1
|
Tang W, Shao Q, He Z, Zhang X, Li X, Wu R. Clinical significance of nonerythrocytic spectrin Beta 1 (SPTBN1) in human kidney renal clear cell carcinoma and uveal melanoma: a study based on Pan-Cancer Analysis. BMC Cancer 2023; 23:303. [PMID: 37013511 PMCID: PMC10071745 DOI: 10.1186/s12885-023-10789-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Nonerythrocytic spectrin beta 1 (SPTBN1) is an important cytoskeletal protein that involves in normal cell growth and development via regulating TGFβ/Smad signaling pathway, and is aberrantly expressed in various cancer types. But, the exact role of SPTBN1 in pan-cancer is still unclear. This report aimed to display expression patterns and prognostic landscapes of SPTBN1 in human cancers, and further assess its prognostic/therapeutic value and immunological role in kidney renal carcinoma (KIRC) and uveal melanoma (UVM). METHODS We firstly analyzed expression patterns and prognostic landscapes of SPTBN1 in human cancers using various databases and web-based tools. The relationships between SPTBN1 expression and survival/tumor immunity in KIRC and UVM were further investigated via R packages and TIMER 2.0 platform. The therapeutic roles of SPTBN1 in KIRC and UVM were also explored via R software. Following this, the prognostic value and cancer immunological role of SPTBN1 in KIRC and UVM were validated in our cancer patients and GEO database. RESULTS Overall, cancer tissue had a lower expression level of SPTBN1 frequently in pan-cancer, compared with those in adjacent nontumor one. SPTBN1 expression often showed a different effect on survival in pan-cancer; upregulation of SPTBN1 was protective to the survival of KIRC individuals, which was contrary from what was found in UVM patients. In KIRC, there were significant negative associations between SPTBN1 expression and pro-tumor immune cell infiltration, including Treg cell, Th2 cell, monocyte and M2-macrophage, and expression of immune modulator genes, such as tumor necrosis factor superfamily member 9 (TNFSF9); while, in UVM, these correlations exhibited opposite patterns. The following survival and expression correlation analysis in our cancer cohorts and GEO database confirmed these previous findings. Moreover, we also found that SPTBN1 was potentially involved in the resistance of immunotherapy in KIRC, and the enhance of anti-cancer targeted treatment in UVM. CONCLUSIONS The current study presented compelling evidence that SPTBN1 might be a novel prognostic and therapy-related biomarker in KIRC and UVM, shedding new light on anti-cancer strategy.
Collapse
Affiliation(s)
- Wenting Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, Guangdong, China
- Department of Research and Molecular Diagnostics, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, Guangdong, China
| | - Qiong Shao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, Guangdong, China
- Department of Research and Molecular Diagnostics, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, Guangdong, China
| | - Zhanwen He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Xu Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, Guangdong, China
- Department of Research and Molecular Diagnostics, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, Guangdong, China
| | - Xiaojuan Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
- Department of Research and Molecular Diagnostics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
| | - Ruohao Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
2
|
Yang P, Yang Y, Sun P, Tian Y, Gao F, Wang C, Zong T, Li M, Zhang Y, Yu T, Jiang Z. βII spectrin (SPTBN1): biological function and clinical potential in cancer and other diseases. Int J Biol Sci 2021; 17:32-49. [PMID: 33390831 PMCID: PMC7757025 DOI: 10.7150/ijbs.52375] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022] Open
Abstract
βII spectrin, the most common isoform of non-erythrocyte spectrin, is a cytoskeleton protein present in all nucleated cells. Interestingly, βII spectrin is essential for the development of various organs such as nerve, epithelium, inner ear, liver and heart. The functions of βII spectrin include not only establishing and maintaining the cell structure but also regulating a variety of cellular functions, such as cell apoptosis, cell adhesion, cell spreading and cell cycle regulation. Notably, βII spectrin dysfunction is associated with embryonic lethality and the DNA damage response. More recently, the detection of altered βII spectrin expression in tumors indicated that βII spectrin might be involved in the development and progression of cancer. Its mutations and disorders could result in developmental disabilities and various diseases. The versatile roles of βII spectrin in disease have been examined in an increasing number of studies; nonetheless, the exact mechanisms of βII spectrin are still poorly understood. Thus, we summarize the structural features and biological roles of βII spectrin and discuss its molecular mechanisms and functions in development, homeostasis, regeneration and differentiation. This review highlight the potential effects of βII spectrin dysfunction in cancer and other diseases, outstanding questions for the future investigation of therapeutic targets. The investigation of the regulatory mechanism of βII spectrin signal inactivation and recovery may bring hope for future therapy of related diseases.
Collapse
Affiliation(s)
- Panyu Yang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Pin Sun
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yu Tian
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Fang Gao
- Department of Physical Medicine and Rehabiliation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Chen Wang
- Department of Physical Medicine and Rehabiliation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Ying Zhang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Zhirong Jiang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
3
|
Huang Y, Zhang Z, Miao M, Kong C. The intracellular domain of UNC5B facilities proliferation and metastasis of bladder cancer cells. J Cell Mol Med 2020; 25:2121-2135. [PMID: 33345442 PMCID: PMC7882925 DOI: 10.1111/jcmm.16172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/29/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022] Open
Abstract
The intracellular domain of UNC5B contains both death domain and caspase‐3 cleavage site, and is regarded as a functional domain that mediates apoptosis. However, in our previous studies, we found that the death domain of UNC5B in bladder cancer cells could not be activated to promote apoptosis. In this study, different UNC5B truncates (residue 399‐945, residue 412‐945) were created to explore whether the caspase‐3 cleavage site (site 412), as another potential functional domain of its intracellular portion, could be activated to induce apoptosis in bladder cancer cells. Using mass spectrometry, we acquired a comprehensive and detailed identification of differentially expressed proteins by overexpressing UNC5B and its truncates. Protein‐protein‐interaction (PPI) network analysis was also applied to investigate the aggregation of related proteins and predict the functional changes. EDU assay, apoptosis, xenograft tumour implantation, migration, invasion and tumour metastasis were performed to comprehensively identify the effects of UNC5B truncates on bladder cancer cells. We demonstrate that the intracellular domain of UNC5B promotes cell proliferation in vitro and tumour formation in vivo, by binding to a large number of ribosomal proteins. The overexpression of intracellular domain also facilitates cells to migrate, invade and metastasize by interacting with fibronectin, beta‐catenin and vimentin. In addition, we reveal that overexpressing the intracellular domain of UNC5B cannot bind or activate cleaved caspase‐3 to trigger apoptosis in bladder cancer cells.
Collapse
Affiliation(s)
- Yexiang Huang
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Zhe Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Miao Miao
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Chen M, Zeng J, Chen S, Li J, Wu H, Dong X, Lei Y, Zhi X, Yao L. SPTBN1 suppresses the progression of epithelial ovarian cancer via SOCS3-mediated blockade of the JAK/STAT3 signaling pathway. Aging (Albany NY) 2020; 12:10896-10911. [PMID: 32516133 PMCID: PMC7346039 DOI: 10.18632/aging.103303] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/03/2020] [Indexed: 12/16/2022]
Abstract
SPTBN1 plays an anticancer role in many kinds of tumors and participates in the chemotherapeutic resistance of epithelial ovarian cancer (EOC). Here, we reported that lower SPTBN1 expression was significantly related to advanced EOC stage and shorter progression-free survival. SPTBN1 expression was also higher in less invasive EOC cell lines. Moreover, SPTBN1 decreased the migration ability of the EOC cells A2780 and HO8910 and inhibited the growth of EOC cells in vitro and tumor xenografts in vivo. SPTBN1 suppression increased the epithelial mesenchymal transformation marker Vimentin while decreasing E-cadherin expression. By analyzing TCGA data and immunohistochemistry staining of tumor tissue, we found that SPTBN1 and SOCS3 were positively coexpressed in EOC patients. SOCS3 overexpression or JAK2 inhibition decreased the proliferation and migration of EOC cells as well as the expression of p-JAK2, p-STAT3 and Vimentin, which were enhanced by the downregulation of SPTBN1, while E-cadherin expression was also reversed. It was also verified in mouse embryonic fibroblasts (MEFs) that loss of SPTBN1 activated the JAK/STAT3 signaling pathway with suppression of SOCS3. Our results suggest that SPTBN1 suppresses the progression of epithelial ovarian cancer via SOCS3-mediated blockade of the JAK/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Mo Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Jia Zeng
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Shuyi Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jiajia Li
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Huijie Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xuhui Dong
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Yuan Lei
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Liangqing Yao
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| |
Collapse
|
5
|
Qi W, Zhang Q. Gene's co-expression network and experimental validation of molecular markers associated with the drug resistance of gastric cancer. Biomark Med 2020; 14:761-773. [PMID: 32715733 DOI: 10.2217/bmm-2019-0504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/20/2020] [Indexed: 12/28/2022] Open
Abstract
Aim: Chemotherapy can significantly improve the overall survival rate of patients with gastric cancer; however, so far little is known about the molecular mechanism of resistance to chemotherapy. Therefore, this study was proposed to elucidate molecular markers of resistance to chemotherapeutic agent in gastric cancer. Materials & methods: Weighted gene co-expression network analyses were performed in gastric cancer cohort. The most relevant genes modules for gastric cancer resistance were selected. Gene oncology function enrichment of genes was conducted. The biological function of resistant genes were identified in vitro. Results & conclusion: Two resistant hub genes, SPTBN1 and LAMP1, were selected. Experiments showed that downregulation of SPTBN1and LAMP1 proteins significantly enhanced the sensitivity of human gastric cancer cells SGC7901 to 5-FU and cisplatin. Thus, our results provide a baseline about the potential factors of drug resistance in gastric cancer.
Collapse
Affiliation(s)
- Wenqian Qi
- Department of Gastroenterology China, Japan Union Hospital, Jilin University Changchun, Jilin Province 130033, China
| | - Qian Zhang
- Department of Gastroenterology China, Japan Union Hospital, Jilin University Changchun, Jilin Province 130033, China
| |
Collapse
|
6
|
Shimbo A, Kajiyama H, Tamauchi S, Yoshikawa N, Ikeda Y, Nishino K, Suzuki S, Niimi K, Sakata J, Kikkawa F. Expression of connective tissue growth factor as a prognostic indicator and its possible involvement in the aggressive properties of epithelial ovarian carcinoma. Oncol Rep 2019; 42:2323-2332. [PMID: 31578579 PMCID: PMC6826307 DOI: 10.3892/or.2019.7352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/03/2019] [Indexed: 12/27/2022] Open
Abstract
Recently, connective tissue growth factor (CTGF) was demonstrated to be associated with aggressive characteristics, including proliferation, invasion and metastasis, in a number of malignancies. Here, we investigated the expression and function of CTGF in epithelial ovarian carcinoma (EOC) to clarify its molecular mechanism and clinical significance. Paraffin sections from clinical samples of EOC (N=104) were immunostained with the CTGF antibody, and then the staining positivity was semiquantitatively examined. Moreover, we explored the role of CTGF expression in the migration-promoting effect on and chemoresistance of EOC cells. The results revealed that of the 104 EOC patients, the low and high CTGF staining expression rates were 65 (62.5%) and 39 (37.5%), respectively. Patients belonging to the higher-level CTGF group showed poorer progression-free (PFS) and overall survival (OS) rates than those in the lower-level group [PFS (log-rank: P=0.0076) and OS (log-rank: P=0.0078), respectively]. Multivariable analysis showed that CTGF expression was a significant predictor of poorer PFS and OS [PFS: HR (high vs. low): 1.837, 95% CI: 1.023–3.289 (P=0.0418); OS: HR: 2.141, 95% CI: 1.077–4.296 (P=0.0300)]. In in vitro studies, in acquired paclitaxel (PTX)-resistant EOC cells, the silencing of CTGF expression led to the restoration of PTX sensitivity. Furthermore, we confirmed that the TGF-β-dependent migration-promoting effect on these CTGF-depleted cells was completely inhibited. In conclusion, the results of the present study suggest the possible involvement of CTGF in the migration-promoting effect and chemoresistance of EOC, suggesting that it may be a target for overcoming the malignant properties of EOC.
Collapse
Affiliation(s)
- Akiko Shimbo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466‑8550, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466‑8550, Japan
| | - Satoshi Tamauchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466‑8550, Japan
| | - Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466‑8550, Japan
| | - Yoshiki Ikeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466‑8550, Japan
| | - Kimihiro Nishino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466‑8550, Japan
| | - Shiro Suzuki
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466‑8550, Japan
| | - Kaoru Niimi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466‑8550, Japan
| | - Jun Sakata
- Department of Gynecology, Graduate School of Medicine, Aichi Cancer Center Hospital, Nagoya, Aichi 464‑8681, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466‑8550, Japan
| |
Collapse
|
7
|
Chen S, Li J, Zhou P, Zhi X. SPTBN1 and cancer, which links? J Cell Physiol 2019; 235:17-25. [PMID: 31206681 DOI: 10.1002/jcp.28975] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/28/2019] [Indexed: 12/16/2022]
Abstract
SPTBN1 is a dynamic intracellular nonpleckstrin homology-domain protein, functioning as a transforming growth factor-β signal transducing adapter protein which is necessary to form Smad3/Smad4 complex. Recently SPTBN1 is considered to be associated with many kinds of cancers. SPTBN1 expression and function differ between different tumor states or types. This review summarizes the recent advances in the expression patterns of SPTBN1 in cancers, and in understanding the mechanisms by which SPTBN1 affects the occurrence, progression, and metastasis of cancer. Identifying SPTBN1 expression and function in cancers will contribute to the clinical diagnosis and treatment of cancer and the investigation of anticancer drugs.
Collapse
Affiliation(s)
- Shuyi Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiajia Li
- Department of Gynecology, Affiliated Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Ping Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Sakata J, Utsumi F, Suzuki S, Niimi K, Yamamoto E, Shibata K, Senga T, Kikkawa F, Kajiyama H. Inhibition of ZEB1 leads to inversion of metastatic characteristics and restoration of paclitaxel sensitivity of chronic chemoresistant ovarian carcinoma cells. Oncotarget 2017; 8:99482-99494. [PMID: 29245917 PMCID: PMC5725108 DOI: 10.18632/oncotarget.20107] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/25/2017] [Indexed: 01/08/2023] Open
Abstract
ZEB1, a member of the zinc-finger E-box binding homeobox family, is considered to play a crucial role in cancer progression and metastasis. In the current study, we investigated the role of ZEB1 in metastasis and chronic chemoresistance of epithelial ovarian carcinoma (EOC) cells. Using several EOC and acquired paclitaxel (PTX)-resistant EOC cell lines, we investigated whether silencing ZEB1 led to a reversal of the chemoresistance and metastatic potential in vitro and in vivo. Subsequently, the expression of ZEB1 in EOC tissues and its association with the oncologic outcome were investigated. According to the immunohistochemical staining of EOC tissues, as the positivity of ZEB1 expression was increased, the overall survival of EOC patients became poorer (P = 0.0022 for trend). Additionally, cell migration and invasion were significantly decreased by ZEB1 silencing in both PTX-sensitive and PTX- resistant cells. Although PTX-sensitivity was not changed by silencing ZEB1 in parental EOC cells, the depletion of ZEB1 made the PTX-resistant EOC cells more sensitive to PTX treatment. In an animal model, mice injected with ZEB1-silencing PTX-resistant cells survived for longer than the control cell-injected mice. Although the intravenous injection of PTX did not affect the tumor weight of shCtrl cells, the tumor weight of shZEB1 cells was significantly reduced by PTX treatment. The current data indicate the possible involvement of ZEB1 in the metastasis and paclitaxel resistance of EOC, and suggest that targeting this molecule may reverse the malignant potential and improve the oncologic outcome for EOC patients.
Collapse
Affiliation(s)
- Jun Sakata
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Fumi Utsumi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Shiro Suzuki
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kaoru Niimi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Eiko Yamamoto
- Department of Healthcare Administration, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kiyosumi Shibata
- Department of Obstetrics and Gynecology, Banbuntane Hotokukai, Fujita Health University, Fujita, Japan
| | - Takeshi Senga
- Division of Tumor Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
9
|
Maeda O, Miyata‐Takata T, Shibata K, Kajiyama H, Mizuno M, Tamakoshi K, Shimoyama Y, Nakamura S, Kikkawa F. Comparison of prognoses according to non-positive and positive spectrin αII expression detected immunohistochemically in epithelial ovarian carcinoma: a retrospective study. Cancer Med 2016; 5:1081-92. [PMID: 26993048 PMCID: PMC4924366 DOI: 10.1002/cam4.683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/30/2016] [Accepted: 02/04/2016] [Indexed: 12/22/2022] Open
Abstract
Anticancer drug sensitivity affects prognosis in ovarian carcinoma. Previously, we purified spectrin αII and βII tetramers from cisplatin-resistant ovarian serous adenocarcinoma cells and demonstrated that they contribute to platinum anticancer drug resistance. In this clinical study, we focused on the role of spectrin αII expression. It is our objective to demonstrate the potential of spectrin αII expression as a useful predictor of anticancer drug resistance and postoperative prognosis in epithelial ovarian carcinoma. Spectrin αII expression in the ovarian adenocarcinoma surgical specimens of 193 patients was examined by immunohistochemical staining. Staining strength was scored 3+, regarded as positive expression, and 2+, 1+, and 0, regarded as non-positive expression. Prognoses obtained from clinical records were evaluated by statistical analysis. In the 193 cases studied, positive spectrin αII expression was associated with worse overall survival when compared with non-positive expression (P < 0.001 by log-rank test), and spectrin αII expression was identified as an independent predictive factor of overall survival (hazard ratio[HR]: 3.77, 95% confidence interval[CI]: 1.77-8.00; P < 0.001 by multivariate Cox's proportional hazards model). In the study about progression-free survival, spectrin αII expression was not associated with prognoses. However, similar results as overall survival were obtained for survival after recurrence of the 92 recurrent cases (P = 0.0051 by log-rank test, HR: 4.49, 95% CI: 2.06-9.79; P < 0.001 by multivariate Cox's proportional hazards model). In a detailed overall survival study of 66 serous adenocarcinoma patients and 127 nonserous adenocarcinoma patients, similar results were also obtained. Spectrin αII expression is a useful predictor of anticancer drug resistance and postoperative prognosis in epithelial ovarian carcinoma..
Collapse
Affiliation(s)
- Osamu Maeda
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineTsurumai‐cho 65, Showa‐kuNagoya466‐8550Japan
| | | | - Kiyosumi Shibata
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineTsurumai‐cho 65, Showa‐kuNagoya466‐8550Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineTsurumai‐cho 65, Showa‐kuNagoya466‐8550Japan
| | - Mika Mizuno
- Department of GynecologyAichi Cancer Center HospitalNagoyaJapan
| | - Koji Tamakoshi
- Department of HealthNagoya University Graduate School of MedicineNagoyaJapan
| | - Yoshie Shimoyama
- Department of Pathology and Laboratory MedicineNagoya University of HospitalNagoyaJapan
| | - Shigeo Nakamura
- Department of Pathology and Laboratory MedicineNagoya University of HospitalNagoyaJapan
| | - Fumitaka Kikkawa
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineTsurumai‐cho 65, Showa‐kuNagoya466‐8550Japan
| |
Collapse
|
10
|
Palaniappan A, Ramar K, Ramalingam S. Computational Identification of Novel Stage-Specific Biomarkers in Colorectal Cancer Progression. PLoS One 2016; 11:e0156665. [PMID: 27243824 PMCID: PMC4887059 DOI: 10.1371/journal.pone.0156665] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/17/2016] [Indexed: 12/19/2022] Open
Abstract
It is well-known that the conversion of normal colon epithelium to adenoma and then to carcinoma stems from acquired molecular changes in the genome. The genetic basis of colorectal cancer has been elucidated to a certain extent, and much remains to be known about the identity of specific cancer genes that are associated with the advancement of colorectal cancer from one stage to the next. Here in this study we attempted to identify novel cancer genes that could underlie the stage-specific progression and metastasis of colorectal cancer. We conducted a stage-based meta-analysis of the voluminous tumor genome-sequencing data and mined using multiple approaches for novel genes driving the progression to stage-II, stage-III and stage-IV colorectal cancer. The consensus of these driver genes seeded the construction of stage-specific networks, which were then analyzed for the centrality of genes, clustering of subnetworks, and enrichment of gene-ontology processes. Our study identified three novel driver genes as hubs for stage-II progression: DYNC1H1, GRIN2A, GRM1. Four novel driver genes were identified as hubs for stage-III progression: IGF1R, CPS1, SPTA1, DSP. Three novel driver genes were identified as hubs for stage-IV progression: GSK3B, GGT1, EIF2B5. We also identified several non-driver genes that appeared to underscore the progression of colorectal cancer. Our study yielded potential diagnostic biomarkers for colorectal cancer as well as novel stage-specific drug targets for rational intervention. Our methodology is extendable to the analysis of other types of cancer to fill the gaps in our knowledge.
Collapse
Affiliation(s)
- Ashok Palaniappan
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu 603103, India
- * E-mail:
| | - Karthick Ramar
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu 603103, India
| | - Satish Ramalingam
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu 603103, India
| |
Collapse
|
11
|
Gau DM, Lesnock JL, Hood BL, Bhargava R, Sun M, Darcy K, Luthra S, Chandran U, Conrads TP, Edwards RP, Kelley JL, Krivak TC, Roy P. BRCA1 deficiency in ovarian cancer is associated with alteration in expression of several key regulators of cell motility - A proteomics study. Cell Cycle 2016; 14:1884-92. [PMID: 25927284 DOI: 10.1080/15384101.2015.1036203] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Functional loss of expression of breast cancer susceptibility gene 1(BRCA1) has been implicated in genomic instability and cancer progression. There is emerging evidence that BRCA1 gene product (BRCA1) also plays a role in cancer cell migration. We performed a quantitative proteomics study of EOC patient tumor tissues and identified changes in expression of several key regulators of actin cytoskeleton/cell adhesion and cell migration (CAPN1, 14-3-3, CAPG, PFN1, SPTBN1, CFN1) associated with loss of BRCA1 function. Gene expression analyses demonstrate that several of these proteomic hits are differentially expressed between early and advanced stage EOC thus suggesting clinical relevance of these proteins to disease progression. By immunohistochemistry of ovarian tumors with BRCA1(+/+) and BRCA1(null) status, we further verified our proteomic-based finding of elevated PFN1 expression associated with BRCA1 deficiency. Finally, we established a causal link between PFN1 and BRCA1-induced changes in cell migration thus uncovering a novel mechanistic basis for BRCA1-dependent regulation of ovarian cancer cell migration. Overall, findings of this study open up multiple avenues by which BRCA1 can potentially regulate migration and metastatic phenotype of EOC cells.
Collapse
Key Words
- BRCA1
- BRCA1, Breast cancer susceptibility gene 1
- BRCA2, Breast cancer susceptibility gene 2
- CAPG, Macrophage capping protein
- CAPN1, Calpain-1
- CFN1, Cofilin-1
- EOC, Epithelial Ovarian Cancer
- ERM, Ezrin-Radixin-Moesin
- FFPE, Formalin-fixed paraffin-embedded
- HYOU1, Hypoxia upregulated protein 1
- ID1, Inhibitor of differentiation-1
- IHC, Immunohistochemistry
- LC MS-MS, Liquid chromatography tandem mass spectrometry
- Luc, luciferase
- PFN1, Profilin-1
- PP2A, Protein phosphatase 2A
- SPTBN1, Non-erythrocytic spectrin β Chain-1
- WT, Wild-type
- cell Motility
- ovarian cancer
- profilin-1
Collapse
Affiliation(s)
- David M Gau
- a Department of Bioengineering; University of Pittsburgh ; Pittsburgh , PA , USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Ovarian cancer, consisting mainly of ovarian carcinoma, is the most lethal gynecologic malignancy. Improvements in outcome for patients with advanced-stage disease are limited by intrinsic and acquired chemoresistance and by tumor heterogeneity at different anatomic sites and along disease progression. Molecules and cellular pathways mediating chemoresistance appear to be different for the different histological types of ovarian carcinoma, with most recent research focusing on serous and clear cell carcinoma. This review discusses recent data implicating various biomarkers in chemoresistance in this cancer, with focus on studies in which clinical specimens have been central.
Collapse
Affiliation(s)
- Ben Davidson
- a Department of Pathology , Oslo University Hospital, Norwegian Radium Hospital , Oslo , Norway.,b Faculty of Medicine , Institute of Clinical Medicine, University of Oslo , Oslo , Norway
| |
Collapse
|
13
|
Chen C, Deng Y, Hua M, Xi Q, Liu R, Yang S, Liu J, Zhong J, Tang M, Lu S, Zhang Z, Min X, Tang C, Wang Y. Expression and clinical role of TCTP in epithelial ovarian cancer. J Mol Histol 2015; 46:145-56. [PMID: 25564355 DOI: 10.1007/s10735-014-9607-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 12/30/2014] [Indexed: 11/28/2022]
Abstract
The aim of this study is to investigate the potential role and prognostic significance of translationally controlled tumor protein (TCTP) in human epithelial ovarian cancer (EOC). Western blot was used to evaluate the expression of TCTP in eight fresh EOC tissues. Immunohistochemistry was performed on formalin-fixed paraffin-embedded sections of 119 cases of ovarian cancers. Kaplan-Meier method indicated the relation between TCTP and EOC patients' overall survival rate. Starvation and re-feeding was used to assess cell cycle. Knocking down of TCTP and CCK8 assay showed the role of TCTP in HO8910 cell cycle. We found that TCTP was overexpressed in carcinoma tissues compared with normal tissues. Immunohistochemistry revealed that TCTP expression was significantly associated with clinicopathologic variables. Kaplan-Meier analysis revealed that high TCTP expression was significantly related to poor prognosis of the patients. Starvation and re-feeding suggested TCTP played a critical role in HO8910 cell proliferation. Interference of TCTP and CCK8 assay showed that the TCTP-siRNA treated HO8910 cells grew more slowly than the control group. CCK-8 assays and terminal-deoxynucleoitidyl transferase mediated nick end labeling assays were also performed to demonstrate the cisplatin could inhibit the survival of HO8910 cells and promote their apoptosis. All the experiments we have done showed that TCTP could promote the progression of EOC and reduce the sensitiveness of HO8910 cells to cisplatin.
Collapse
Affiliation(s)
- Chen Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ochi F, Fujiwara H, Tanimoto K, Asai H, Miyazaki Y, Okamoto S, Mineno J, Kuzushima K, Shiku H, Barrett J, Ishii E, Yasukawa M. Gene-modified human α/β-T cells expressing a chimeric CD16-CD3ζ receptor as adoptively transferable effector cells for anticancer monoclonal antibody therapy. Cancer Immunol Res 2014; 2:249-62. [PMID: 24778321 DOI: 10.1158/2326-6066.cir-13-0099-t] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The central tumoricidal activity of anticancer monoclonal antibodies (mAb) is exerted by FcγR IIIa (CD16)-expressing effector cells in vivo via antibody-dependent cell-mediated cytotoxicity (ADCC), as observed for natural killer (NK) cells. In practice, chemotherapy-induced leukopenia and exhaustion of NK cells resulting from ADCC often hamper the clinical efficacy of cancer treatment. To circumvent this drawback, we examined in vivo the feasibility of T cells, gene-modified to express a newly generated affinity-matured (158V/V) chimeric CD16-CD3ζ receptor (cCD16ζ-T cells), as a transferable alternative effector for cancer mAb therapy. cCD16ζ-T cells were readily expandable in ex vivo culture using anti-CD2/CD3/CD28 beads and recombinant human interleukin-2 (rhIL-2), and they successfully displayed ADCC-mediated tumoricidal activity in vitro. During ADCC, ligation of opsonized cancer cells to the introduced cCD16ζ-T cells stimulated the effector cells to produce proinflammatory cytokines and release toxic granules through the activation of the Nuclear factor of activated T cells (NFAT) pathway after phosphorylation of the CD3ζ chain. In parallel, these stimulated cCD16ζ-T cells transiently proliferated and differentiated into effector memory T cells. In contrast, NK cells activated by rhIL-2 displayed similar ADCC activity, but failed to proliferate. Human cCD16ζ-T cells infused concomitantly with anti-CD20 mAb synergistically inhibited the growth of disseminated Raji cells, a CD20(+) lymphoma cell line, in immunodeficient mice, whereas similarly infused rhIL-2-treated NK cells survived for a shorter time and displayed less effective tumor suppression. Our findings strongly suggest the clinical feasibility of cCD16ζ-T cells as adoptively transferable ADCC effector cells that could potentially enhance the clinical responses mediated by currently available anticancer mAbs.
Collapse
Affiliation(s)
- Fumihiro Ochi
- Authors' Affiliations: Departments of Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Utsumi F, Kajiyama H, Nakamura K, Tanaka H, Mizuno M, Ishikawa K, Kondo H, Kano H, Hori M, Kikkawa F. Effect of indirect nonequilibrium atmospheric pressure plasma on anti-proliferative activity against chronic chemo-resistant ovarian cancer cells in vitro and in vivo. PLoS One 2013; 8:e81576. [PMID: 24367486 PMCID: PMC3867316 DOI: 10.1371/journal.pone.0081576] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 10/15/2013] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Nonequilibrium atmospheric pressure plasma (NEAPP) therapy has recently been focused on as a novel medical practice. Using cells with acquired paclitaxel/cisplatin resistance, we elucidated effects of indirect NEAPP-activated medium (NEAPP-AM) exposure on cell viability and tumor growth in vitro and in vivo. METHODS Using chronic paclitaxel/cisplatin-resistant ovarian cancer cells, we applied indirect NEAPP-exposed medium to cells and xenografted tumors in a mouse model. Furthermore, we examined the role of reactive oxygen species (ROS) or their scavengers in the above-mentioned EOC cells. RESULTS We assessed the viability of NOS2 and NOS3 cells exposed to NEAPP-AM, which was prepared beforehand by irradiation with NEAPP for the indicated time. In NOS2 cells, viability decreased by approximately 30% after NEAPP-AM 120-sec treatment (P<0.01). The growth-inhibitory effects of NEAPP-AM were completely inhibited by N-acetyl cysteine treatment, while L-buthionine-[S, R]-sulfoximine, an inhibitor of the ROS scavenger used with NEAPP-AM, decreased cell viability by 85% after NEAPP-AM 60-sec treatment(P<0.05) and by 52% after 120 sec, compared to the control (P<0.01). In the murine subcutaneous tumor-formation model, NEAPP-AM injection resulted in an average inhibition of the NOS2 cell-inoculated tumor by 66% (P<0.05) and NOS2TR cell-inoculated tumor by 52% (P<0.05), as compared with the control. CONCLUSION We demonstrated that plasma-activated medium also had an anti-tumor effect on chemo-resistant cells in vitro and in vivo. Indirect plasma therapy is a promising treatment option for EOC and may contribute to a better patient prognosis in the future.
Collapse
Affiliation(s)
- Fumi Utsumi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
- * E-mail:
| | - Kae Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Hiromasa Tanaka
- Department of Electrical Engineering and Computer Science, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Masaaki Mizuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Kenji Ishikawa
- Department of Electrical Engineering and Computer Science, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Hiroki Kondo
- Department of Electrical Engineering and Computer Science, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Hiroyuki Kano
- NU Eco-Engineering Co., Ltd., Miyoshi-shi, Aichi, Japan
| | - Masaru Hori
- Department of Electrical Engineering and Computer Science, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| |
Collapse
|
16
|
Stevenson RP, Veltman D, Machesky LM. Actin-bundling proteins in cancer progression at a glance. J Cell Sci 2012; 125:1073-9. [PMID: 22492983 DOI: 10.1242/jcs.093799] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Richard P Stevenson
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Rd, Bearsden, Glasgow G61 1BD, UK
| | | | | |
Collapse
|