemias. The Epstein-Barr virus (EBV) has the ability to transform B-cells into cancer cells. A history of EBV infection increases the chances of acquiring CLL and it worsens the prognosis in CLL. We tried to assess whether EBV affects the course of CLL by deregulating the CTLA-4/CD86 pathway. The expression of CTLA-4 and CD86 on immune cells in patients with CLL has been evaluated and linked to indicators of EBV infection and clinical outcomes. Our studies have shown that anergy, which is expressed by inhibition through the interaction of CTLA-4 and CD86, is an important mechanism leading to the inhibition of the antitumor response and CLL progression. Abstract Infection with Epstein-Barr virus (EBV) worsens the prognosis in chronic lymphocytic leukemia (CLL), but the underlying mechanisms are not yet established. We intended to assess whether EBV affects the course of CLL by the deregulation of the CTLA-4/CD86 signaling pathway. We used polymerase chain reaction to measure the load of EBV DNA in the blood of 110 newly diagnosed patients with CLL. The expression of CTLA-4 and CD86 antigen on lymphocytes was assessed with flow cytometry. Additionally, CTLA-4 and CD86 serum concentrations were measured through enzyme-linked immunosorbent assays. Fifty-four percent of the patients had detectable EBV DNA [EBV(+)]. In EBV(+) patients the CTLA-4 and CD86 serum concentrations and their expressions on investigated cell populations were significantly higher than in EBV(−) patients. EBV load correlated positively with unfavorable prognostic markers of CLL and the expression of CTLA-4 on CD3+ lymphocytes (r = 0.5339; p = 0.027) and CD86 on CD19+ cells (r = 0.6950; p < 0.001). During a median follow-up period of 32 months EBV(+) patients were more likely to require treatment or have lymphocyte doubling (p < 0.001). Among EBV(+) but not EBV(−) patients, increased expressions of CTLA-4 lymphocytes were associated with elevated risks of progression. We propose that EBV coinfection may worsen prognosis in CLL patients, partly due to EBV-induced up-regulation of CTLA-4 expression.
Collapse
Affiliation(s)
- Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (E.G.); (M.P.); (A.H.); (J.L.); (K.G.)
| | - Michał Mielnik
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-081 Lublin, Poland
- Correspondence: ; Tel.: +48-608-033-811
| | - Martyna Podgajna
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (E.G.); (M.P.); (A.H.); (J.L.); (K.G.)
| | - Anna Hymos
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (E.G.); (M.P.); (A.H.); (J.L.); (K.G.)
| | - Jarosław Ludian
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (E.G.); (M.P.); (A.H.); (J.L.); (K.G.)
| | - Agnieszka Rolińska
- Department of Applied Psychology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Krzysztof Gosik
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (E.G.); (M.P.); (A.H.); (J.L.); (K.G.)
| | - Wojciech Kwaśniewski
- Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland;
| | | | - Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Centre, 25-734 Kielce, Poland; (J.S.-K.); (S.G.)
| | - Marcin Pasiarski
- Department of Immunology, Faculty of Health Sciences, Jan Kochanowski University, 25-317 Kielce, Poland; (M.P.); (A.S.-G.)
- Department of Hematology, Holy Cross Cancer Centre, 25-734 Kielce, Poland
| | - Agnieszka Stelmach-Gołdyś
- Department of Immunology, Faculty of Health Sciences, Jan Kochanowski University, 25-317 Kielce, Poland; (M.P.); (A.S.-G.)
- Department of Hematology, Holy Cross Cancer Centre, 25-734 Kielce, Poland
| | - Stanisław Góźdź
- Department of Clinical Oncology, Holy Cross Cancer Centre, 25-734 Kielce, Poland; (J.S.-K.); (S.G.)
- Faculty of Medicine and Health Sciences, The Jan Kochanowski University, 25-516 Kielce, Poland
| | - Jacek Roliński
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
2
|
Abstract
The therapeutic effectiveness of immune checkpoint inhibitors in cancer patients is quite profound. However, it is generally accepted that further progress is curtailed by accompanying adverse events and by low cure rates linked to the tumor microenvironment. The multitudes of immune processes altered by low-molecular-weight thiols published over the past decades suggest they have potential to alter tumor microenvironment processes which could result in an increase in immune checkpoint inhibitor survival rates. Based on one of the most studied and most potent low-molecular-weight thiols, β-mercaptoethanol (BME), it is proposed that clinical assessment be undertaken to identify any BME benefits with relevance for proliferation/differentiation of immune cells, lymphocyte exhaustion, immunogenicity of tumor antigens and inactivation of suppressor cells/factors. The BME alterations projected to be most effective are: maintenance/replacement of glutathione in lymphocytes via facilitation of cysteine uptake, inhibition of suppressor cells/soluble factors and inactivation of free-radical, reactive oxygen species.
Collapse
Affiliation(s)
- Robert E Click
- Altick Associates, 2000 Maxwell Drive, Suite 207, Hudson, WI 54016, USA
| |
Collapse
|
3
|
Zamarin D, Hamid O, Nayak-Kapoor A, Sahebjam S, Sznol M, Collaku A, Fox FE, Marshall MA, Hong DS. Mogamulizumab in Combination with Durvalumab or Tremelimumab in Patients with Advanced Solid Tumors: A Phase I Study. Clin Cancer Res 2020; 26:4531-4541. [PMID: 32586937 DOI: 10.1158/1078-0432.ccr-20-0328] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/14/2020] [Accepted: 06/19/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE The study goal was to determine safety, antitumor activity, and pharmacodynamic profile of mogamulizumab, an anti-C-C chemokine receptor 4 (anti-CCR4) mAb targeting effector regulatory T cells (eTreg), in combination with mAb checkpoint inhibitors durvalumab or tremelimumab. PATIENTS AND METHODS This was a multicenter, phase I, dose escalation study, followed by disease-specific cohort expansion (NCT02301130). Mogamulizumab dose escalation proceeded with concurrent dose escalation of durvalumab or tremelimumab in patients with advanced solid tumors. Cohort expansion occurred with mogamulizumab 1 mg/kg plus durvalumab 10 mg/kg or tremelimumab 10 mg/kg in patients with advanced pancreatic cancer. RESULTS Forty patients were enrolled during dose escalation, followed by 24 patients during dose expansion. No dose-limiting toxicities occurred during dose escalation. No new or unexpected toxicities were seen. Tolerability, the primary endpoint, was acceptable utilizing mogamulizumab 1 mg/kg plus durvalumab or tremelimumab 10 mg/kg in the combined dose escalation and dose expansion cohorts (each n = 19). At these doses, the objective response rate was 5.3% (95% confidence interval, 0.1%-26.0%; one partial response) with each combination treatment. At all doses, mogamulizumab treatment led to almost complete depletion of peripheral eTregs, as well as reduction of intratumoral Tregs in the majority of patients. There was no clear correlation of clinical response with peripheral or intratumoral reduction in CCR4+ eTregs or with baseline degree of CCR4+ expression. CONCLUSIONS Mogamulizumab in combination with durvalumab or tremelimumab did not result in potent antitumor efficacy in patients with advanced solid tumors. Tolerability of mogamulizumab 1 mg/kg combined with durvalumab or tremelimumab 10 mg/kg was acceptable.
Collapse
Affiliation(s)
| | - Omid Hamid
- The Angeles Clinic and Research Institute, Los Angeles, California
| | | | - Solmaz Sahebjam
- H. Lee Moffitt Cancer Center, University of South Florida, Tampa, Florida
| | | | - Agron Collaku
- Kyowa Kirin Pharmaceutical Development, Inc., Princeton, New Jersey
| | - Floyd E Fox
- Kyowa Kirin Pharmaceutical Development, Inc., Princeton, New Jersey
| | | | | |
Collapse
|
4
|
Tang CL, Yang JF, Pan Q, Zhang RH, Xie YP, Xiong Y, Zhou HH. Anti-CTLA-4 monoclonal antibody improves efficacy of the glyceraldehyde-3-phosphate dehydrogenase protein vaccine against Schistosoma japonicum in mice. Parasitol Res 2019; 118:2287-2293. [PMID: 31168702 DOI: 10.1007/s00436-019-06363-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 05/24/2019] [Indexed: 11/29/2022]
Abstract
Schistosomiasis is a devastating disease caused by Schistosoma infection. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has emerged as a candidate vaccine component against Schistosoma japonicum, but only confers partial protection. Cytotoxic T lymphocyte antigen-4 (CTLA-4) regulates T cell activation and shows negative effects on vaccine-induced immune protection; however, its potential influence on the protective effects of a GAPDH vaccine against S. japonicum and the underlying mechanism remain unclear. In this study, we established a mouse model of S. japonicum infection, and the mice were randomly divided into uninfected, infected control, anti-CTLA-4 monoclonal antibody (anti-CTLA-4 mAb), GAPDH, and GAPDH combined with anti-CTLA-4 mAb groups to compare the protective effects against infection and the consequent tissue damage. The worm reduction rate in the GAPDH-treated infected mice was 26.58%, which increased to 54.61% when combined with anti-CTLA-4 mAb. The frequency of regulatory T cells (Tregs) was significantly higher in the anti-CTLA-4 mAb group and was lower in the GAPDH group. However, both anti-CTLA-4 mAb and GAPDH elevated the levels of the cytokines IFN-γ, IL-2, IL-4, and IL-5 in the spleens of infected mice, and their combination further enhanced cytokine production. The diameter of egg granuloma in the anti-CTLA-4 mAb group and combined treatment group increased significantly compared to that of the other groups. These results suggest that anti-CTLA-4 mAb can be used as an adjuvant to enhance the immune protection of the GAPDH vaccine via inducing the Th1 immune response, although this comes at the cost of enhanced body injury.
Collapse
Affiliation(s)
- Chun-Lian Tang
- Wuchang Hospital, Wuhan University of Science and Technology, No. 116 Yangyuan Street, Wuhan, 430063, China
| | - Jin-Feng Yang
- Wuchang Hospital, Wuhan University of Science and Technology, No. 116 Yangyuan Street, Wuhan, 430063, China
| | - Qun Pan
- Wuchang Hospital, Wuhan University of Science and Technology, No. 116 Yangyuan Street, Wuhan, 430063, China
| | - Rong-Hui Zhang
- Wuchang Hospital, Wuhan University of Science and Technology, No. 116 Yangyuan Street, Wuhan, 430063, China
| | - Ya-Ping Xie
- Wuchang Hospital, Wuhan University of Science and Technology, No. 116 Yangyuan Street, Wuhan, 430063, China
| | - Ying Xiong
- Wuchang Hospital, Wuhan University of Science and Technology, No. 116 Yangyuan Street, Wuhan, 430063, China.
| | - Hong-Hua Zhou
- Wuchang Hospital, Wuhan University of Science and Technology, No. 116 Yangyuan Street, Wuhan, 430063, China.
| |
Collapse
|
5
|
Tallerico R, Cristiani CM, Staaf E, Garofalo C, Sottile R, Capone M, Pico de Coaña Y, Madonna G, Palella E, Wolodarski M, Carannante V, Mallardo D, Simeone E, Grimaldi AM, Johansson S, Frumento P, Gulletta E, Anichini A, Colucci F, Ciliberto G, Kiessling R, Kärre K, Ascierto PA, Carbone E. IL-15, TIM-3 and NK cells subsets predict responsiveness to anti-CTLA-4 treatment in melanoma patients. Oncoimmunology 2016; 6:e1261242. [PMID: 28344869 DOI: 10.1080/2162402x.2016.1261242] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 12/31/2022] Open
Abstract
Despite the success of immune checkpoint blockade in melanoma, the majority of patients do not respond. We hypothesized that the T and NK cell subset frequencies and expression levels of their receptors may predict responses and clinical outcome of anti-CTLA-4 treatment. We thus characterized the NK and T cell phenotype, as well as serum levels of several cytokines in 67 melanoma patients recruited in Italy and Sweden, using samples drawn prior to and during treatment. Survival correlated with low expression of the inhibitory receptor TIM-3 on circulating T and NK cells prior to and during treatment and with the increased frequency of mature circulating NK cells (defined as CD3-CD56dim CD16+) during treatment. Survival also correlated with low levels of IL-15 in the serum. Functional experiments in vitro demonstrated that sustained exposure to IL-15 enhanced the expression of PD-1 and TIM-3 on both T and NK cells, indicating a causative link between high IL-15 levels and enhanced expression of TIM-3 on these cells. Receptor blockade of TIM-3 improved NK cell-mediated elimination of melanoma metastasis cell lines in vitro. These observations may lead to the development of novel biomarkers to predict patient response to checkpoint blockade treatment. They also suggest that induction of additional checkpoints is a possibility that needs to be considered when treating melanoma patients with IL-15.
Collapse
Affiliation(s)
- Rossana Tallerico
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus - Germaneto , Catanzaro, Italy
| | - Costanza M Cristiani
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus - Germaneto , Catanzaro, Italy
| | - Elina Staaf
- Department of Microbiology, Cell and Tumorbiology (MTC), Karolinska Institutet , Stockholm, Sweden
| | - Cinzia Garofalo
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus - Germaneto , Catanzaro, Italy
| | - Rosa Sottile
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus - Germaneto, Catanzaro, Italy; Department of Microbiology, Cell and Tumorbiology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Mariaelena Capone
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori Fondazione "G. Pascale ," Napoli, Italy
| | - Yago Pico de Coaña
- Department of Oncology and Pathology, Karolinska Institutet , Stockholm, Sweden
| | - Gabriele Madonna
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori Fondazione "G. Pascale ," Napoli, Italy
| | - Eleonora Palella
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus - Germaneto , Catanzaro, Italy
| | - Maria Wolodarski
- Department of Oncology and Pathology, Karolinska Institutet , Stockholm, Sweden
| | - Valentina Carannante
- Department of Microbiology, Cell and Tumorbiology (MTC), Karolinska Institutet , Stockholm, Sweden
| | - Domenico Mallardo
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori Fondazione "G. Pascale ," Napoli, Italy
| | - Ester Simeone
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori Fondazione "G. Pascale ," Napoli, Italy
| | - Antonio M Grimaldi
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori Fondazione "G. Pascale ," Napoli, Italy
| | - Sofia Johansson
- Department of Microbiology, Cell and Tumorbiology (MTC), Karolinska Institutet , Stockholm, Sweden
| | - Paolo Frumento
- Karolinska Institutet Statistical Core Facility, Karolinska Institutet , Stockholm, Sweden
| | - Elio Gulletta
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus - Germaneto , Catanzaro, Italy
| | - Andrea Anichini
- Fondazione IRCCS Istituto Nazionale dei Tumori, Department of Experimental Oncology and Molecular Medicine , Milan, Italy
| | - Francesco Colucci
- Department of Obstetrics and Gynecology, University of Cambridge Clinical School , Cambridge, UK
| | - Gennaro Ciliberto
- Scientific Directorate, IRCCS Istituto Nazionale Tumori Fondazione "G. Pascale ," Napoli, Italy
| | - Rolf Kiessling
- Department of Oncology and Pathology, Karolinska Institutet , Stockholm, Sweden
| | - Klas Kärre
- Department of Microbiology, Cell and Tumorbiology (MTC), Karolinska Institutet , Stockholm, Sweden
| | - Paolo A Ascierto
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori Fondazione "G. Pascale ," Napoli, Italy
| | - Ennio Carbone
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus - Germaneto, Catanzaro, Italy; Department of Microbiology, Cell and Tumorbiology (MTC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Carvalho S, Levi‐Schaffer F, Sela M, Yarden Y. Immunotherapy of cancer: from monoclonal to oligoclonal cocktails of anti-cancer antibodies: IUPHAR Review 18. Br J Pharmacol 2016; 173:1407-24. [PMID: 26833433 PMCID: PMC4831314 DOI: 10.1111/bph.13450] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/14/2016] [Accepted: 01/20/2016] [Indexed: 12/11/2022] Open
Abstract
Antibody-based therapy of cancer employs monoclonal antibodies (mAbs) specific to soluble ligands, membrane antigens of T-lymphocytes or proteins located at the surface of cancer cells. The latter mAbs are often combined with cytotoxic regimens, because they block survival of residual fractions of tumours that evade therapy-induced cell death. Antibodies, along with kinase inhibitors, have become in the last decade the mainstay of oncological pharmacology. However, partial and transient responses, as well as emergence of tumour resistance, currently limit clinical application of mAbs. To overcome these hurdles, oligoclonal antibody mixtures are being tested in animal models and in clinical trials. The first homo-combination of two mAbs, each engaging a distinct site of HER2, an oncogenic receptor tyrosine kinase (RTK), has been approved for treatment of breast cancer. Likewise, a hetero-combination of antibodies to two distinct T-cell antigens, PD1 and CTLA4, has been approved for treatment of melanoma. In a similar vein, additive or synergistic anti-tumour effects observed in animal models have prompted clinical testing of hetero-combinations of antibodies simultaneously engaging distinct RTKs. We discuss the promise of antibody cocktails reminiscent of currently used mixtures of chemotherapeutics and highlight mechanisms potentially underlying their enhanced clinical efficacy.
Collapse
Affiliation(s)
- Silvia Carvalho
- Department of Biological RegulationWeizmann Institute of ScienceRehovotIsrael
| | - Francesca Levi‐Schaffer
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Michael Sela
- Department of ImmunologyWeizmann Institute of ScienceRehovotIsrael
| | - Yosef Yarden
- Department of Biological RegulationWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
7
|
Yano H, Thakur A, Tomaszewski EN, Choi M, Deol A, Lum LG. Ipilimumab augments antitumor activity of bispecific antibody-armed T cells. J Transl Med 2014; 12:191. [PMID: 25008236 PMCID: PMC4105782 DOI: 10.1186/1479-5876-12-191] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 06/05/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Ipilimumab is an antagonistic monoclonal antibody against cytotoxic T-lymphocyte antigen-4 (CTLA-4) that enhances antitumor immunity by inhibiting immunosuppressive activity of regulatory T cells (Treg). In this study, we investigated whether inhibiting Treg activity with ipilimumab during ex vivo T cell expansion could augment anti-CD3-driven T cell proliferation and enhance bispecific antibody (BiAb)-redirected antitumor cytotoxicity of activated T cells (ATC). METHODS PBMC from healthy individuals were stimulated with anti-CD3 monoclonal antibody with or without ipilimumab and expanded for 10-14 days. ATC were harvested and armed with anti-CD3 x anti-EGFR BiAb (EGFRBi) or anti-CD3 x anti-CD20 BiAb (CD20Bi) to test for redirected cytotoxicity against COLO356/FG pancreatic cancer cell line or Burkitt's lymphoma cell line (Daudi). RESULTS In PBMC from healthy individuals, the addition of ipilimumab at the initiation of culture significantly enhanced T cell proliferation (p = 0.0029). ATC grown in the presence of ipilimumab showed significantly increased mean tumor-specific cytotoxicity at effector:target (E:T) ratio of 25:1 directed at COLO356/FG and Daudi by 37.71% (p < 0.0004) and 27.5% (p < 0.0004), respectively, and increased the secretion of chemokines (CCL2, CCL3, CCL4,CCL5, CXCL9, and granulocyte-macrophage colony stimulating factor(GM-CSF)) and cytokines (IFN-γ, IL-2R, IL-12, and IL-13), while reducing IL-10 secretion. CONCLUSIONS Expansion of ATC in the presence of ipilimumab significantly improves not only the T cell proliferation but it also enhances cytokine secretion and the specific cytotoxicity of T cells armed with bispecific antibodies.
Collapse
Affiliation(s)
- Hiroshi Yano
- Departments of Oncology, Wayne State University and Barbara Ann Karmanos Cancer Institute, 740.1 Hudson Webber Cancer Research Center, 4100 John R., Detroit, MI 48201, USA
| | - Archana Thakur
- Departments of Oncology, Wayne State University and Barbara Ann Karmanos Cancer Institute, 740.1 Hudson Webber Cancer Research Center, 4100 John R., Detroit, MI 48201, USA
| | - Elyse N Tomaszewski
- Departments of Oncology, Wayne State University and Barbara Ann Karmanos Cancer Institute, 740.1 Hudson Webber Cancer Research Center, 4100 John R., Detroit, MI 48201, USA
| | - Minsig Choi
- Departments of Oncology, Wayne State University and Barbara Ann Karmanos Cancer Institute, 740.1 Hudson Webber Cancer Research Center, 4100 John R., Detroit, MI 48201, USA
| | - Abhinav Deol
- Departments of Oncology, Wayne State University and Barbara Ann Karmanos Cancer Institute, 740.1 Hudson Webber Cancer Research Center, 4100 John R., Detroit, MI 48201, USA
| | - Lawrence G Lum
- Departments of Oncology, Wayne State University and Barbara Ann Karmanos Cancer Institute, 740.1 Hudson Webber Cancer Research Center, 4100 John R., Detroit, MI 48201, USA
- Medicine, Wayne State University and Karmanos Cancer Institute, Detroit, MI 48201, USA
- Immunology and Microbiology, Wayne State University and Karmanos Cancer Institute, Detroit, MI 48201, USA
| |
Collapse
|
8
|
Peiser M, Hitzler M, Luch A. On the role of co-inhibitory molecules in dendritic cell: T helper cell coculture assays aimed to detect chemical-induced contact allergy. EXPERIENTIA SUPPLEMENTUM (2012) 2014; 104:115-35. [PMID: 24214622 DOI: 10.1007/978-3-0348-0726-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
T cells play a pivotal role in sensitization and elicitation of type IV allergic reactions. While T helper cells sustain and maintain the differentiation of further effector cells, regulatory T cells are involved in control of cytokine release and proliferation, and T killer cells execute cellular lysis, thereby leading to certain levels of tissue damage. According to their central role, the widely applied and OECD-supported test method for the assessment of the sensitization potential of a chemical, i.e., the local lymph node assay (LLNA), relies on the detection of the immune-responsive proliferation of lymphocytes. However, most sensitization assays recently developed take advantage of the initiators of sensitization, dendritic cells (DCs) or DC-like cell lines. Here, we focus on inhibitory molecules expressed on the surface of DCs and their corresponding receptors on T cells. We summarize insight into the function of CTLA-4, the ligands of inducible co-stimulators (ICOSs), and on the inhibitory receptor programmed death (PD). The targeting of immune cell surface receptors by inhibitory molecules holds some promise with regard to the development of T cell-based sensitization assays. Firstly, a broader and more sensitive dynamic range of detection could be achieved by blocking inhibitors or by removing inhibiting regulatory T cells from the assays. Secondly, the actual expression levels of inhibitory molecules could be also a valuable indicator for the process of sensitization. Finally, inhibitory molecules in coculture test systems are supposed to have a major influence on DCs by reverse signaling, thereby affecting their differentiation and maturation status in a feedback loop. In conclusion, inhibitory ligands of DC surface receptors and/or their cognate receptors on T cells could serve as useful tools in cell-based assays, directly influencing toxicological endpoints such as sensitization.
Collapse
Affiliation(s)
- Matthias Peiser
- Department of Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany,
| | | | | |
Collapse
|
9
|
Heinrich B, Goepfert K, Delic M, Galle PR, Moehler M. Influence of the oncolytic parvovirus H-1, CTLA-4 antibody tremelimumab and cytostatic drugs on the human immune system in a human in vitro model of colorectal cancer cells. Onco Targets Ther 2013; 6:1119-27. [PMID: 23986643 PMCID: PMC3754820 DOI: 10.2147/ott.s49371] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction Tumor-directed and immune-system-stimulating therapies are of special interest in cancer treatment. Here, we demonstrate the potential of parvovirus H-1 (H-1PV) to efficiently kill colorectal cancer cells and induce immunogenicity of colorectal tumors by inducing maturation of dendritic cells (DCs) alone and also in combination with cytostatic drugs in vitro. Using our cell culture model, we have additionally investigated the effects of anti-CTLA-4 (cytotoxic T-lymphocyte-associated antigen 4) receptor antibody tremelimumab on this process. Materials and methods Colon carcinoma cell lines were treated with different concentrations of cytostatic drugs or tremelimumab or were infected with H-1PV in different multiplicities of infection (MOIs), and viability was determined using MTT assays. Expression of CTLA-4 in colon carcinoma cell lines was measured by FACScan™. For the coculture model, we isolated monocytes using adherence, and differentiation into immature DCs (iDCs) was stimulated using interleukin-4 and granulocyte-macrophage colony-stimulating factor. Maturation of iDCs into mature DCs (mDCs) was induced by a cytokine cocktail. SW480 colon carcinoma cells were infected with H-1PV or treated with cytostatic drugs. Drug treated and H-1PV-infected SW480 colon carcinoma cells were cocultured with iDCs and expression of maturation markers was measured using FACScan™. Cytokine measurements were performed using enzyme-linked immunosorbent assay. Results Colon carcinoma cells SW480 were potently infected and killed by H-1PV. CTLA-4 expression in SW480 cells increased after infection with H-1PV and also after treatment with cytostatic drugs. Tremelimumab had no influence on viability of the colon carcinoma cell line. There was no maturation of iDCs after coculture with SW480; instead, H-1PV-infected or drug pretreated SW480 induced maturation. Cytokine production was higher for H-1PV-infected cells but was not significantly enhanced by tremelimumab treatment alone or in combination. Addition of tremelimumab did not interfere with the maturation process as measured by markers of maturation as well as by determination of cytokine levels. Conclusion By enhancing both cell death and immunogenicity of tumors, H-1PV is of special interest for tumor-directed therapy. These features make it a promising candidate for clinical application in human colorectal cancer. As tremelimumab does not significantly interfere with this process, an interesting therapeutic combination of active enhancement of tumor immunogenicity and independent masking of the CTLA-4 silencing process on tumor cells is highlighted.
Collapse
Affiliation(s)
- Bernd Heinrich
- University Medical Center of the Johannes Gutenberg University Mainz, 1st Department of Internal Medicine, Langenbeckstrasse, Mainz, Germany
| | | | | | | | | |
Collapse
|
10
|
Arens R, van Hall T, van der Burg SH, Ossendorp F, Melief CJM. Prospects of combinatorial synthetic peptide vaccine-based immunotherapy against cancer. Semin Immunol 2013; 25:182-90. [PMID: 23706598 DOI: 10.1016/j.smim.2013.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/10/2013] [Accepted: 04/19/2013] [Indexed: 01/15/2023]
Abstract
The insight that the immune system is involved in tumor resistance is gaining momentum and this has led to the development of immunotherapeutic strategies aiming at enhancement of immune-mediated tumor destruction. Although some of these strategies have moderate clinical benefit, most stand-alone therapies fail to significantly affect progressive disease and survival or do so only in a minority of patients. Research on the mechanisms underlying the generation of immune responses against tumors and the immune evasion by tumors has emphasized that various mechanisms simultaneously prevent effective immunity against cancer including inefficient presentation of tumor antigens by dendritic cells and induction of negative immune regulation by regulatory T-cells (Tregs) and myeloid derived suppressor cells (MDSCs). Thus the design of therapies that simultaneously improve effective tumor immunity and counteract immune evasion by tumors seems most desirable for clinical efficacy. As it is unlikely that a single immunotherapeutic strategy addresses all necessary requirements, combinatorial strategies that act synergistically need to be developed. Here we discuss the current knowledge and prospects of treatment with synthetic peptide vaccines that stimulate tumor-specific T-cell responses combined with adjuvants, immune modulating antibodies, cytokines and chemotherapy. We conclude that combinatorial approaches have the best potency to accomplish the most significant tumor destruction but further research is required to optimize such approaches.
Collapse
Affiliation(s)
- Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
11
|
Fotin-Mleczek M, Zanzinger K, Heidenreich R, Lorenz C, Thess A, Duchardt KM, Kallen KJ. Highly potent mRNA based cancer vaccines represent an attractive platform for combination therapies supporting an improved therapeutic effect. J Gene Med 2012; 14:428-39. [PMID: 22262664 DOI: 10.1002/jgm.2605] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Direct vaccination with mRNA encoding tumor antigens is a novel and promising approach in cancer immunotherapy. CureVac's mRNA vaccines contain free and protamine-complexed mRNA. Such two-component mRNA vaccines support both antigen expression and immune stimulation. These self-adjuvanting RNA vaccines, administered intradermally without any additional adjuvant, induce a comprehensive balanced immune response, comprising antigen specific CD4+ T cells, CD8+ T cells and B cells. The balanced immune response results in a strong anti-tumor effect and complete protection against antigen positive tumor cells. This tumor inhibition elicited by mRNA vaccines is a result of the concerted action of different players. After just two intradermal vaccinations, we observe multiple changes at the tumor site, including the up-regulation of many genes connected to T and natural killer cell activation, as well as genes responsible for improved infiltration of immune cells into the tumor via chemotaxis. The two-component mRNA vaccines induce a very fast and boostable immune response. Therefore, the vaccination schedules can be adjusted to suit the clinical situation. Moreover, by combining the mRNA vaccines with therapies in clinical use (chemotherapy or anti-CTLA-4 antibody therapy), an even more effective anti-tumor response can be elicited. The first clinical data obtained from two separate Phase I/IIa trials conducted in PCA (prostate cancer) and NSCLC (non-small cell lung carcinoma) patients have shown that the two-component mRNA vaccines are safe, well tolerated and highly immunogenic in humans.
Collapse
|
12
|
Wu YL, Liang J, Zhang W, Tanaka Y, Sugiyama H. Immunotherapies: the blockade of inhibitory signals. Int J Biol Sci 2012; 8:1420-30. [PMID: 23197939 PMCID: PMC3509335 DOI: 10.7150/ijbs.5273] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 11/06/2012] [Indexed: 12/30/2022] Open
Abstract
T lymphocytes require signaling by the T cell receptor and by nonclonotypic cosignaling receptors. The costimulatory and inhibitory signals profoundly influence the course of immune responses by amplifying or reducing the transcriptional effects of T cell receptor triggering. The inhibitory receptors such as CTLA-4, PD-1, and BTLA have recently drawn much attention as potential targets for immunotherapies. This review focuses on the progress that has been made with the mentioned receptors in the field of immunotherapies for autoimmune diseases, malignancies, infectious diseases, and transplantation.
Collapse
MESH Headings
- Abatacept
- Animals
- Antigens, Differentiation/chemistry
- Antigens, Differentiation/genetics
- Antigens, Differentiation/immunology
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/metabolism
- B7-H1 Antigen/physiology
- CD28 Antigens/immunology
- CD28 Antigens/metabolism
- CTLA-4 Antigen/chemistry
- CTLA-4 Antigen/genetics
- CTLA-4 Antigen/immunology
- Immunoconjugates/pharmacology
- Immunoconjugates/therapeutic use
- Immunosuppressive Agents/pharmacology
- Immunosuppressive Agents/therapeutic use
- Immunotherapy/trends
- Mice
- Programmed Cell Death 1 Receptor
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/physiology
- Signal Transduction/drug effects
- Transplantation Immunology
Collapse
Affiliation(s)
- Yan-Ling Wu
- 1. Virus Inspection Department of Zhejiang Provincial Center for Disease Control and Prevention, 630 Xincheng Road, Hangzhou, 310051, China
| | - Jing Liang
- 2. Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Wen Zhang
- 2. Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Yoshimasa Tanaka
- 3. Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Hiroshi Sugiyama
- 4. Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
13
|
Han Y, Wu J, Bi L, Xiong S, Gao S, Yin L, Jiang L, Chen C, Yu K, Zhang S. Malignant B cells induce the conversion of CD4+CD25- T cells to regulatory T cells in B-cell non-Hodgkin lymphoma. PLoS One 2011; 6:e28649. [PMID: 22174855 PMCID: PMC3235139 DOI: 10.1371/journal.pone.0028649] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 11/11/2011] [Indexed: 12/28/2022] Open
Abstract
Recent evidence has demonstrated that regulatory T cells (Treg) were enriched in the tumor sites of patients with B-cell non-Hodgkin lymphoma (NHL). However, the causes of enrichment and suppressive mechanisms need to be further elucidated. Here we demonstrated that CD4(+)CD25(+)FoxP3(+)CD127(lo) Treg were markedly increased and their phenotypes were different in peripheral blood (PB) as well as bone marrow (BM) from newly diagnosed patients with B-cell NHL compared with those from healthy volunteers (HVs). Involved lymphatic tissues also showed higher frequencies of Treg than benign lymph nodes. Moreover, the frequencies of Treg were significantly higher in involved lymphatic tissues than those from PB as well as BM in the same patients. Suppression mediated by CD4(+)CD25(+) Treg co-cultured with allogeneic CFSE-labeled CD4(+)CD25(-) responder cells was also higher in involved lymphatic tissues from B-cell NHL than that mediated by Treg from HVs. In addition, we found that malignant B cells significantly induced FoxP3 expression and regulatory function in CD4(+)CD25(-) T cells in vitro. In contrast, normal B cells could not induce the conversion of CD4(+)CD25(-) T cells to Treg. We also showed that the PD-1/B7-H1 pathway might play an important role in Treg induction. Taken together, our results suggest that malignant B cells induce the conversion of CD4(+)CD25(-) T cells to Treg, which may play a role in the pathogenesis of B-cell NHL and represent a promising therapeutic target.
Collapse
Affiliation(s)
- Yixiang Han
- Laboratory of internal medicine, the First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Jianbo Wu
- Laboratory of internal medicine, the First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Laixi Bi
- Department of Hematology, the First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Shudao Xiong
- Department of Hematology/Oncology, the Second Hospital of Anhui Medical University, Hefei, China
| | - Shenmeng Gao
- Laboratory of internal medicine, the First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Lihui Yin
- Laboratory of internal medicine, the First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Lei Jiang
- Laboratory of internal medicine, the First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Chiqi Chen
- Laboratory of internal medicine, the First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Kang Yu
- Department of Hematology, the First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Shenghui Zhang
- Laboratory of internal medicine, the First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
- Key Laboratory of Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
- * E-mail:
| |
Collapse
|
14
|
Carcinoma-derived interleukin-8 disorients dendritic cell migration without impairing T-cell stimulation. PLoS One 2011; 6:e17922. [PMID: 21423807 PMCID: PMC3056721 DOI: 10.1371/journal.pone.0017922] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 02/17/2011] [Indexed: 01/14/2023] Open
Abstract
Background Interleukin-8 (IL-8, CXCL8) is readily produced by human malignant cells.
Dendritic cells (DC) both produce IL-8 and express the IL-8 functional
receptors CXCR1 and CXCR2. Most human colon carcinomas produce IL-8. IL-8
importance in malignancies has been ascribed to angiogeneis promotion. Principal Findings IL-8 effects on human monocyte-derived DC biology were explored upon DC
exposure to recombinant IL-8 and with the help of an IL-8 neutralizing mAb.
In vivo experiments were performed in immunodeficient
mice xenografted with IL-8-producing human colon carcinomas and
comparatively with cell lines that do not produce IL-8. Allogenic T
lymphocyte stimulation by DC was explored under the influence of IL-8. DC
and neutrophil chemotaxis were measured by transwell-migration assays. Sera
from tumor-xenografted mice contained increasing concentrations of IL-8 as
the tumors progress. IL-8 production by carcinoma cells can be modulated by
low doses of cyclophosphamide at the transcription level. If human DC are
injected into HT29 or CaCo2 xenografted tumors, DC are retained
intratumorally in an IL-8-dependent fashion. However, IL-8 did not modify
the ability of DC to stimulate T cells. Interestingly, pre-exposure of DC to
IL-8 desensitizes such cells for IL-8-mediated in vitro or
in vivo chemoattraction. Thereby DC become disoriented
to subsequently follow IL-8 chemotactic gradients towards malignant or
inflamed tissue. Conclusions IL-8 as produced by carcinoma cells changes DC migration cues, without
directly interfering with DC-mediated T-cell stimulation.
Collapse
|