1
|
Chen T, Xiao Z, Liu X, Wang T, Wang Y, Ye F, Su J, Yao X, Xiong L, Yang DH. Natural products for combating multidrug resistance in cancer. Pharmacol Res 2024; 202:107099. [PMID: 38342327 DOI: 10.1016/j.phrs.2024.107099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Cancer cells frequently develop resistance to chemotherapeutic therapies and targeted drugs, which has been a significant challenge in cancer management. With the growing advances in technologies in isolation and identification of natural products, the potential of natural products in combating cancer multidrug resistance has received substantial attention. Importantly, natural products can impact multiple targets, which can be valuable in overcoming drug resistance from different perspectives. In the current review, we will describe the well-established mechanisms underlying multidrug resistance, and introduce natural products that could target these multidrug resistant mechanisms. Specifically, we will discuss natural compounds such as curcumin, resveratrol, baicalein, chrysin and more, and their potential roles in combating multidrug resistance. This review article aims to provide a systematic summary of recent advances of natural products in combating cancer drug resistance, and will provide rationales for novel drug discovery.
Collapse
Affiliation(s)
- Ting Chen
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Zhicheng Xiao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xiaoyan Liu
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Tingfang Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yun Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Fei Ye
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Juan Su
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Xuan Yao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Liyan Xiong
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, NY 11501, USA.
| |
Collapse
|
2
|
Lee CM. A Review on the Antimutagenic and Anticancer Effects of Cysteamine. Adv Pharmacol Pharm Sci 2023; 2023:2419444. [PMID: 37731680 PMCID: PMC10508993 DOI: 10.1155/2023/2419444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. First-line treatments usually include surgery, radiotherapy, and/or systemic therapy. These methods can be associated with serious adverse events and can be toxic to healthy cells. Despite the new advances in cancer therapies, there is still a continuous need for safe and effective therapeutic agents. Cysteamine is an aminothiol endogenously synthetized by human cells during the degradation of coenzyme-A. It has been safely used in humans for the treatment of several pathologies including cystinosis and neurodegenerative diseases. Cysteamine has been shown to be a potent antimutagenic, anticarcinogenic, and antimelanoma in various in vitro and in vivo studies, but a review on these aspects of cysteamine's use in medicine is lacking in the current literature. The efficacy of cysteamine has been shown in vitro and in vivo for the treatment of different types of cancer, such as gastrointestinal cancer, pancreatic cancer, sarcomas, hepatocellular carcinoma, and melanoma, leading to the significant reduction of lesions and/or the increase of survival time. Although the mechanisms of action are not fully understood, possible explanations are (i) free radical scavenging, (ii) alteration of the tumor cell proliferation by affecting nucleic acid and protein synthesis or inhibition of DNA synthesis, and (iii) hormone regulation. In conclusion, regarding the high safety profile of cysteamine and the current literature data presented in this article, cysteamine might be considered as an interesting molecule for the prevention and the treatment of cancer. Further clinical studies should be performed to support these data in humans.
Collapse
Affiliation(s)
- Chun-Man Lee
- Frimley Health NHS Foundation Trust, Portsmouth Road, Frimley, Camberley GU16 7UJ, UK
| |
Collapse
|
3
|
Unal U, Gov E. Drug Repurposing Analysis for Colorectal Cancer through Network Medicine Framework: Novel Candidate Drugs and Small Molecules. Cancer Invest 2023; 41:713-733. [PMID: 37682113 DOI: 10.1080/07357907.2023.2255672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/04/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
This study aimed to reveal the drug-repurposing candidates for colorectal cancer (CRC) via drug-repurposing methods and network biology approaches. A novel, differentially co-expressed, highly interconnected, and co-regulated prognostic gene module was identified for CRC. Based on the gene module, polyethylene glycol (PEG), gallic acid, pyrazole, cordycepin, phenothiazine, pantoprazole, cysteamine, indisulam, valinomycin, trametinib, BRD-K81473043, AZD8055, dovitinib, BRD-A17065207, and tyrphostin AG1478 presented as drugs and small molecule candidates previously studied in the CRC. Lornoxicam, suxamethonium, oprelvekin, sirukumab, levetiracetam, sulpiride, NVP-TAE684, AS605240, 480743.cdx, HDAC6 inhibitor ISOX, BRD-K03829970, and L-6307 are proposed as novel drugs and small molecule candidates for CRC.
Collapse
Affiliation(s)
- Ulku Unal
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| | - Esra Gov
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| |
Collapse
|
4
|
Wang X, Yu J, Liu X, Luo D, Li Y, Song L, Jiang X, Yin X, Wang Y, Chai L, Luo T, Jing J, Shi H. PSMG2-controlled proteasome-autophagy balance mediates the tolerance for MEK-targeted therapy in triple-negative breast cancer. Cell Rep Med 2022; 3:100741. [PMID: 36099919 PMCID: PMC9512673 DOI: 10.1016/j.xcrm.2022.100741] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/21/2022] [Accepted: 08/23/2022] [Indexed: 05/29/2023]
Abstract
Although the MAPK pathway is aberrantly activated in triple-negative breast cancers (TNBCs), the clinical outcome of MEK-targeted therapy is still poor. Through a genome-wide CRISPR-Cas9 library screening, we find that inhibition of PSMG2 sensitizes TNBC cells BT549 and MB468 to the MEK inhibitor AZD6244. Mechanistically, PSMG2 knockdown impairs proteasome function, which in turn activates autophagy-mediated PDPK1 degradation. The PDPK1 degradation significantly enhances AZD6244-induced tumor cell growth inhibition by interrupting the negative feedback signals toward the AKT pathway. Consistently, co-targeting proteasomes and MEK with inhibitors synergistically suppresses tumor cell growth. The autophagy inhibitor chloroquine partially relieves the PDPK1 degradation and reverses the growth inhibition induced by combinatorial inhibition of MEK and proteasome. The combination regimen with the proteasome inhibitor MG132 plus AZD6244 synergistically inhibits tumor growth in a 4T1 xenograft mouse model. In summary, our study not only unravels the mechanism of MEK inhibitor resistance but also provides a combinatorial therapeutic strategy for TNBC in clinics.
Collapse
Affiliation(s)
- Xueyan Wang
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Jing Yu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Xiaowei Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Dan Luo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Yanchu Li
- West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Linlin Song
- Department of Ultrasound and Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Xian Jiang
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Xiaomeng Yin
- Department of Biotherapy, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Wang
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Chai
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ting Luo
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Jing Jing
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China.
| | - Hubing Shi
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China.
| |
Collapse
|
5
|
Tuersong W, Zhou C, Wu S, Qin P, Wang C, Di W, Liu L, Liu H, Hu M. Comparative analysis on transcriptomics of ivermectin resistant and susceptible strains of Haemonchus contortus. Parasit Vectors 2022; 15:159. [PMID: 35524281 PMCID: PMC9077910 DOI: 10.1186/s13071-022-05274-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background Ivermectin (IVM) is one of the most important and widely used anthelmintics in veterinary medicine. However, its efficacy is increasingly compromised by widespread resistance, and the exact mechanism of IVM resistance remains unclear for most parasitic nematodes, including Haemonchus contortus, a blood-sucking parasitic nematode of small ruminants. Methods In this study, an H. contortus IVM-resistant strain from Zhaosu, Xinjiang, China, was isolated and assessed by the control test, faecal egg count reduction test (FECRT) and the larval development assay (LDA). Subsequently, comparative analyses on the transcriptomics of IVM-susceptible and IVM-resistant adult worms of this parasite were carried out using RNA sequencing (RNA-seq) and bioinformatics. Results In total, 543 (416 known, 127 novel) and 359 (309 known, 50 novel) differentially expressed genes (DEGs) were identified in male and female adult worms of the resistant strain compared with those of the susceptible strain, respectively. In addition to several previously known candidate genes which were supposed to be associated with IVM resistance and whose functions were involved in receptor activity, transport, and detoxification, we found some new potential target genes, including those related to lipid metabolism, structural constituent of cuticle, and important pathways such as antigen processing and presentation, lysosome, autophagy, apoptosis, and NOD1-like receptor signalling pathways. Finally, the results of quantitative real-time polymerase chain reaction confirmed that the transcriptional profiles of selected DEGs (male: 8 genes, female: 10 genes) were consistent with those obtained by the RNA-seq. Conclusions Our results indicate that IVM has multiple effects, including both neuromuscular and non-neuromuscular targets, and provide valuable information for further studies on the IVM resistance mechanism in H. contortus. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05274-y.
Collapse
Affiliation(s)
- Waresi Tuersong
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Caixian Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Simin Wu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Peixi Qin
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chunqun Wang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wenda Di
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Lu Liu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Hui Liu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
6
|
Cunha L, Coelho SC, Pereira MDC, Coelho MAN. Nanocarriers Based on Gold Nanoparticles for Epigallocatechin Gallate Delivery in Cancer Cells. Pharmaceutics 2022; 14:pharmaceutics14030491. [PMID: 35335868 PMCID: PMC8951757 DOI: 10.3390/pharmaceutics14030491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/05/2023] Open
Abstract
Gold nanoparticles (AuNPs) are inorganic and biocompatible nanovehicles capable of conjugating biomolecules to enhance their efficacy in cancer treatment. The high and reactive surface area provides good advantages for conjugating active compounds. Two approaches were developed in this work to improve the Epigallocatechin-3-gallate (EGCG) antioxidant efficacy. AuNPs were synthesized by reducing gold salt with chitosan. One other nanosystem was developed by functionalizing AuNPs with cysteamine using the Turkevitch method. The physico-chemical characterization of EGCG conjugated in the two nanosystems-based gold nanoparticles was achieved. The in vitro toxic effect induced by the nanoconjugates was evaluated in pancreatic cancer cells, showing that encapsulated EGCG keeps its antioxidant activity and decreasing the BxPC3 cell growth. A significant cell growth inhibition was observed in 50% with EGCG concentrations in the range of 2.2 and 3.7 μM in EGCG-ChAuNPs and EGCG-Cyst-AuNPs nanoconjugates, respectively. The EGCG alone had to be present at 23 μM to induce the same cytotoxicity response. Caspase-3 activity assay demonstrated that the conjugation of EGCG induces an enhancement of BxPC3 apoptosis compared with EGCG alone. In conclusion, AuNPs complexes can be used as delivery carriers to increase EGCG antioxidant activity in cancer tissues.
Collapse
Affiliation(s)
- Lídia Cunha
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (L.C.); (M.d.C.P.); (M.A.N.C.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sílvia Castro Coelho
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (L.C.); (M.d.C.P.); (M.A.N.C.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence: ; Tel.: +351-225082262; Fax: +351-225081449
| | - Maria do Carmo Pereira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (L.C.); (M.d.C.P.); (M.A.N.C.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel A. N. Coelho
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (L.C.); (M.d.C.P.); (M.A.N.C.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
7
|
Vasudevan S, Srinivasan P, Neelakantan P, Rayappan JBB, Solomon AP. Photoluminescence-Based Bioassay With Cysteamine-Capped TiO 2 Nanoparticles for the Selective Recognition of N-Acyl Homoserine Lactones. Front Bioeng Biotechnol 2021; 9:750933. [PMID: 34926417 PMCID: PMC8678280 DOI: 10.3389/fbioe.2021.750933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Currently available diagnostic procedures for infections are laborious and time-consuming, resulting in a substantial financial burden by increasing morbidity, increased costs of hospitalization, and mortality. Therefore, innovative approaches to design diagnostic biomarkers are imperative to assist in the rapid and sensitive diagnosis of microbial infections. Acyl homoserine lactones (AHLs) are ubiquitous bacterial signaling molecules that are found to be significantly upregulated in infected sites. In this pioneering work, we have developed a simple photoluminescence-based assay using cysteamine-capped titanium oxide (TiO2) nanoparticles for AHL detection. The PL intensity variation of the oxygen defect state of TiO2 was used for the biosensing measurements. The bioassays were validated using two well-studied AHL molecules (C4-HSL and 3-oxo-C12 HSL) of an important human pathogen, Pseudomonas aeruginosa. The developed system has a maximum relative response of 98%. Furthermore, the efficacy of the system in simulated host urine using an artificial urine medium showed a linear detection range of 10-160 nM. Also, we confirmed the relative response and specificity of the system in detecting AHLs produced by P. aeruginosa in a temporal manner.
Collapse
Affiliation(s)
- Sahana Vasudevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Parthasarathy Srinivasan
- Nanosensors Laboratory, School of Electrical & Electronics Engineering, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur, India
- Department of Electronics and Communication Engineering, Amrita School of Engineering, AMRITA Vishwa Vidyapeetham Chennai Campus, Chennai, India
| | - Prasanna Neelakantan
- Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong KongSAR, China
| | - John Bosco Balaguru Rayappan
- Nanosensors Laboratory, School of Electrical & Electronics Engineering, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
8
|
A sensitive "off-on" carbon dots-Ag nanoparticles fluorescent probe for cysteamine detection via the inner filter effect. Talanta 2021; 221:121463. [PMID: 33076083 DOI: 10.1016/j.talanta.2020.121463] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/23/2022]
Abstract
In this study, we describe the construction of an "off-on" fluorescent probe based on carbon dots (CDs) and silver nanoparticles (AgNPs) mixture for sensitive and selective detection of cysteamine. By mixing AgNPs with CDs solution, the fluorescence of CDs was significantly decreased due to the inner filter effect (IFE). Upon addition of cysteamine to the mixed aqueous of CDs and AgNPs, the silver-sulfur bond between cysteamine and AgNPs caused AgNPs to aggregate, and the quenched fluorescence of CDs could in turn be recovered. The probe was employed to quantitatively detect cysteamine, and the results showed that it could detect cysteamine in a concentration range of 2-16 μM with the detection limit of 0.35 μM (signal-to-noise ratio of 3). The detection of cysteamine spiked into bovine serum samples showed high recovery rates ranging from 95.5 to 111.7%. More importantly, the developed probe had low cytotoxicity and was successfully used for in vivo imaging of HepG2 cells.
Collapse
|
9
|
Atallah C, Charcosset C, Greige-Gerges H. Challenges for cysteamine stabilization, quantification, and biological effects improvement. J Pharm Anal 2020; 10:499-516. [PMID: 33425447 PMCID: PMC7775854 DOI: 10.1016/j.jpha.2020.03.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/26/2022] Open
Abstract
The aminothiol cysteamine, derived from coenzyme A degradation in mammalian cells, presents several biological applications. However, the bitter taste and sickening odor, chemical instability, hygroscopicity, and poor pharmacokinetic profile of cysteamine limit its efficacy. The use of encapsulation systems is a good methodology to overcome these undesirable properties and improve the pharmacokinetic behavior of cysteamine. Besides, the conjugation of cysteamine to the surface of nanoparticles is generally proposed to improve the intra-oral delivery of cyclodextrin-drug inclusion complexes, as well as to enhance the colorimetric detection of compounds by a gold nanoparticle aggregation method. On the other hand, the detection and quantification of cysteamine is a challenging mission due to the lack of a chromophore in its structure and its susceptibility to oxidation before or during the analysis. Derivatization agents are therefore applied for the quantification of this molecule. To our knowledge, the derivatization techniques and the encapsulation systems used for cysteamine delivery were not reviewed previously. Thus, this review aims to compile all the data on these methods as well as to provide an overview of the various biological applications of cysteamine focusing on its skin application.
Collapse
Affiliation(s)
- Carla Atallah
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Lebanon
- Laboratory of Automatic Control, Chemical and Pharmaceutical Engineering, Claude Bernard Lyon 1 University, France
| | - Catherine Charcosset
- Laboratory of Automatic Control, Chemical and Pharmaceutical Engineering, Claude Bernard Lyon 1 University, France
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Lebanon
| |
Collapse
|
10
|
New insights on the role of autophagy in the pathogenesis and treatment of melanoma. Mol Biol Rep 2020; 47:9021-9032. [DOI: 10.1007/s11033-020-05886-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
|
11
|
Vasudevan S, Srinivasan P, Rayappan JBB, Solomon AP. A photoluminescence biosensor for the detection of N-acyl homoserine lactone using cysteamine functionalized ZnO nanoparticles for the early diagnosis of urinary tract infections. J Mater Chem B 2020; 8:4228-4236. [PMID: 32330210 DOI: 10.1039/c9tb02243k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A urinary tract infection (UTI) is a recurrent infection that requires timely diagnosis and appropriate treatment. Conventional urinalysis methods are laborious and time-consuming, and lack sensitivity and specificity. In this context, photoluminescence (PL)-based biosensors have gained more attention due to their fast response time, and enhanced sensitivity and specificity. In relation to this, a PL-based biosensor was developed using ZnO nanoparticles obtained via a microwave-assisted process functionalized with cysteamine (ZnO-Cys) to detect the quorum sensing signalling molecules of Gram-negative bacteria, N-acyl-homoserine lactones (AHLs). These AHLs are involved in bacterial communication and are responsible for activating virulence and pathogenicity. Biosensing measurements based on PL intensity variations corresponding to the O2 acceptor defect level of ZnO with reference to ZnO-Cys were considered. A maximum sensitivity of 97% was achieved in the detection of AHL. The linear detection range of the developed biosensor was 10-120 nM in artificial urine media (AUM). The effect of pH on the sensitivity of the biosensor in AUM was also investigated and reported. The developed sensor was validated using the AHLs produced by Pseudomonas aeruginosa (MCC3101) in real-time analysis, which further confirmed the overall specificity and sensitivity.
Collapse
Affiliation(s)
- Sahana Vasudevan
- Quorum Sensing Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India.
| | | | | | | |
Collapse
|
12
|
Hollywood JA, Przepiorski A, D'Souza RF, Sreebhavan S, Wolvetang EJ, Harrison PT, Davidson AJ, Holm TM. Use of Human Induced Pluripotent Stem Cells and Kidney Organoids To Develop a Cysteamine/mTOR Inhibition Combination Therapy for Cystinosis. J Am Soc Nephrol 2020; 31:962-982. [PMID: 32198276 DOI: 10.1681/asn.2019070712] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/09/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mutations in CTNS-a gene encoding the cystine transporter cystinosin-cause the rare, autosomal, recessive, lysosomal-storage disease cystinosis. Research has also implicated cystinosin in modulating the mTORC1 pathway, which serves as a core regulator of cellular metabolism, proliferation, survival, and autophagy. In its severest form, cystinosis is characterized by cystine accumulation, renal proximal tubule dysfunction, and kidney failure. Because treatment with the cystine-depleting drug cysteamine only slows disease progression, there is an urgent need for better treatments. METHODS To address a lack of good human-based cell culture models for studying cystinosis, we generated the first human induced pluripotent stem cell (iPSC) and kidney organoid models of the disorder. We used a variety of techniques to examine hallmarks of cystinosis-including cystine accumulation, lysosome size, the autophagy pathway, and apoptosis-and performed RNA sequencing on isogenic lines to identify differentially expressed genes in the cystinosis models compared with controls. RESULTS Compared with controls, these cystinosis models exhibit elevated cystine levels, increased apoptosis, and defective basal autophagy. Cysteamine treatment ameliorates this phenotype, except for abnormalities in apoptosis and basal autophagy. We found that treatment with everolimus, an inhibitor of the mTOR pathway, reduces the number of large lysosomes, decreases apoptosis, and activates autophagy, but it does not rescue the defect in cystine loading. However, dual treatment of cystinotic iPSCs or kidney organoids with cysteamine and everolimus corrects all of the observed phenotypic abnormalities. CONCLUSIONS These observations suggest that combination therapy with a cystine-depleting drug such as cysteamine and an mTOR pathway inhibitor such as everolimus has potential to improve treatment of cystinosis.
Collapse
Affiliation(s)
- Jennifer A Hollywood
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Aneta Przepiorski
- Department of Developmental Biology, University of Pittsburgh, Pennsylvania
| | - Randall F D'Souza
- Discipline of Nutrition, The University of Auckland, Auckland, New Zealand
| | - Sreevalsan Sreebhavan
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Patrick T Harrison
- Department of Physiology, Biosciences Institute, University College Cork, Cork, Ireland
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Teresa M Holm
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Hemolysis tendency of anticancer nanoparticles changes with type of blood group antigen: An insight into blood nanoparticle interactions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110645. [PMID: 32228982 DOI: 10.1016/j.msec.2020.110645] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/22/2019] [Accepted: 01/03/2020] [Indexed: 12/23/2022]
Abstract
Different blood groups of ABO system have specific antigen which bestows them with different biochemical properties and hence they can show different hemolytic activity. In this report, hemolytic activity of thiol-functionalized Fe3O4-Au nanoparticles were studied in presence and absence of doxorubicin and the effect of various thiol coatings were correlated towards their hemolysis tendency. The nanoparticles were functionalized with four different amino thiols, cysteamine (CEA), cystamine (CA), cysteine (Cys) and cystine (Cyt) to form Fe3O4-Au CEA, Fe3O4-Au CA, Fe3O4-Au Cys and Fe3O4-Au Cyt nanoparticles which were loaded with anticancer drug, doxorubicin. The functionalization was characterized using ATR-FTIR, HR-TEM, XPS and other spectroscopic methods. Maximum drug encapsulation efficiency of 83% was observed with Fe3O4-Au CA nanoparticles. In-vitro experiments were performed on HeLa cells to check the cellular uptake and cytotoxicity using MTT assay. Hemolytic activity was then analyzed with all the blood groups (positive and negative). The amino acid functionalized, Fe3O4-Au Cys and Fe3O4-Au Cyt nanoparticles, shows lesser hemolysis compared to amino thiol functionalized Fe3O4-Au CEA, and Fe3O4-Au CA nanoparticles. In positive blood groups, the Fe3O4-Au CA nanoparticles shows the highest rate of hemolysis followed by Fe3O4-Au CEA, while the lowest hemolysis rate was observed for Fe3O4-Au Cyt nanoparticles. For negative blood groups, the thiol coated nanoparticles show more abrupt hemolysis rate depending upon the type of antigen.
Collapse
|
14
|
Cicchetti F, David L, Siddu A, Denis H. Cysteamine as a novel disease-modifying compound for Parkinson's disease: Over a decade of research supporting a clinical trial. Neurobiol Dis 2019; 130:104530. [DOI: 10.1016/j.nbd.2019.104530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/04/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022] Open
|
15
|
Lu Y, Hou C, Ren J, Yang K, Chang Y, Pei Y, Dong H, Pei Z. A multifunctional supramolecular vesicle based on complex of cystamine dihydrochloride capped pillar[5]arene and galactose derivative for targeted drug delivery. Int J Nanomedicine 2019; 14:3525-3532. [PMID: 31190809 PMCID: PMC6526031 DOI: 10.2147/ijn.s191256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/09/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Supramolecular vesicles are a novel class of nanocarriers that have great potential in biomedicine.Methods: A multifunctional supramolecular vesicle (CAAP5G) based on the complex of CAAP5 and galactose derivative (G) assembled via host-guest interaction was constructed. Results: Using Human embryonic kidney T (293T) cells as experimental models, the cytotoxic effects of CAAP5G was investigated to 0-50 µmol/L for 24 h. Notably, the CAAP5G vesicles revealed low-toxicity to 293T cells, it was critical to designing drug nano-carriers. Simultaneously, we have evaluated doxorubicin hydrochloride (DOX)-loaded CAAP5G vesicles anticancer efficiency, where DOX-loaded CAAP5G vesicles and free DOX incubated with Human hepatocellular carcinoma cancer cell (HpeG2 cells) and 293T cells for 24 h, 48 h, 72 h. It turned out that CAAP5G vesicles encapsulated anticancer drug (DOX) could decrease DOX side-effect on 293T cells and increase DOX anticancer efficiency. More importantly, the cysteamine as an adjuvant chemotherapy drug was released from CAAP5G vesicles in HepG2 cells where a higher GSH concentration exists. The adjuvant chemotherapy efficiency was evaluated, where free DOX and DOX-loaded CAAP5G vesicles incubated with DOX-resistance HepG2 cells (HepG2-ADR cells) for 24, 48, 72 h, respectively. Conclusion: The results revealed that the DOX encapsulated by CAAP5G vesicles could enhance the cytotoxicity of DOX and provide insights for designing advanced nano-carriers toward adjuvant chemotherapies.
Collapse
Affiliation(s)
- Yuchao Lu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi712100, People’s Republic of China
- Analysis Center of College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei061100, People’s Republic of China
| | - Chenxi Hou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi712100, People’s Republic of China
| | - Jingli Ren
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi712100, People’s Republic of China
| | - Kui Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi712100, People’s Republic of China
| | - Yincheng Chang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi712100, People’s Republic of China
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi712100, People’s Republic of China
| | - Hai Dong
- School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Wuhan, Hubei430074, People’s Republic of China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi712100, People’s Republic of China
| |
Collapse
|
16
|
Bodas M, Pehote G, Silverberg D, Gulbins E, Vij N. Autophagy augmentation alleviates cigarette smoke-induced CFTR-dysfunction, ceramide-accumulation and COPD-emphysema pathogenesis. Free Radic Biol Med 2019; 131:81-97. [PMID: 30500419 DOI: 10.1016/j.freeradbiomed.2018.11.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 01/27/2023]
Abstract
In this study, we aimed to investigate precise mechanism(s) of sphingolipid-imbalance and resulting ceramide-accumulation in COPD-emphysema. Where, human and murine emphysema lung tissues or human bronchial epithelial cells (Beas2b) were used for experimental analysis. We found that lungs of smokers and COPD-subjects with increasing emphysema severity demonstrate sphingolipid-imbalance, resulting in significant ceramide-accumulation and increased ceramide/sphingosine ratio, as compared to non-emphysema/non-smoker controls. Next, we found a substantial increase in emphysema chronicity-related ceramide-accumulation in murine (C57BL/6) lungs, while sphingosine levels only slightly increased. In accordance, the expression of the acid ceramidase decreased after CS-exposure. Moreover, CS-induced (sub-chronic) ceramide-accumulation was significantly (p < 0.05) reduced by treatment with TFEB/autophagy-inducing drug, gemfibrozil (GEM), suggesting that autophagy regulates CS-induced ceramide-accumulation. Next, we validated experimentally that autophagy/lipophagy-induction using an anti-oxidant, cysteamine, significantly (p < 0.05) reduces CS-extract (CSE)-mediated intracellular-ceramide-accumulation in p62 + aggresome-bodies. In addition to intracellular-accumulation, we found that CSE also induces membrane-ceramide-accumulation by ROS-dependent acid-sphingomyelinase (ASM) activation and plasma-membrane translocation, which was significantly controlled (p < 0.05) by cysteamine (an anti-oxidant) and amitriptyline (AMT, an inhibitor of ASM). Cysteamine-mediated and CSE-induced membrane-ceramide regulation was nullified by CFTR-inhibitor-172, demonstrating that CFTR controls redox impaired-autophagy dependent membrane-ceramide accumulation. In summary, our data shows that CS-mediated autophagy/lipophagy-dysfunction results in intracellular-ceramide-accumulation, while acquired CFTR-dysfunction-induced ASM causes membrane ceramide-accumulation. Thus, CS-exposure alters the sphingolipid-rheostat leading to the increased membrane- and intracellular- ceramide-accumulation inducing COPD-emphysema pathogenesis that is alleviated by treatment with cysteamine, a potent anti-oxidant with CFTR/autophagy-augmenting properties.
Collapse
Affiliation(s)
- Manish Bodas
- College of Medicine, Central Michigan University, Mt Pleasant, MI, USA
| | - Garrett Pehote
- College of Medicine, Central Michigan University, Mt Pleasant, MI, USA
| | - David Silverberg
- College of Medicine, Central Michigan University, Mt Pleasant, MI, USA
| | - Erich Gulbins
- Dept. of Molecular Biology, University of Duisburg-Essen, Germany and Dept. of Surgery, University of Cincinnati, OH, USA
| | - Neeraj Vij
- College of Medicine, Central Michigan University, Mt Pleasant, MI, USA; The Johns Hopkins University SOM University, Baltimore, MD, USA; VIJ Biotech LLC, Baltimore, MD, USA and 4Dx Ltd, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Wang G, Qian K, Mei X. A theranostic nanoplatform: magneto-gold@fluorescence polymer nanoparticles for tumor targeting T 1&T 2-MRI/CT/NIR fluorescence imaging and induction of genuine autophagy mediated chemotherapy. NANOSCALE 2018; 10:10467-10478. [PMID: 29799598 DOI: 10.1039/c8nr02429d] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Multifunctional nanoparticles, bearing low toxicity and tumor-targeting properties, coupled with multifunctional diagnostic imaging and enhanced treatment efficacy, have drawn tremendous attention due to their enormous potential for medical applications. Herein, we report a new kind of biocompatible and tumor-targeting magneto-gold@fluorescent polymer nanoparticle (MGFs-LyP-1), which is based on ultra-small magneto-gold (Fe3O4-Au) nanoparticles and NIR emissive fluorescent polymers by a solvent-mediated method. This kind of nanoparticle could be taken up efficiently and simultaneously serve for in vivo tumor targeting T1&T2-MRI/CT/near infrared (NIR) fluorescence bioimaging. Furthermore, the nanoparticles exhibit small size, higher tumor targeting accumulation, excellent cytocompatibility for long-term tracking, and no disturbing cell proliferation and differentiation. Moreover, clear and convincing evidence proves that as-synthesized MGFs-LyP-1 could elicit genuine autophagy via inducing autophagosome formation, which offers a definite synergistic effect to enhance cancer therapy with doxorubicin (DOX) at a nontoxic concentration through enhancement of the autophagy flux. Meanwhile, the as-prepared nanoparticles could be rapidly cleared from mice without any obvious organ impairment. The results indeed reveal a promising prospect of an MGFs-LyP-1 contrast agent with low toxicity and high efficiency for promising application in biomedicine.
Collapse
Affiliation(s)
- Guannan Wang
- Department of Chemistry & The Key Laboratory for Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, P. R. China.
| | - Kun Qian
- Department of Chemistry & The Key Laboratory for Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, P. R. China.
| | - Xifan Mei
- Department of Chemistry & The Key Laboratory for Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, P. R. China.
| |
Collapse
|
18
|
Ye J, Zhang R, Wu F, Zhai L, Wang K, Xiao M, Xie T, Sui X. Non-apoptotic cell death in malignant tumor cells and natural compounds. Cancer Lett 2018; 420:210-227. [PMID: 29410006 DOI: 10.1016/j.canlet.2018.01.061] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 12/18/2022]
Abstract
Traditional cancer therapy is mainly targeting on enhancing cell apoptosis, however, it is well established that many cancer cells are chemo-resistant and defective in apoptosis induction. Therefore, it may have important therapeutic implications to exploit some novel natural compounds based on non-apoptotic programmed cell death. Currently, accumulating evidence shows that the compounds from nature source can induce non-apoptotic programmed cell death in cancer cells, and therefore these natural compounds have gained a great promise for the future anticancer therapeutics. In this review, we will concentrate our efforts on the latest developments regarding major forms of non-apoptotic programmed cell death--autophagic cell death, necroptosis, ferroptosis, pyroptosis, glutamoptosis and exosome-associated cell death. Our increased understanding of the role of natural compounds in regulating non-apoptotic programmed cell death will hopefully provide prospective strategies for cancer therapy.
Collapse
Affiliation(s)
- Jing Ye
- Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruonan Zhang
- Department of Medical Oncology, Holistic Integrative Oncology Institutes and Holistic Integrative Cancer Center of Traditional Chinese and Western Medicine, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Cancer Pharmacology, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Fan Wu
- Des Moines Medical School, Des Moines, IA, USA
| | - Lijuan Zhai
- Department of Medical Oncology, Holistic Integrative Oncology Institutes and Holistic Integrative Cancer Center of Traditional Chinese and Western Medicine, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Cancer Pharmacology, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Kaifeng Wang
- Department of Medical Oncology, Holistic Integrative Oncology Institutes and Holistic Integrative Cancer Center of Traditional Chinese and Western Medicine, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Cancer Pharmacology, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mang Xiao
- Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Tian Xie
- Department of Medical Oncology, Holistic Integrative Oncology Institutes and Holistic Integrative Cancer Center of Traditional Chinese and Western Medicine, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Cancer Pharmacology, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China.
| | - Xinbing Sui
- Department of Medical Oncology, Holistic Integrative Oncology Institutes and Holistic Integrative Cancer Center of Traditional Chinese and Western Medicine, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Cancer Pharmacology, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China.
| |
Collapse
|
19
|
Antunes F, Pereira GJ, Jasiulionis MG, Bincoletto C, Smaili SS. Nutritional shortage augments cisplatin-effects on murine melanoma cells. Chem Biol Interact 2017; 281:89-97. [PMID: 29273566 DOI: 10.1016/j.cbi.2017.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/25/2017] [Accepted: 12/18/2017] [Indexed: 01/06/2023]
Abstract
Melanoma incidence increases every year worldwide and is responsible for 80% of skin cancer deaths. Due to its metastatic potential and resistance to almost any treatments such as chemo, radio, immune and targeted-therapy, the patients still have a poor prognosis, especially at metastatic stage. Considering that, it is crucial to find new therapeutic approaches to overcome melanoma resistance. Here we investigated the effect of cisplatin (CDDP), one of the chemotherapeutic agents used for melanoma treatment, in association with nutritional deprivation in murine melanoma cell lines. Cell death and autophagy were evaluated after the treatment with cisplatin, nutritional deprivation and its association using an in vitro model of murine melanocytes malignant transformation to metastatic melanoma. Our results showed that nutritional deprivation augmented cell death induced by cisplatin in melanoma cells, especially at the metastatic subtype, with slight effects on melanocytes. Mechanistic studies revealed that although autophagy was present at high levels in basal conditions in melanoma cells, was not essential for cell death process that involved mitochondrial damage, reactive oxygen species production and possible glycolysis inhibition. In conclusion, nutritional shortage in combination with chemotherapeutic drugs as cisplatin can be a valuable new therapeutic strategy to overcome melanoma resistance.
Collapse
Affiliation(s)
- F Antunes
- Universidade Federal de São Paulo, Escola Paulista de Medicina Department of Pharmacology (EPM/UNIFESP), São Paulo, SP, Brazil
| | - G J Pereira
- Universidade Federal de São Paulo, Escola Paulista de Medicina Department of Pharmacology (EPM/UNIFESP), São Paulo, SP, Brazil.
| | - M G Jasiulionis
- Universidade Federal de São Paulo, Escola Paulista de Medicina Department of Pharmacology (EPM/UNIFESP), São Paulo, SP, Brazil
| | - C Bincoletto
- Universidade Federal de São Paulo, Escola Paulista de Medicina Department of Pharmacology (EPM/UNIFESP), São Paulo, SP, Brazil
| | - S S Smaili
- Universidade Federal de São Paulo, Escola Paulista de Medicina Department of Pharmacology (EPM/UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|
20
|
Li YJ, Lei YH, Yao N, Wang CR, Hu N, Ye WC, Zhang DM, Chen ZS. Autophagy and multidrug resistance in cancer. CHINESE JOURNAL OF CANCER 2017. [PMID: 28646911 PMCID: PMC5482965 DOI: 10.1186/s40880-017-0219-2] [Citation(s) in RCA: 494] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multidrug resistance (MDR) occurs frequently after long-term chemotherapy, resulting in refractory cancer and tumor recurrence. Therefore, combatting MDR is an important issue. Autophagy, a self-degradative system, universally arises during the treatment of sensitive and MDR cancer. Autophagy can be a double-edged sword for MDR tumors: it participates in the development of MDR and protects cancer cells from chemotherapeutics but can also kill MDR cancer cells in which apoptosis pathways are inactive. Autophagy induced by anticancer drugs could also activate apoptosis signaling pathways in MDR cells, facilitating MDR reversal. Therefore, research on the regulation of autophagy to combat MDR is expanding and is becoming increasingly important. We summarize advanced studies of autophagy in MDR tumors, including the variable role of autophagy in MDR cancer cells.
Collapse
Affiliation(s)
- Ying-Jie Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, P. R. China
| | - Yu-He Lei
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, P. R. China
| | - Nan Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, P. R. China
| | - Chen-Ran Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, P. R. China
| | - Nan Hu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, P. R. China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, P. R. China
| | - Dong-Mei Zhang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, P. R. China.
| | - Zhe-Sheng Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, P. R. China. .,Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| |
Collapse
|
21
|
Bodas M, Vij N. Augmenting autophagy for prognosis based intervention of COPD-pathophysiology. Respir Res 2017; 18:83. [PMID: 28472967 PMCID: PMC5418861 DOI: 10.1186/s12931-017-0560-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/20/2017] [Indexed: 12/15/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is foremost among the non-reversible fatal ailments where exposure to tobacco/biomass-smoke and aging are the major risk factors for the initiation and progression of the obstructive lung disease. The role of smoke-induced inflammatory-oxidative stress, apoptosis and cellular senescence in driving the alveolar damage that mediates the emphysema progression and severe lung function decline is apparent, although the central mechanism that regulates these processes was unknown. To fill in this gap in knowledge, the central role of proteostasis and autophagy in regulating chronic lung disease causing mechanisms has been recently described. Recent studies demonstrate that cigarette/nicotine exposure induces proteostasis/autophagy-impairment that leads to perinuclear accumulation of polyubiquitinated proteins as aggresome-bodies, indicative of emphysema severity. In support of this concept, autophagy inducing FDA-approved anti-oxidant drugs control tobacco-smoke induced inflammatory-oxidative stress, apoptosis, cellular senescence and COPD-emphysema progression in variety of preclinical models. Hence, we propose that precise and early detection of aggresome-pathology can allow the timely assessment of disease severity in COPD-emphysema subjects for prognosis-based intervention. While intervention with autophagy-inducing drugs is anticipated to reduce alveolar damage and lung function decline, resulting in a decrease in the current mortality rates in COPD-emphysema subjects.
Collapse
Affiliation(s)
- Manish Bodas
- Molecular & Cell Biology, College of Medicine, Central Michigan University, Mt Pleasant, 2630 Denison Drive, Room# 120 (Office) & 126-127 (Lab), College of Medicine Research Building, Mt. Pleasant, MI 48859 USA
| | - Neeraj Vij
- Molecular & Cell Biology, College of Medicine, Central Michigan University, Mt Pleasant, 2630 Denison Drive, Room# 120 (Office) & 126-127 (Lab), College of Medicine Research Building, Mt. Pleasant, MI 48859 USA
- Department of Pediatrics and Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| |
Collapse
|
22
|
Dai X, Liu J, Nian Y, Qiu MH, Luo Y, Zhang J. A novel cycloartane triterpenoid from Cimicifuga induces apoptotic and autophagic cell death in human colon cancer HT-29 cells. Oncol Rep 2017; 37:2079-2086. [DOI: 10.3892/or.2017.5444] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/03/2016] [Indexed: 11/05/2022] Open
|
23
|
Ji EH, Cui L, Yuan X, Cheng S, Messadi D, Yan X, Hu S. Metabolomic analysis of human oral cancer cells with adenylate kinase 2 or phosphorylate glycerol kinase 1 inhibition. J Cancer 2017; 8:298-304. [PMID: 28243334 PMCID: PMC5327379 DOI: 10.7150/jca.17521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/29/2016] [Indexed: 01/28/2023] Open
Abstract
The purpose of this study was to use liquid chromatography-mass spectrometry (LC-MS) with XCMS for a quantitative metabolomic analysis of UM1 and UM2 oral cancer cells after knockdown of metabolic enzyme adenylate kinase 2 (AK2) or phosphorylate glycerol kinase 1 (PGK1). UM1 and UM2 cells were initially transfected with AK2 siRNA, PGK1 siRNA or scrambled control siRNA, and then analyzed with LC-MS for metabolic profiles. XCMS analysis of the untargeted metabolomics data revealed a total of 3200-4700 metabolite features from the transfected UM1 or UM2 cancer cells and 369-585 significantly changed metabolites due to AK2 or PGK1 suppression. In addition, cluster analysis showed that a common group of metabolites were altered by AK2 knockdown or by PGK1 knockdown between the UM1 and UM2 cells. However, the set of significantly changed metabolites due to AK2 knockdown was found to be distinct from those significantly changed by PGK1 knockdown. Our study has demonstrated that LC-MS with XCMS is an efficient tool for metabolomic analysis of oral cancer cells, and knockdown of different genes results in distinct changes in metabolic phenotypes in oral cancer cells.
Collapse
Affiliation(s)
- Eoon Hye Ji
- School of Dentistry and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095, United States
| | - Li Cui
- School of Dentistry and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095, United States
| | - Xiaoqing Yuan
- Changzhou Second People's Hospital, Nanjing Medical University, Changzhou, 213003, China
| | - Siliangyu Cheng
- School of Dentistry and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095, United States
| | - Diana Messadi
- School of Dentistry and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095, United States
| | - Xinmin Yan
- Changzhou Second People's Hospital, Nanjing Medical University, Changzhou, 213003, China
| | - Shen Hu
- School of Dentistry and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
24
|
Zhao Y, Feng Y, Zhang H, Kou X, Li L, Liu X, Zhang P, Cui L, Chu M, Shen W, Min L. Inhibition of peripubertal sheep mammary gland development by cysteamine through reducing progesterone and growth factor production. Theriogenology 2017; 89:280-288. [PMID: 28043364 DOI: 10.1016/j.theriogenology.2016.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/08/2016] [Accepted: 11/17/2016] [Indexed: 01/03/2023]
Abstract
Cysteamine has been used for treating cystinosis for many years, and furthermore it has also been used as a therapeutic agent for different diseases including Huntington's disease, Parkinson's disease (PD), nonalcoholic fatty liver disease, malaria, cancer, and others. Although cysteamine has many potential applications, its use may also be problematic. The effects of low doses of cysteamine on the reproductive system, especially the mammary glands are currently unknown. In the current investigation, low dose (10 mg/kg BW/day) of cysteamine did not affect sheep body weight gain or organ index of the liver, spleen, or heart; it did, however, increase the levels of blood lymphocytes, monocytes, and platelets. Most interestingly, it inhibited mammary gland development after 2 or 5 months of treatment by reducing the organ index and the number of mammary gland ducts. Plasma growth hormone and estradiol remained unchanged; however, plasma progesterone levels and the protein level of HSD3β1 in sheep ovaries were decreased by cysteamine. In addition to steroid hormones, growth factors produced in the mammary glands also play crucial roles in mammary gland development. Results showed that protein levels of HGF, GHR, and IGF1R were decreased after 5 months of cysteamine treatment. These findings together suggest that progesterone and local growth factors in mammary glands might be involved in cysteamine initiated inhibition of pubertal ovine mammary gland development. Furthermore, it may lead to a reduction in fertility. Therefore, cysteamine should be used with great caution until its actions have been further investigated and its limitations overcome.
Collapse
Affiliation(s)
- Yong Zhao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China; Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, PR China
| | - Yanni Feng
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, PR China; College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Xin Kou
- Shouguang Hongde Farmer Co., Weifang 262700, PR China
| | - Lan Li
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, PR China; College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Xinqi Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Pengfei Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China; Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, PR China
| | - Liantao Cui
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, PR China; College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Meiqiang Chu
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, PR China; College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, PR China; College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Lingjiang Min
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
25
|
Regulation of steroid hormones and energy status with cysteamine and its effect on spermatogenesis. Toxicol Appl Pharmacol 2016; 313:149-158. [DOI: 10.1016/j.taap.2016.10.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/25/2016] [Accepted: 10/30/2016] [Indexed: 01/23/2023]
|
26
|
Bodas M, Van Westphal C, Carpenter-Thompson R, K Mohanty D, Vij N. Nicotine exposure induces bronchial epithelial cell apoptosis and senescence via ROS mediated autophagy-impairment. Free Radic Biol Med 2016; 97:441-453. [PMID: 27394171 DOI: 10.1016/j.freeradbiomed.2016.06.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/30/2016] [Accepted: 06/17/2016] [Indexed: 12/15/2022]
Abstract
Waterpipe smoking and e-cigarette vaping, the non-combustible sources of inhaled nicotine exposure are increasingly becoming popular and marketed as safer alternative to cigarette smoking. Hence, this study was designed to investigate the impact of inhaled nicotine exposure on disease causing COPD-emphysema mechanisms. For in vitro studies, human bronchial epithelial cells (Beas2b) were treated with waterpipe smoke extract (WPSE, 5%), nicotine (5mM), and/or cysteamine (250μM, an autophagy inducer and anti-oxidant drug), for 6hrs. We observed significantly (p<0.05) increased ubiquitinated protein-accumulation in the insoluble protein fractions of Beas2b cells treated with WPSE or nicotine that could be rescued by cysteamine treatment, suggesting aggresome-formation and autophagy-impairment. Moreover, our data also demonstrate that both WPSE and nicotine exposure significantly (p<0.05) elevates Ub-LC3β co-localization to aggresome-bodies while inducing Ub-p62 co-expression/accumulation, verifying autophagy-impairment. We also found that WPSE and nicotine exposure impacts Beas2b cell viability by significantly (p<0.05) inducing cellular apoptosis/senescence via ROS-activation, as it could be controlled by cysteamine, which is known to have an anti-oxidant property. For murine studies, C57BL/6 mice were administered with inhaled nicotine (intranasal, 500μg/mouse/day for 5 days), as an experimental model of non-combustible nicotine exposure. The inhaled nicotine exposure mediated oxidative-stress induces autophagy-impairment in the murine lungs as seen by significant (p<0.05, n=4) increase in the expression levels of nitrotyrosine protein-adduct (oxidative-stress marker, soluble-fraction) and Ub/p62/VCP (impaired-autophagy marker, insoluble-fraction). Overall, our data shows that nicotine, a common component of WPS, e-cigarette vapor and cigarette smoke, induces bronchial epithelial cell apoptosis and senescence via ROS mediated autophagy-impairment as a potential mechanism for COPD-emphysema pathogenesis.
Collapse
Affiliation(s)
- Manish Bodas
- College of Medicine, Central Michigan University, Mt Pleasant, MI, United States
| | - Colin Van Westphal
- College of Medicine, Central Michigan University, Mt Pleasant, MI, United States
| | | | - Dillip K Mohanty
- Department of Chemistry and Biochemistry, Central Michigan University, Mt Pleasant, MI, United States
| | - Neeraj Vij
- College of Medicine, Central Michigan University, Mt Pleasant, MI, United States; Department of Pediatrics and Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
27
|
Inauen C, Rüfenacht V, Pandey AV, Hu L, Blom H, Nuoffer JM, Häberle J. Effect of Cysteamine on Mutant ASL Proteins with Cysteine for Arginine Substitutions. Mol Diagn Ther 2016; 20:125-33. [DOI: 10.1007/s40291-015-0182-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Wang B, Feng D, Han L, Fan J, Zhang X, Wang X, Ye L, Shi X, Feng M. Combination of apolipoprotein A1-modi liposome-doxorubicin with autophagy inhibitors overcame drug resistance in vitro. J Pharm Sci 2014; 103:3994-4004. [PMID: 25354472 DOI: 10.1002/jps.24216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/25/2014] [Accepted: 09/22/2014] [Indexed: 12/15/2022]
Abstract
Multidrug resistance (MDR) represents the major drawback in chemotherapy. Liposome-based approaches could reverse MDR to some extent through circumventing the active efflux effect of P-glycoprotein. However, the reverse power of liposome is very limited because the nontargeting liposome is inefficient to deliver drugs to tumor actively. Besides, autophagy could reinforce the resistance of tumor cells to the cytotoxicity of intracellular drugs. Here, liposomal doxorubicin (Lipodox) that was conjugated with apolipoprotein A1-apo-Lipodox, was employed in tumor targeting delivery of doxorubicin. In the experiments, apo-Lipodox could enter cells effectively and reverse MDR more efficiently than their nontargeting counterpart. Autophagy occurred in this process and contributed to the survival of tumor cells. Combination use of autophagy inhibitors could enhance the cytotoxicity of apo-Lipodox and reverse drug resistance to a higher degree. We propose that this strategy holds promise to overcome MDR in human cancer.
Collapse
Affiliation(s)
- Baolong Wang
- Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Duo Feng
- The Sixth People's Hospital of Shenzhen, Shenzhen, Guangdong 201203, People's Republic of China
| | - Lei Han
- Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Jiajun Fan
- Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | | | - Xin Wang
- Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Li Ye
- Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Xunlong Shi
- Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Meiqing Feng
- Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China.
| |
Collapse
|
29
|
Jiang M, Huang O, Xie Z, Wu S, Zhang X, Shen A, Liu H, Chen X, Wu J, Lou Y, Mao Y, Sun K, Hu S, Geng M, Shen K. A novel long non-coding RNA-ARA: adriamycin resistance-associated. Biochem Pharmacol 2013; 87:254-83. [PMID: 24184505 DOI: 10.1016/j.bcp.2013.10.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/12/2013] [Accepted: 10/16/2013] [Indexed: 12/12/2022]
Abstract
Long non-coding RNAs (lncRNAs) are emerging as an integral functional component of human genome and have been investigated as critical regulators in molecular biology of cancer. A recent study reported that lncRNA-UCA1 induced drug resistance in adriamycin chemotherapy. However, the contributions of lncRNAs to adriamycin resistance in cancers remain largely unknown. To address this issue, we performed a genome-wide lncRNA microarray analysis in adriamycin resistant MCF-7/ADR and parental MCF-7 cells, and revealed differential expression of lncRNAs in distinct category and chromosome distribution patterns. A specific differentially expressed lncRNA (Adriamycin Resistance Associated, termed ARA) was validated in MCF-7/ADR and HepG2/ADR cells. ARA is derived from an intron of PAK3 gene, predicted to contain several stable hairpins in secondary structure and has conservative sequences in primates. ARA expression is significantly associated with adriamycin sensitivity in a panel of breast and liver cancer cell lines and is markedly up-regulated in parental sensitive MCF-7 and HepG2 cell lines after receiving adriamycin treatment. The functions of ARA were assessed by silencing this lncRNA in vitro, and we found that ARA knockdown reduced the proliferation, induced cell death, G2/M arrest and migration defects. Furthermore, microarray transcriptomic analysis was carried out to comprehensively depict the ARA-regulated genes. We showed that ARA can modulate multiple signalling pathways, including MAPK signalling pathway, metabolism pathways, cell cycle and cell adhesion-related biological pathways, and regulate cellular processes, including transcriptional processes and protein binding function. Overall, our results indicate novel insights of adriamycin resistance in lncRNA level.
Collapse
Affiliation(s)
- Min Jiang
- Comprehensive Breast Health Centre, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Breast Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ou Huang
- Comprehensive Breast Health Centre, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zuoquan Xie
- Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shuchao Wu
- Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xi Zhang
- Comprehensive Breast Health Centre, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Aijun Shen
- Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongchun Liu
- Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaosong Chen
- Comprehensive Breast Health Centre, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiayi Wu
- Comprehensive Breast Health Centre, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Lou
- Comprehensive Breast Health Centre, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan Mao
- Comprehensive Breast Health Centre, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kan Sun
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shudong Hu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Meiyu Geng
- Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Kunwei Shen
- Comprehensive Breast Health Centre, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
30
|
Targeting autophagy as a potential therapeutic approach for melanoma therapy. Semin Cancer Biol 2013; 23:352-60. [PMID: 23831275 DOI: 10.1016/j.semcancer.2013.06.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/11/2013] [Accepted: 06/18/2013] [Indexed: 02/07/2023]
Abstract
Melanoma, occurring as a rapidly progressive skin cancer, is resistant to current chemo- and radiotherapy, especially after metastases to distant organs has taken place. Most chemotherapeutic drugs exert their cytotoxic effect by inducing apoptosis, which, however, is often deficient in cancer cells. Thus, it is appropriate to attempt the targeting of alternative pathways, which regulate cellular viability. Recent studies of autophagy, a well-conserved cellular catabolic process, promise to improve the therapeutic outcome in melanoma patients. Although a dual role for autophagy in cancer therapy has been reported, both protecting against and promoting cell death, the potential for using autophagy in cancer therapy seems to be promising. Here, we review the recent literature on the role of autophagy in melanoma with respect to the expression of autophagic markers, the involvement of autophagy in chemo- and immunotherapy, as well as the role of autophagy in hypoxia and altered metabolic pathways employed for melanoma therapy.
Collapse
|
31
|
Besouw M, Masereeuw R, van den Heuvel L, Levtchenko E. Cysteamine: an old drug with new potential. Drug Discov Today 2013; 18:785-92. [PMID: 23416144 DOI: 10.1016/j.drudis.2013.02.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 12/28/2012] [Accepted: 02/08/2013] [Indexed: 01/23/2023]
Abstract
Cysteamine is an amino thiol with the chemical formula HSCH2CH2NH2. Endogenously, cysteamine is derived from coenzyme A degradation, although its plasma concentrations are low. Most experience with cysteamine as a drug originates from the field of the orphan disease cystinosis, in which cysteamine is prescribed to decrease intralysosomal cystine accumulation. However, over the years, the drug has been used for several other applications both in vitro and in vivo. In this article, we review the different applications of cysteamine, ending with an overview of ongoing clinical trials for new indications, such as neurodegenerative disorders and nonalcoholic fatty liver disease (NAFLD). The recent development of an enteric-coated cysteamine formulation makes cysteamine more patient friendly and will extend its applicability for both old and new indications.
Collapse
Affiliation(s)
- Martine Besouw
- Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium.
| | | | | | | |
Collapse
|
32
|
Beclin-1 expression is a significant predictor of survival in patients with lymph node-positive gastric cancer. PLoS One 2012; 7:e45968. [PMID: 23029344 PMCID: PMC3459952 DOI: 10.1371/journal.pone.0045968] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 08/23/2012] [Indexed: 01/26/2023] Open
Abstract
Background Beclin 1 is a main actor of autophagy. The expression of Beclin 1 and its prognostic role in gastric cancer is largely unexplored. The purpose of the present study is to investigate the expression of beclin 1 in gastric cancer cells, tissues and its relationship with prognosis. Methods The expression of Beclin 1 was detected in 271 specimens of lymph-node positive gastric cancer patients by immunohistochemistry. The correlation of Beclin 1 expression to clinicopathologic features and survival of gastric cancer was studied. Beclin-1 expression in gastric cancer cell lines and clinical specimens is also detected using reverse transcription-PCR and Western blotting. Results Beclin 1 is up-regulated at both mRNA and protein levels in six gastric cancer cell lines compared with those in normal gastric mucosa cell line (GES-1). The expression of Beclin-1 in gastric clinical specimens is also higher than those in the adjacent noncancerous tissues. Of the 271 patients, 229 (84.5%) were Beclin 1 high expression tumors by immunohistochemistry. Beclin 1 expression is closely associated with intravascular embolus. Kaplan-Meier analysis showed high beclin 1 expression was associated with longer overall survival. Both univariate analysis and multivariate analysis revealed that Beclin 1 expression were independent prognostic factors in the patients with node-positive gastric cancer. Conclusions Our findings strongly suggest that Beclin 1 has a potential role in tumorigenesis of gastric cancer and could be a promising biomarker for predicting the prognosis of patients with lymph node-positive gastric cancer. It might also serve as a novel therapeutic target for gastric cancer treatment.
Collapse
|
33
|
Checinska A, Soengas MS. The gluttonous side of malignant melanoma: basic and clinical implications of macroautophagy. Pigment Cell Melanoma Res 2012; 24:1116-32. [PMID: 21995431 DOI: 10.1111/j.1755-148x.2011.00927.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
True to their inherent aggressive behavior, melanomas keep impressing the melanoma community with their ability to bypass tumor suppressor mechanisms. Name a pathway with the potential to control cell survival and melanoma cells will likely have it potentiated by multiple genetic or epigenetic alterations. In the context of progression and chemoresistance, large efforts have been dedicated to the identification of protective mechanisms associated with or linked to apoptotic death programs. These studies have guided the design of targeted anticancer strategies. Still, the promise for pro-apoptotic inducers as lead compounds for drug development has yet to come to fruition. It was then a question of time to identify alternative modulators of cell viability. An ideal candidate that is raising great expectations in the oncology field is autophagy, a catabolic process with multiple roles in cell homeostasis. Here we review the incipient literature on autophagy markers in melanocytic lesions. Intriguingly, histopathological studies are unveiling an intrinsic inter- and intratumor variability in the expression of autophagy modulators. Nonetheless, functional studies support a key role of autopaphagy programs in the response to a variety of stress factors. These include adaptive responses to nutrient deprivation, hypoxia and many anticancer agents, among other stimuli. Strategies are being also developed to mobilize the endocytic machinery and shift autolysosomes into death effectors. The opportunities that lie ahead in this field are exciting. Various authophagy mediators are potentially druggable. Moreover, animal models and the development of sophisticated screening methods offer a platform for multilevel academic-industrial collaborations. These efforts are expected to open avenues of research and, hopefully, lead to a more rational approach to melanoma treatment.
Collapse
Affiliation(s)
- Agnieszka Checinska
- Melanoma Laboratory, Molecular Pathology Programme, Centro Nacional de Investigaciones Oncológicas (Spanish National Cancer Research Centre), Madrid, Spain
| | | |
Collapse
|
34
|
Fujisawa T, Rubin B, Suzuki A, Patel PS, Gahl WA, Joshi BH, Puri RK. Cysteamine suppresses invasion, metastasis and prolongs survival by inhibiting matrix metalloproteinases in a mouse model of human pancreatic cancer. PLoS One 2012; 7:e34437. [PMID: 22532830 PMCID: PMC3332081 DOI: 10.1371/journal.pone.0034437] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 03/02/2012] [Indexed: 11/25/2022] Open
Abstract
Background Cysteamine, an anti-oxidant aminothiol, is the treatment of choice for nephropathic cystinosis, a rare lysosomal storage disease. Cysteamine is a chemo-sensitization and radioprotection agent and its antitumor effects have been investigated in various tumor cell lines and chemical induced carcinogenesis. Here, we investigated whether cysteamine has anti-tumor and anti-metastatic effects in transplantable human pancreatic cancer, an aggressive metastatic disease. Methodology/Principal Findings Cysteamine's anti-invasion effects were studied by matrigel invasion and cell migration assays in 10 pancreatic cancer cell lines. To study mechanism of action, we examined cell viability and matrix metalloproteinases (MMPs) activity in the cysteamine-treated cells. We also examined cysteamine's anti-metastasis effect in two orthotopic murine models of human pancreatic cancer by measuring peritoneal metastasis and survival of animals. Cysteamine inhibited both migration and invasion of all ten pancreatic cancer cell lines at concentrations (<25 mM) that caused no toxicity to cells. It significantly decreased MMPs activity (IC50 38–460 µM) and zymographic gelatinase activity in a dose dependent manner in vitro and in vivo; while mRNA and protein levels of MMP-9, MMP-12 and MMP-14 were slightly increased using the highest cysteamine concentration. In vivo, cysteamine significantly decreased metastasis in two established pancreatic tumor models, although it did not affect the size of primary tumors. Additionally, cysteamine prolonged survival of mice in a dose-dependent manner without causing any toxicity. Similar to the in vitro results, MMP activity was significantly decreased in animal tumors treated with cysteamine. Cysteamine had no clinical or preclinical adverse effects in the host even at the highest dose. Conclusions/Significance Our results suggest that cysteamine, an agent with a proven safety profile, may be useful for inhibition of metastasis and prolonging the survival of a host with pancreatic cancer.
Collapse
Affiliation(s)
- Toshio Fujisawa
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Benjamin Rubin
- Department of Ophthalmology, Suburban Hospital, Johns Hopkins School of Medicine, Bethesda, Maryland, United States of America
| | - Akiko Suzuki
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Prabhudas S. Patel
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - William A. Gahl
- Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bharat H. Joshi
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Raj K. Puri
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|