1
|
Johansen AM, Forsythe SD, McGrath CT, Barker G, Jimenez H, Paluri RK, Pasche BC. TGFβ in Pancreas and Colorectal Cancer: Opportunities to Overcome Therapeutic Resistance. Clin Cancer Res 2024; 30:3676-3687. [PMID: 38916900 PMCID: PMC11371528 DOI: 10.1158/1078-0432.ccr-24-0468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/16/2024] [Accepted: 05/30/2024] [Indexed: 06/26/2024]
Abstract
TGFβ is a pleiotropic signaling pathway that plays a pivotal role in regulating a multitude of cellular functions. TGFβ has a dual role in cell regulation where it induces growth inhibition and cell death; however, it can switch to a growth-promoting state under cancerous conditions. TGFβ is upregulated in colorectal cancer and pancreatic cancer, altering the tumor microenvironment and immune system and promoting a mesenchymal state. The upregulation of TGFβ in certain cancers leads to resistance to immunotherapy, and attempts to inhibit TGFβ expression have led to reduced therapeutic resistance when combined with chemotherapy and immunotherapy. Here, we review the current TGFβ inhibitor drugs in clinical trials for pancreatic and colorectal cancer, with the goal of uncovering advances in improving clinical efficacy for TGFβ combinational treatments in patients. Furthermore, we discuss the relevance of alterations in TGFβ signaling and germline variants in the context of personalizing treatment for patients who show lack of response to current therapeutics.
Collapse
Affiliation(s)
- Allan M Johansen
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Steven D Forsythe
- Neuroendocrine Therapy Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Callum T McGrath
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Grayson Barker
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Hugo Jimenez
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Ravi K Paluri
- Section of Hematology/Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Boris C Pasche
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| |
Collapse
|
2
|
Borst R, Meyaard L, Pascoal Ramos MI. Understanding the matrix: collagen modifications in tumors and their implications for immunotherapy. J Transl Med 2024; 22:382. [PMID: 38659022 PMCID: PMC11040975 DOI: 10.1186/s12967-024-05199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/13/2024] [Indexed: 04/26/2024] Open
Abstract
Tumors are highly complex and heterogenous ecosystems where malignant cells interact with healthy cells and the surrounding extracellular matrix (ECM). Solid tumors contain large ECM deposits that can constitute up to 60% of the tumor mass. This supports the survival and growth of cancerous cells and plays a critical role in the response to immune therapy. There is untapped potential in targeting the ECM and cell-ECM interactions to improve existing immune therapy and explore novel therapeutic strategies. The most abundant proteins in the ECM are the collagen family. There are 28 different collagen subtypes that can undergo several post-translational modifications (PTMs), which alter both their structure and functionality. Here, we review current knowledge on tumor collagen composition and the consequences of collagen PTMs affecting receptor binding, cell migration and tumor stiffness. Furthermore, we discuss how these alterations impact tumor immune responses and how collagen could be targeted to treat cancer.
Collapse
Affiliation(s)
- Rowie Borst
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Linde Meyaard
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - M Ines Pascoal Ramos
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
3
|
Abstract
The most fundamental feature of cellular form is size, which sets the scale of all cell biological processes. Growth, form, and function are all necessarily linked in cell biology, but we often do not understand the underlying molecular mechanisms nor their specific functions. Here, we review progress toward determining the molecular mechanisms that regulate cell size in yeast, animals, and plants, as well as progress toward understanding the function of cell size regulation. It has become increasingly clear that the mechanism of cell size regulation is deeply intertwined with basic mechanisms of biosynthesis, and how biosynthesis can be scaled (or not) in proportion to cell size. Finally, we highlight recent findings causally linking aberrant cell size regulation to cellular senescence and their implications for cancer therapies.
Collapse
Affiliation(s)
- Shicong Xie
- Department of Biology, Stanford University, Stanford, California, USA;
| | - Matthew Swaffer
- Department of Biology, Stanford University, Stanford, California, USA;
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, California, USA;
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
4
|
Liang Y, Zhang C, Dai DQ. Identification of differentially expressed genes regulated by methylation in colon cancer based on bioinformatics analysis. World J Gastroenterol 2019; 25:3392-3407. [PMID: 31341364 PMCID: PMC6639549 DOI: 10.3748/wjg.v25.i26.3392] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/09/2019] [Accepted: 06/01/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND DNA methylation, acknowledged as a key modification in the field of epigenetics, regulates gene expression at the transcriptional level. Aberrant methylation in DNA regulatory regions could upregulate oncogenes and downregulate tumor suppressor genes without changing the sequences. However, studies of methylation in the control of gene expression are still inadequate. In the present research, we performed bioinformatics analysis to clarify the function of methylation and supply candidate methylation-related biomarkers and drivers for colon cancer.
AIM To identify and analyze methylation-regulated differentially expressed genes (MeDEGs) in colon cancer by bioinformatics analysis.
METHODS We downloaded RNA expression profiles, Illumina Human Methylation 450K BeadChip data, and clinical data of colon cancer from The Cancer Genome Atlas project. MeDEGs were identified by analyzing the gene expression and methylation levels using the edgeR and limma package in R software. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed in the DAVID database and KEGG Orthology-Based Annotation System 3.0, respectively. We then conducted Kaplan–Meier survival analysis to explore the relationship between methylation and expression and prognosis. Gene set enrichment analysis (GSEA) and investigation of protein-protein interactions (PPI) were performed to clarify the function of prognosis-related genes.
RESULTS A total of 5 up-regulated and 81 down-regulated genes were identified as MeDEGs. GO and KEGG pathway analyses indicated that MeDEGs were enriched in multiple cancer-related terms. Furthermore, Kaplan–Meier survival analysis showed that the prognosis was negatively associated with the methylation status of glial cell-derived neurotrophic factor (GDNF) and reelin (RELN). In PPI networks, GDNF and RELN interact with neural cell adhesion molecule 1. Besides, GDNF can interact with GDNF family receptor alpha (GFRA1), GFRA2, GFRA3, and RET. RELN can interact with RAFAH1B1, disabled homolog 1, very low-density lipoprotein receptor, lipoprotein receptor-related protein 8, and NMDA 2B. Based on GSEA, hypermethylation of GDNF and RELN were both significantly associated with pathways including “RNA degradation,” “ribosome,” “mismatch repair,” “cell cycle” and “base excision repair.”
CONCLUSION Aberrant DNA methylation plays an important role in colon cancer progression. MeDEGs that are associated with the overall survival of patients may be potential targets in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Yu Liang
- Department of Gastrointestinal Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning Province, China
| | - Cheng Zhang
- Department of Gastrointestinal Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning Province, China
| | - Dong-Qiu Dai
- Department of Gastrointestinal Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning Province, China
| |
Collapse
|
5
|
Assessment of structurally and functionally high-risk nsSNPs impacts on human bone morphogenetic protein receptor type IA (BMPR1A) by computational approach. Comput Biol Chem 2019; 80:31-45. [DOI: 10.1016/j.compbiolchem.2019.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/13/2018] [Accepted: 03/11/2019] [Indexed: 12/15/2022]
|
6
|
Fedirko V, Jenab M, Méplan C, Jones JS, Zhu W, Schomburg L, Siddiq A, Hybsier S, Overvad K, Tjønneland A, Omichessan H, Perduca V, Boutron-Ruault MC, Kühn T, Katzke V, Aleksandrova K, Trichopoulou A, Karakatsani A, Kotanidou A, Tumino R, Panico S, Masala G, Agnoli C, Naccarati A, Bueno-de-Mesquita B, Vermeulen RCH, Weiderpass E, Skeie G, Nøst TH, Lujan-Barroso L, Quirós JR, Huerta JM, Rodríguez-Barranco M, Barricarte A, Gylling B, Harlid S, Bradbury KE, Wareham N, Khaw KT, Gunter M, Murphy N, Freisling H, Tsilidis K, Aune D, Riboli E, Hesketh JE, Hughes DJ. Association of Selenoprotein and Selenium Pathway Genotypes with Risk of Colorectal Cancer and Interaction with Selenium Status. Nutrients 2019; 11:E935. [PMID: 31027226 PMCID: PMC6520820 DOI: 10.3390/nu11040935] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022] Open
Abstract
Selenoprotein genetic variations and suboptimal selenium (Se) levels may contribute to the risk of colorectal cancer (CRC) development. We examined the association between CRC risk and genotype for single nucleotide polymorphisms (SNPs) in selenoprotein and Se metabolic pathway genes. Illumina Goldengate assays were designed and resulted in the genotyping of 1040 variants in 154 genes from 1420 cases and 1421 controls within the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Multivariable logistic regression revealed an association of 144 individual SNPs from 63 Se pathway genes with CRC risk. However, regarding the selenoprotein genes, only TXNRD1 rs11111979 retained borderline statistical significance after adjustment for correlated tests (PACT = 0.10; PACT significance threshold was P < 0.1). SNPs in Wingless/Integrated (Wnt) and Transforming growth factor (TGF) beta-signaling genes (FRZB, SMAD3, SMAD7) from pathways affected by Se intake were also associated with CRC risk after multiple testing adjustments. Interactions with Se status (using existing serum Se and Selenoprotein P data) were tested at the SNP, gene, and pathway levels. Pathway analyses using the modified Adaptive Rank Truncated Product method suggested that genes and gene x Se status interactions in antioxidant, apoptosis, and TGF-beta signaling pathways may be associated with CRC risk. This study suggests that SNPs in the Se pathway alone or in combination with suboptimal Se status may contribute to CRC development.
Collapse
Affiliation(s)
- Veronika Fedirko
- Department of Epidemiology, Rollins School of Public Health & Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| | - Mazda Jenab
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, 69372 Lyon, France.
| | - Catherine Méplan
- School of Biomedical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| | - Jeb S Jones
- Department of Epidemiology, Rollins School of Public Health & Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| | - Wanzhe Zhu
- Department of Epidemiology, Rollins School of Public Health & Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, University Medical School, D-13353 Berlin, Germany.
| | - Afshan Siddiq
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London W2 1PG, UK.
| | - Sandra Hybsier
- Institute for Experimental Endocrinology, University Medical School, D-13353 Berlin, Germany.
| | - Kim Overvad
- Department of Public Health, Section for Epidemiology, Aarhus University, 8000 Aarhus, Denmark.
| | - Anne Tjønneland
- Diet, Genes and Environment Unit, Danish Cancer Society Research Center, DK 2100 Copenhagen, Denmark.
| | - Hanane Omichessan
- Faculty of Medicine, CESP, University of Paris-Sud, Faculty of Medicine UVSQ, INSERM, University of Paris-Saclay, 94805 Villejuif, France.
- Centre for Research in Epidemiology and Population Health (CESP), F-94805 Gustave Roussy, Villejuif, France.
| | - Vittorio Perduca
- Faculty of Medicine, CESP, University of Paris-Sud, Faculty of Medicine UVSQ, INSERM, University of Paris-Saclay, 94805 Villejuif, France.
- Centre for Research in Epidemiology and Population Health (CESP), F-94805 Gustave Roussy, Villejuif, France.
- Laboratory of Applied Mathematics, MAP5 (UMR CNRS 8145), University of Paris Descartes, 75270 Paris, France.
| | - Marie-Christine Boutron-Ruault
- Faculty of Medicine, CESP, University of Paris-Sud, Faculty of Medicine UVSQ, INSERM, University of Paris-Saclay, 94805 Villejuif, France.
- Centre for Research in Epidemiology and Population Health (CESP), F-94805 Gustave Roussy, Villejuif, France.
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), 69120 Heidelberg, Germany.
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), 69120 Heidelberg, Germany.
| | - Krasimira Aleksandrova
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany.
| | | | - Anna Karakatsani
- Hellenic Health Foundation, 115 27 Athens, Greece.
- 2nd Pulmonary Medicine Department, School of Medicine, National and Kapodistrian University of Athens, "ATTIKON" University Hospital, 106 79 Haidari, Greece.
| | - Anastasia Kotanidou
- Hellenic Health Foundation, 115 27 Athens, Greece.
- 1st Department of Critical Care Medicine and Pulmonary Services, University of Athens Medical School, Evangelismos Hospital, 106 76 Athens, Greece.
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, Civic M.P. Arezzo Hospital, 97100 Ragusa, Italy.
| | - Salvatore Panico
- Department of Clinical Medicine and Surgery, Federico II University, 80138 Naples, Italy.
| | - Giovanna Masala
- Cancer Risk Factors and Life-Style Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, 50141 Florence, Italy.
| | - Claudia Agnoli
- Epidemiology and Prevention Unit, IRCCS Foundation National Cancer Institute, 20133 Milan, Italy.
| | - Alessio Naccarati
- Molecular and Genetic Epidemiology Unit, Italian Institute for Genomic Medicine (IIGM) Torino, 10126 Torino, Italy.
| | - Bas Bueno-de-Mesquita
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London W2 1PG, UK.
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), 3720 Bilthoven, The Netherlands.
- Department of Gastroenterology and Hepatology, University Medical Centre, 3584 CX Utrecht, The Netherlands.
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Roel C H Vermeulen
- Institute of Risk Assessment Sciences, Utrecht University, 3512 JE Utrecht, The Netherlands.
| | - Elisabete Weiderpass
- Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, N-0304 Oslo, Norway.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, SE-171 77 Stockholm, Sweden.
- Genetic Epidemiology Group, Folkhälsan Research Center, and Faculty of Medicine, Helsinki University, 00014 Helsinki, Finland.
- Department of Community Medicine, University of Tromsø, The Arctic University of Norway, 9019 Tromsø, Norway.
| | - Guri Skeie
- Department of Community Medicine, University of Tromsø, The Arctic University of Norway, 9019 Tromsø, Norway.
| | - Therese Haugdahl Nøst
- Department of Community Medicine, University of Tromsø, The Arctic University of Norway, 9019 Tromsø, Norway.
| | - Leila Lujan-Barroso
- Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO-IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - J Ramón Quirós
- EPIC Asturias, Public Health Directorate, 33006 Oviedo, Asturias, Spain.
| | - José María Huerta
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, 30008 Murcia, Spain.
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain.
| | - Miguel Rodríguez-Barranco
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain.
- Andalucia School of Public Health, Institute for Biosanitary Research, University Hospital of Granada, University of Granada, 18011 Granada, Spain.
| | - Aurelio Barricarte
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain.
- Epidemiology, Prevention and Promotion Health Service, Navarra Public Health Institute, 31003 Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain.
| | - Björn Gylling
- Department of Medical Biosciences, Pathology, Umea University, 901 87 Umea, Sweden.
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology, Umea University, 901 87 Umea, Sweden.
| | - Kathryn E Bradbury
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK.
| | - Nick Wareham
- MRC Epidemiology Unit, University of Cambridge, CB2 0QQ Cambridge, UK.
| | - Kay-Tee Khaw
- School of Clinical Medicine, University of Cambridge, Clinical Gerontology Unit, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Marc Gunter
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, 69372 Lyon, France.
| | - Neil Murphy
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, 69372 Lyon, France.
| | - Heinz Freisling
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, 69372 Lyon, France.
| | - Kostas Tsilidis
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London W2 1PG, UK.
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, 45110 Ioannina, Greece.
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London W2 1PG, UK.
- Department of Nutrition, Bjørknes University College, 0456 Oslo, Norway.
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, 0372 Oslo, Norway.
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London W2 1PG, UK.
| | - John E Hesketh
- School of Biomedical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| | - David J Hughes
- Cancer Biology and Therapeutics Group, UCD Conway Institute, School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8 Dublin, Ireland.
| |
Collapse
|
7
|
Slattery ML, Trivellas A, Pellatt AJ, Mullany LE, Stevens JR, Wolff RK, Herrick JS. Genetic variants in the TGFβ-signaling pathway influence expression of miRNAs in colon and rectal normal mucosa and tumor tissue. Oncotarget 2017; 8:16765-16783. [PMID: 28061442 PMCID: PMC5370000 DOI: 10.18632/oncotarget.14508] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/16/2016] [Indexed: 01/04/2023] Open
Abstract
The TGF-β signaling pathway is involved in regulation of cell growth, angiogenesis, and metastasis. We test the hypothesis that genetic variation in the TGF-β signaling pathway alters miRNA expression.We use data from 1188 colorectal cancer cases to evaluate associations between 80 SNPs in 21 genes.Seven variants eIF4E rs12498533, NFκB1 rs230510, TGFB1 rs4803455, TGFBR1 rs1571590 and rs6478974, SMAD3 rs3743343, and RUNX1 rs8134179 were associated with expression level of miRNAs in normal colorectal mucosa. RUNX2 rs12333172 and BMPR1B rs13134042 were associated with miRNAs in normal colon mucosa; eIF4EBP3 rs250425, SMAD3 rs12904944, SMAD7 rs3736242, and PTEN rs532678 were associated with miRNA expression in normal rectal mucosa. Evaluation of the differential expression between carcinoma and normal mucosa showed that SMAD3 rs12708491 and rs2414937, NFκB1 rs230510 and rs3821958, and RUNX3 rs6672420 were associated with several miRNAs for colorectal carcinoma. Evaluation of site-specific differential miRNA expression showed that BMPR1B rs2120834, BMPR2 rs2228545, and eIF4EBP3 rs250425 were associated with differential miRNA expression in colon tissue and SMAD3 rs12901071, rs1498506, and rs2414937, BMPR2 rs2228545, and RUNX2 rs2819854, altered differential miRNA expression in rectal tissue.These data support the importance of the TGF-β signaling pathway to the carcinogenic process, possibly through their influence on miRNA expression levels.
Collapse
Affiliation(s)
- Martha L Slattery
- Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | | | | | - Lila E Mullany
- Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - John R Stevens
- Department of Mathematics and Statistics, Utah State University, Logan, Utah, USA
| | - Roger K Wolff
- Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | | |
Collapse
|
8
|
Johnson MD. Transforming Growth Factor Beta Family in the Pathogenesis of Meningiomas. World Neurosurg 2017; 104:113-119. [DOI: 10.1016/j.wneu.2017.03.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/09/2017] [Accepted: 03/14/2017] [Indexed: 01/01/2023]
|
9
|
Liu RX, Ren WY, Ma Y, Liao YP, Wang H, Zhu JH, Jiang HT, Wu K, He BC, Sun WJ. BMP7 mediates the anticancer effect of honokiol by upregulating p53 in HCT116 cells. Int J Oncol 2017; 51:907-917. [PMID: 28731124 DOI: 10.3892/ijo.2017.4078] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/14/2017] [Indexed: 11/06/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death. Hence, there is a great need to explore new efficacious drugs for the treatment of CRC. Honokiol (HNK), a natural product extracted from magnolia bark, processes various biological activities, including anticancer. In this study, we introduced cell viability assay, western blotting, real-time PCR and immunofluorescent staining to determine the anticancer effect of HNK, and the possible mechanism underlying this biological process. We found that HNK can inhibit the proliferation and induce apoptosis in HCT116 cells in a concentration- and time-dependent manner. HNK activates p53 in HCT116 and other colon cancer cells. Exogenous p53 potentiates the anticancer of HNK, while p53 inhibitor decreases this effect of HNK. Moreover, HNK upregulates the expression of bone morphogenetic protein 7 (BMP7) in colon cancer cells; Exogenous BMP7 enhances the anticancer activity of HNK and BMP7 specific antibody reduces this effect of HNK. For mechanism, we found that HNK cannot increase the level of Smad1/5/8; Exogenous BMP7 potentiates the HNK-induced activation of p53. On the contrary, BMP7 specific antibody inhibits the HNK-induced activation of p53 in colon cancer cells and partly decreases the total level of p53. Our findings suggested that HNK may be a promising anticancer drug for CRC; activation of p53 plays an important role in the anticancer activity of HNK, which may be initialized partly by the HNK-induced upregulation of BMP7.
Collapse
Affiliation(s)
- Rong-Xing Liu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wen-Yan Ren
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yan Ma
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yun-Peng Liao
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Han Wang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jia-Hui Zhu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hai-Tao Jiang
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ke Wu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Bai-Cheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wen-Juan Sun
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
10
|
Shi Y, Chen GB, Huang XX, Xiao CX, Wang HH, Li YS, Zhang JF, Li S, Xia Y, Ren JL, Guleng B. Dragon (repulsive guidance molecule b, RGMb) is a novel gene that promotes colorectal cancer growth. Oncotarget 2016; 6:20540-54. [PMID: 26029998 PMCID: PMC4653024 DOI: 10.18632/oncotarget.4110] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 04/21/2015] [Indexed: 12/27/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a major cause of cancer death. However, the molecular mechanisms underlying CRC initiation, growth and metastasis are poorly understood. Dragon (RGMb), a member of the repulsive guidance molecule (RGM) family, has been recently identified as a co-receptor for bone morphogenetic protein (BMP) signaling, but the role of Dragon in CRC development is undefined. Here, we show that Dragon expression was increased in colon cancer tissues compared to control tissues in CAC mouse model and in human patients. Dragon promoted proliferation of CT26.WT and CMT93 colon cancer cells and accelerated tumor growth in the xenograft mouse model. Dragon's action on colon cancer development was mediated via the BMP4-Smad1/5/8 and Erk1/2 pathways. Therefore, our results have revealed that Dragon is a novel gene that promotes CRC growth through the BMP pathway. Dragon may be exploited as a potential therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Ying Shi
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China
| | - Guo-Bin Chen
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China
| | - Xiao-Xiao Huang
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China
| | - Chuan-Xing Xiao
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China
| | - Huan-Huan Wang
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China
| | - Ye-Sen Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian Province, China.,Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Jin-Fang Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Shao Li
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
| | - Yin Xia
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.,School of Biomedical Sciences Core Laboratory, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Jian-Lin Ren
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China
| | - Bayasi Guleng
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China.,Faculty of Clinical Medicine, Medical College, Xiamen University, Xiamen, Fujian Province, China.,State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian Province, China
| |
Collapse
|
11
|
Slattery ML, Pellatt DF, Wolff RK, Lundgreen A. Genes, environment and gene expression in colon tissue: a pathway approach to determining functionality. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2016; 7:45-57. [PMID: 27186328 PMCID: PMC4858616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/19/2015] [Indexed: 06/05/2023]
Abstract
Genetic and environmental factors have been shown to work together to alter cancer risk. In this study we evaluate previously identified gene and lifestyle interactions in a candidate pathway that were associated with colon cancer risk to see if these interactions altered gene expression. We analyzed non-tumor RNA-seq data from 144 colon cancer patients who had genotype, recent cigarette smoking, diet, body mass index (BMI), and recent aspirin/non-steroidal anti-inflammatory use data. Using a false discovery rate of 0.1, we evaluated differential gene expression between high and low levels of lifestyle exposure and genotypes using DESeq2. Thirteen pathway genes and 17 SNPs within those genes were associated with altered expression of other genes in the pathway. BMI, NSAIDs use and dietary components of the oxidative balance score (OBS) also were associated with altered gene expression. SNPs previously identified as interacting with these lifestyle factors, altered expression of pathway genes. NSAIDs interacted with 10 genes (15 SNPs) within those genes to alter expression of 28 pathway genes; recent cigarette smoking interacted with seven genes (nine SNPs) to alter expression of 27 genes. BMI interacted with FLT1, KDR, SEPN1, TERT, TXNRD2, and VEGFA to alter expression of eight genes. Three genes (five SNPs) interacted with OBS to alter expression of 12 genes. These data provide support for previously identified lifestyle and gene interactions associated with colon cancer in that they altered expression of key pathway genes. The need to consider lifestyle factors in conjunction with genetic factors is illustrated.
Collapse
Affiliation(s)
- Martha L Slattery
- Department of Internal Medicine, 383 Colorow, University of Utah School of Medicine Salt Lake, USA
| | - Daniel F Pellatt
- Department of Internal Medicine, 383 Colorow, University of Utah School of Medicine Salt Lake, USA
| | - Roger K Wolff
- Department of Internal Medicine, 383 Colorow, University of Utah School of Medicine Salt Lake, USA
| | - Abbie Lundgreen
- Department of Internal Medicine, 383 Colorow, University of Utah School of Medicine Salt Lake, USA
| |
Collapse
|
12
|
Sharafeldin N, Slattery ML, Liu Q, Franco-Villalobos C, Caan BJ, Potter JD, Yasui Y. A Candidate-Pathway Approach to Identify Gene-Environment Interactions: Analyses of Colon Cancer Risk and Survival. J Natl Cancer Inst 2015; 107:djv160. [PMID: 26072521 DOI: 10.1093/jnci/djv160] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/13/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Genetic association studies have traditionally focused on associations between individual single nucleotide polymorphisms (SNPs) and disease. Standard analysis ignores interactions between multiple SNPs and environmental exposures explaining a small portion of disease heritability: the often-cited issue of "missing heritability." METHODS We present a novel three-step analytic framework for modeling gene-environment interactions (GEIs) between an angiogenesis candidate-gene pathway and three lifestyle exposures (dietary protein, smoking, and alcohol consumption) on colon cancer risk and survival. Logic regression was used to summarize the gene-pathway effects, and GEIs were modeled using logistic regression and Cox proportional hazards models. We analyzed data from 1541 colon cancer case patients and 1934 control subjects in the Diet, Activity and Lifestyle as a Risk Factor for Colon Cancer Study. RESULTS We identified five statistically significant GEIs for colon cancer risk. For risk interaction, odds ratios (ORINT) and 95% confidence intervals (CIs) were FLT1(rs678714) and BMP4(rs17563) and smoking (ORINT = 1.64, 95% CI = 1.11 to 2.41 and ORINT = 1.60, 95% CI = 1.10 to 2.32, respectively); FLT1(rs2387632 OR rs9513070) and protein intake (ORINT = 1.69, 95% CI = 1.03 to 2.77); KDR(rs6838752) and TLR2(rs3804099) and alcohol (ORINT = 1.53, 95% CI = 1.10 to 2.13 and ORINT = 1.59, 95% CI = 1.05 to 2.38, respectively). Three GEIs between TNF, BMP1, and BMPR2 genes and the three exposures were statistically significant at the 5% level in relation to colon cancer survival but not after multiple-testing adjustment. CONCLUSIONS Adopting a comprehensive biologically informed candidate-pathway approach identified GEI effects on colon cancer. Findings may have important implications for public health and personalized medicine targeting prevention and therapeutic strategies. Findings from this study need to be validated in other studies.
Collapse
Affiliation(s)
- Noha Sharafeldin
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada (NS, QL, CFV, YY); Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, UT (MLS); Division of Research, Kaiser Permanente Medical Care Program, Oakland, CA (BJC); Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA (JDP); Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA (JDP); Centre for Public Health Research, Massey University, Wellington, New Zealand (JDP)
| | - Martha L Slattery
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada (NS, QL, CFV, YY); Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, UT (MLS); Division of Research, Kaiser Permanente Medical Care Program, Oakland, CA (BJC); Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA (JDP); Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA (JDP); Centre for Public Health Research, Massey University, Wellington, New Zealand (JDP)
| | - Qi Liu
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada (NS, QL, CFV, YY); Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, UT (MLS); Division of Research, Kaiser Permanente Medical Care Program, Oakland, CA (BJC); Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA (JDP); Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA (JDP); Centre for Public Health Research, Massey University, Wellington, New Zealand (JDP)
| | - Conrado Franco-Villalobos
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada (NS, QL, CFV, YY); Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, UT (MLS); Division of Research, Kaiser Permanente Medical Care Program, Oakland, CA (BJC); Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA (JDP); Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA (JDP); Centre for Public Health Research, Massey University, Wellington, New Zealand (JDP)
| | - Bette J Caan
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada (NS, QL, CFV, YY); Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, UT (MLS); Division of Research, Kaiser Permanente Medical Care Program, Oakland, CA (BJC); Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA (JDP); Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA (JDP); Centre for Public Health Research, Massey University, Wellington, New Zealand (JDP)
| | - John D Potter
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada (NS, QL, CFV, YY); Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, UT (MLS); Division of Research, Kaiser Permanente Medical Care Program, Oakland, CA (BJC); Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA (JDP); Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA (JDP); Centre for Public Health Research, Massey University, Wellington, New Zealand (JDP)
| | - Yutaka Yasui
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada (NS, QL, CFV, YY); Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, UT (MLS); Division of Research, Kaiser Permanente Medical Care Program, Oakland, CA (BJC); Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA (JDP); Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA (JDP); Centre for Public Health Research, Massey University, Wellington, New Zealand (JDP).
| |
Collapse
|
13
|
Morris EJA, Penegar S, Whiffin N, Broderick P, Bishop DT, Northwood E, Quirke P, Finan P, Houlston RS. A retrospective observational study of the relationship between single nucleotide polymorphisms associated with the risk of developing colorectal cancer and survival. PLoS One 2015; 10:e0117816. [PMID: 25710502 PMCID: PMC4339731 DOI: 10.1371/journal.pone.0117816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/31/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND There is variability in clinical outcome for patients with apparently the same stage colorectal cancer (CRC). Single nucleotide polymorphisms (SNPs) mapping to chromosomes 1q41, 3q26.2, 6p21, 8q23.3, 8q24.21, 10p14, 11q13, 11q23.1, 12q13.13, 14q22, 14q22.2, 15q13.3, 16q22.1, 18q21.1, 19q13.11, 20p12, 20p12.3, 20q13.33 and Xp22 have robustly been shown to be associated with the risk of developing CRC. Since germline variation can also influence patient outcome the relationship between these SNPs and patient survivorship from CRC was examined. METHODS All enrolled into the National Study of Colorectal Cancer Genetics (NSCCG) were genotyped for 1q41, 3q26.2, 6p21, 8q23.3, 8q24.21, 10p14, 11q13, 11q23.1, 12q13.13, 14q22, 14q22.2, 15q13.3, 16q22.1, 18q21.1, 19q13.11, 20p12, 20p12.3, 20q13.33 and xp22 SNPs. Linking this information to the National Cancer Data Repository allowed patient genotype to be related to survival. RESULTS The linked dataset consisted of 4,327 individuals. 14q22.22 genotype defined by the SNP rs4444235 showed a significant association with overall survival. Specifically, the C allele was associated with poorer observed survival (per allele hazard ratio 1.13, 95% confidence interval 1.05-1.22, P = 0.0015). CONCLUSION The CRC susceptibility SNP rs4444235 also appears to exert an influence in modulating patient survival and warrants further evaluation as a potential prognostic marker.
Collapse
Affiliation(s)
- Eva J. A. Morris
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Steve Penegar
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey, SM2 5NG, United Kingdom
| | - Nicola Whiffin
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey, SM2 5NG, United Kingdom
| | - Peter Broderick
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey, SM2 5NG, United Kingdom
| | - D. Timothy Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Emma Northwood
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Philip Quirke
- Pathology and Tumour Biology, Leeds Institute of Cancer and Pathology, Level 4 Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, United Kingdom
| | - Paul Finan
- John Goligher Colorectal Unit, Leeds Teaching Hospitals, St James’s University Hospital, Beckett Street, Leeds, LS9 7TF, United Kingdom
- National Cancer Intelligence Network, 18 Floor Portland House, Bressenden Place, London, SW1E 5RS, United Kingdom
| | - Richard S. Houlston
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey, SM2 5NG, United Kingdom
| |
Collapse
|
14
|
Wang RN, Green J, Wang Z, Deng Y, Qiao M, Peabody M, Zhang Q, Ye J, Yan Z, Denduluri S, Idowu O, Li M, Shen C, Hu A, Haydon RC, Kang R, Mok J, Lee MJ, Luu HL, Shi LL. Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis 2014; 1:87-105. [PMID: 25401122 PMCID: PMC4232216 DOI: 10.1016/j.gendis.2014.07.005] [Citation(s) in RCA: 691] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 02/06/2023] Open
Abstract
Bone Morphogenetic Proteins (BMPs) are a group of signaling molecules that belongs to the Transforming Growth Factor-β (TGF-β) superfamily of proteins. Initially discovered for their ability to induce bone formation, BMPs are now known to play crucial roles in all organ systems. BMPs are important in embryogenesis and development, and also in maintenance of adult tissue homeostasis. Mouse knockout models of various components of the BMP signaling pathway result in embryonic lethality or marked defects, highlighting the essential functions of BMPs. In this review, we first outline the basic aspects of BMP signaling and then focus on genetically manipulated mouse knockout models that have helped elucidate the role of BMPs in development. A significant portion of this review is devoted to the prominent human pathologies associated with dysregulated BMP signaling.
Collapse
Affiliation(s)
- Richard N. Wang
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jordan Green
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zhongliang Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Youlin Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Min Qiao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Michael Peabody
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Qian Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Jixing Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Bioengineering, Chongqing University, Chongqing, China
| | - Zhengjian Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Sahitya Denduluri
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Olumuyiwa Idowu
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Melissa Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Christine Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Alan Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Richard Kang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - James Mok
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue L. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
15
|
Zhang Y, Chen X, Qiao M, Zhang BQ, Wang N, Zhang Z, Liao Z, Zeng L, Deng Y, Deng F, Zhang J, Yin L, Liu W, Zhang Q, Ya Z, Ye J, Wang Z, Zhou L, Luu HH, Haydon RC, He TC, Zhang H. Bone morphogenetic protein 2 inhibits the proliferation and growth of human colorectal cancer cells. Oncol Rep 2014; 32:1013-20. [PMID: 24993644 PMCID: PMC4121423 DOI: 10.3892/or.2014.3308] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/06/2014] [Indexed: 01/27/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most deadly cancers worldwide. Significant progress has been made in understanding the molecular pathogenesis of CRC, which has led to successful early diagnosis, surgical intervention and combination chemotherapy. However, limited therapeutic options are available for metastatic and/or drug-resistant CRC. While the aberrantly activated Wnt/β-catenin pathway plays a critical initiating role in CRC development, disruption of the bone morphogenetic protein (BMP) pathway causes juvenile polyposis syndrome, suggesting that BMP signaling may play a role in CRC development. However, conflicting results have been reported concerning the possible roles of BMP signaling in sporadic colon cancer. Here, we investigated the effect of BMP2 on the proliferation, migration, invasiveness and tumor growth capability of human CRC cells. Using an adenovirus vector that overexpresses BMP2 and the piggyBac transposon-mediated stable BMP2 overexpression CRC line, we found that exogenous BMP2 effectively inhibited HCT116 cell proliferation and colony formation. BMP2 was shown to suppress colon cancer cell migration and invasiveness. Under a low serum culture condition, forced expression of BMP2 induced a significantly increased level of apoptosis in HCT116 cells. Using a xenograft tumor model, we found that forced expression of BMP2 in HCT116 cells suppressed tumor growth, accompanied by decreased cell proliferation activity. Taken together, our results strongly suggest that BMP2 plays an important inhibitory role in governing the proliferation and aggressive features of human CRC cells.
Collapse
Affiliation(s)
- Yunyuan Zhang
- Ministry of Education Key Laboratory of Clinical Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xian Chen
- Ministry of Education Key Laboratory of Clinical Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Min Qiao
- Ministry of Education Key Laboratory of Clinical Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Bing-Qiang Zhang
- Ministry of Education Key Laboratory of Clinical Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ning Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zhonglin Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zhan Liao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Liyi Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Youlin Deng
- Ministry of Education Key Laboratory of Clinical Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Fang Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Junhui Zhang
- Ministry of Education Key Laboratory of Clinical Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Liangjun Yin
- Ministry of Education Key Laboratory of Clinical Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wei Liu
- Ministry of Education Key Laboratory of Clinical Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qian Zhang
- Ministry of Education Key Laboratory of Clinical Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhengjian Ya
- Ministry of Education Key Laboratory of Clinical Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jixing Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zhongliang Wang
- Ministry of Education Key Laboratory of Clinical Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lan Zhou
- Ministry of Education Key Laboratory of Clinical Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Ministry of Education Key Laboratory of Clinical Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hongyu Zhang
- Ministry of Education Key Laboratory of Clinical Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
16
|
Dietlein F, Eschner W. Inferring primary tumor sites from mutation spectra: a meta-analysis of histology-specific aberrations in cancer-derived cell lines. Hum Mol Genet 2013; 23:1527-37. [PMID: 24163242 DOI: 10.1093/hmg/ddt539] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Next-generation sequencing technologies have led to profound characterization of mutation spectra for several cancer types. Hence, we sought to systematically compare genomic aberrations between primary tumors and cancer lines. For this, we compiled publically available sequencing data of 1651 genes across 905 cell lines. We used them to characterize 23 distinct primary tumor sites by a novel approach that is based on Bayesian spam-filtering techniques. Thereby, we confirmed the strong overall similarity of alterations between patient samples and cell culture. However, we also identified several suspicious mutations, which had not been associated with their cancer types before. Based on these characterizations, we developed the inferring cancer origins from mutation spectra (ICOMS) tool. On our cell line collection, the algorithm reached a prediction specificity rate of 79%, which strongly variegated between primary cancer sites. On an independent validation cohort of 431 primary tumor samples, we observed a similar accuracy of 71%. Additionally, we found that ICOMS could be employed to deduce further attributes from mutation spectra, including sub-histology and compound sensitivity. Thus, thorough classification of site-specific mutation spectra for cell lines may decipher further genome-phenotype associations in cancer.
Collapse
|
17
|
Slattery ML, John EM, Torres-Mejia G, Herrick JS, Giuliano AR, Baumgartner KB, Hines LM, Wolff RK. Genetic variation in bone morphogenetic proteins and breast cancer risk in hispanic and non-hispanic white women: The breast cancer health disparities study. Int J Cancer 2012. [PMID: 23180569 DOI: 10.1002/ijc.27960] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Bone morphogenetic proteins (BMP) are thought to be important in breast cancer promotion and progression. We evaluated genetic variation in BMP-related genes and breast cancer risk among Hispanic (2,111 cases, 2,597 controls) and non-Hispanic White (NHW) (1,481 cases, 1,586 controls) women who participated in the 4-Corner's Breast Cancer Study, the Mexico Breast Cancer Study and the San Francisco Bay Area Breast Cancer Study. BMP genes and their receptors evaluated include ACVR1, AVCR2A, ACVR2B, ACVRL1, BMP1, BMP2, BMP4, BMP6, BMP7, BMPR1A, BMPR1B, BMPR2, MSTN and GDF10. Additionally, 104 ancestral informative markers were assessed to discriminate between European and native American ancestry. The importance of estrogen on BMP-related associations was suggested through unique associations by menopausal status and estrogen (ER) and progesterone (PR) receptor status of tumors. After adjustment for multiple comparisons ACVR1 (8 SNPs) was modestly associated with ER+PR+ tumors [odds ratios (ORs) between 1.18 and 1.39 padj < 0.05]. ACVR1 (3 SNPs) and BMP4 (3 SNPs) were associated with ER+PR- tumors (ORs 0.59-2.07; padj < 0.05). BMPR2 was associated with ER-PR+ tumors (OR 4.20; 95% CI 1.62, 10.91; padj < 0.05) as was GDF10 (2 SNPs; ORs 3.62 and 3.85; padj < 0.05). After adjustment for multiple comparisons several SNPs remained associated with ER-PR- tumors (padj < 0.05) including ACVR1 BMP4 and GDF10 (ORs between 0.53 and 2.12). Differences in association also were observed by percentage of native ancestry and menopausal status. Results support the hypothesis that genetic variation in BMPs is associated with breast cancer in this admixed population.
Collapse
Affiliation(s)
- Martha L Slattery
- Department of Medicine, University of Utah, Salt Lake City, Utah 84108, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Bone morphogenetic protein 4-a fascinating regulator of cancer cell behavior. Cancer Genet 2012; 205:267-77. [PMID: 22749032 DOI: 10.1016/j.cancergen.2012.05.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/17/2012] [Accepted: 05/18/2012] [Indexed: 02/07/2023]
Abstract
Bone morphogenetic proteins (BMPs) are extracellular signaling molecules that belong to the transforming growth factor β (TGFβ) superfamily and are well-known for their indispensable roles in vertebrate development. In recent years, important new information has been generated on the contribution of BMP family members, such as BMP4, in cancer pathogenesis. First of all, BMP4 gene variants have been shown to predispose to colorectal cancer. In sporadic cancer, BMP4 expression levels are commonly altered in many tumor types and have been linked to patient prognosis in hepatocellular and ovarian cancer. In terms of BMP4 function in cancer cells, the majority of studies demonstrate that BMP4 suppresses cell growth both in vitro and in vivo, and at the same time is able to induce migration, invasion, and epithelial-mesenchymal transition. These latter phenotypes are typically associated with cancer metastasis and progression, and thus BMP4 seems to elicit effects that are both detrimental and beneficial for the cancer cells. The functional effects of BMP4 are not restricted to the control of cell proliferation and mobility, since it also contributes to the regulation of differentiation, apoptosis, and angiogenesis. The latter is especially intriguing since the formation of new blood vessels is a prerequisite for sustained tumor growth and cancer progression. Mainly due to its growth suppressive abilities, BMP4 has been suggested as a possible therapeutic target in cancer cells. However, the other functional characteristics of BMP4, especially the promotion of cell mobility, make such strategies less appealing. Improved knowledge of the downstream mediators of BMP4 effects in cancer cells may allow dissection of the different BMP4-induced phenotypes and thereby generation of specific targeted therapies.
Collapse
|
19
|
NELL-1-dependent mineralisation of Saos-2 human osteosarcoma cells is mediated via c-Jun N-terminal kinase pathway activation. INTERNATIONAL ORTHOPAEDICS 2012; 36:2181-7. [PMID: 22797704 DOI: 10.1007/s00264-012-1590-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 05/22/2012] [Indexed: 12/22/2022]
Abstract
PURPOSE NELL-1 is a novel osteoinductive growth factor that has shown promising results for the regeneration of bone. Moreover, NELL-1 has been used successfully in bone regeneration in the axial, appendicular and calvarial skeleton of both small and large animal models. Despite increasing evidence of NELL-1 efficacy and future usefulness as an alternative to traditional bone graft substitutes, much has yet to be understood regarding the mechanisms of action of this novel protein. The activation of the mitogen-activated protein kinase (MAPK) pathway has been well studied in the setting of growth factor-mediated changes in osteogenic differentiation. METHODS In this study, we provide evidence of the involvement of MAPK signalling pathways in NELL-1-induced terminal osteogenic differentiation of Saos-2 human osteosarcoma cells. Activation of extracellular signal-regulated kinase (ERK1/2), P38 and c-Jun N-terminal kinase (JNK) pathways were screened with MAPK signalling protein array after recombinant human (rh)NELL-1 treatment. Next, the mineralisation and intracellular phosphate levels after rhNELL-1 stimulation were assessed in the presence or absence of specific MAPK inhibitors. RESULTS Results showed that rhNELL-1 predominantly increased JNK pathway activation. Moreover, the specific JNK inhibitor SP600125 blocked rhNELL-1-induced mineralisation and intracellular phosphate accumulation, whereas ERK1/2 and P38 inhibitors showed no effect. CONCLUSIONS Thus, activation of the JNK pathway is necessary to mediate terminal osteogenic differentiation of Saos-2 osteosarcoma cells by rhNELL-1. Future studies will extend these in vitro mechanisms to the in vivo effects of NELL-1 in dealing with orthopaedic defects caused by skeletal malignancies or other aetiologies.
Collapse
|
20
|
Slattery ML, Lundgreen A, Wolff RK, Herrick JS, Caan BJ. Genetic variation in the transforming growth factor-β-signaling pathway, lifestyle factors, and risk of colon or rectal cancer. Dis Colon Rectum 2012; 55:532-40. [PMID: 22513431 PMCID: PMC3652588 DOI: 10.1097/dcr.0b013e31824b5feb] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The transforming growth factor-β-signaling pathway has been identified as being involved in colorectal cancer. OBJECTIVE The aim of this study was to determine how diet and lifestyle factors in combination with genetic variation in the transforming growth factor-β-signaling pathway alters colorectal cancer risk. DESIGN We used data from 2 population-based case-control studies. PATIENTS Participants included patients with colon cancer (n = 1574) and controls (n = 1970) and patients with rectal cancer ( n = 791) and controls (n = 999). MAIN OUTCOME MEASURES The primary outcomes measured were newly diagnosed cases of colon or rectal cancer. RESULTS Colon and rectal cancer risk increased with the number of at-risk genotypes within the transforming growth factor-β-signaling pathway (OR 3.68, 95% CI 2.74,4.94 for colon cancer; OR 3.89, 95% CI 2.66,5.69 for rectal cancer). A high at-risk lifestyle score also resulted in significant increased risk with number of at-risk lifestyle factors (OR 2.99, 95% CI 2.32,3.85 for colon cancer; OR 3.37, 95% CI 2.24,5.07 for rectal cancer). The combination of high-risk genotype and high-risk lifestyle results in the greatest increase in risk (OR 7.89, 95% CI 4.45,13.96 for colon cancer; OR 8.75, 95% CI 3.66,20.89 for rectal cancer). LIMITATIONS The study results need validation in other large studies of colon and rectal cancer. CONCLUSIONS In summary, our data suggest that there is increased colon and rectal cancer risk with increasing number of at-risk genotypes and at-risk lifestyle factors. Although the integrity of the pathway can be diminished by a number of high-risk genotypes, this risk can be offset, in part, by maintaining a healthy lifestyle.
Collapse
Affiliation(s)
- Martha L Slattery
- Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, USA.
| | | | | | | | | |
Collapse
|
21
|
Gaj P, Maryan N, Hennig EE, Ledwon JK, Paziewska A, Majewska A, Karczmarski J, Nesteruk M, Wolski J, Antoniewicz AA, Przytulski K, Rutkowski A, Teumer A, Homuth G, Starzyńska T, Regula J, Ostrowski J. Pooled sample-based GWAS: a cost-effective alternative for identifying colorectal and prostate cancer risk variants in the Polish population. PLoS One 2012; 7:e35307. [PMID: 22532847 PMCID: PMC3331859 DOI: 10.1371/journal.pone.0035307] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/13/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) and colorectal cancer (CRC) are the most commonly diagnosed cancers and cancer-related causes of death in Poland. To date, numerous single nucleotide polymorphisms (SNPs) associated with susceptibility to both cancer types have been identified, but their effect on disease risk may differ among populations. METHODS To identify new SNPs associated with PCa and CRC in the Polish population, a genome-wide association study (GWAS) was performed using DNA sample pools on Affymetrix Genome-Wide Human SNP 6.0 arrays. A total of 135 PCa patients and 270 healthy men (PCa sub-study) and 525 patients with adenoma (AD), 630 patients with CRC and 690 controls (AD/CRC sub-study) were included in the analysis. Allele frequency distributions were compared with t-tests and χ(2)-tests. Only those significantly associated SNPs with a proxy SNP (p<0.001; distance of 100 kb; r(2)>0.7) were selected. GWAS marker selection was conducted using PLINK. The study was replicated using extended cohorts of patients and controls. The association with previously reported PCa and CRC susceptibility variants was also examined. Individual patients were genotyped using TaqMan SNP Genotyping Assays. RESULTS The GWAS selected six and 24 new candidate SNPs associated with PCa and CRC susceptibility, respectively. In the replication study, 17 of these associations were confirmed as significant in additive model of inheritance. Seven of them remained significant after correction for multiple hypothesis testing. Additionally, 17 previously reported risk variants have been identified, five of which remained significant after correction. CONCLUSION Pooled-DNA GWAS enabled the identification of new susceptibility loci for CRC in the Polish population. Previously reported CRC and PCa predisposition variants were also identified, validating the global nature of their associations. Further independent replication studies are required to confirm significance of the newly uncovered candidate susceptibility loci.
Collapse
Affiliation(s)
- Pawel Gaj
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Natalia Maryan
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Ewa E. Hennig
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw, Poland
- Department of Oncological Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Joanna K. Ledwon
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Agnieszka Paziewska
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Aneta Majewska
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Jakub Karczmarski
- Department of Oncological Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Monika Nesteruk
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Jan Wolski
- Department of Urology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Artur A. Antoniewicz
- Department of Urology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Krzysztof Przytulski
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw, Poland
- Department of Oncological Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Andrzej Rutkowski
- Department of Colorectal Cancer, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Alexander Teumer
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Teresa Starzyńska
- Department of Gastroenterology, Pomeranian Medical University, Szczecin, Poland
| | - Jaroslaw Regula
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw, Poland
- Department of Oncological Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw, Poland
- Department of Oncological Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
- * E-mail:
| |
Collapse
|
22
|
Guo X, Xiong L, Zou L, Zhao J. Upregulation of bone morphogenetic protein 4 is associated with poor prognosis in patients with hepatocellular carcinoma. Pathol Oncol Res 2012; 18:635-40. [PMID: 22350792 DOI: 10.1007/s12253-011-9488-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 12/02/2011] [Indexed: 12/18/2022]
Abstract
Bone morphogenetic protein (BMP) 4 plays a crucial role in tumor invasion and metastasis of various human cancers. However, little is known about the correlation of BMP4 expression with clinical aggressiveness and prognosis in hepatocellular carcinoma (HCC). The aim of this study was to investigate the expression of BMP4 in HCC and determine its correlation with tumor progression and prognosis. Immunohistochemistry assay was used to determine the expression of BMP4 in HCC and corresponding paracarcinomatous tissues from 156 patients. The potential prognostic value of BMP4 was investigated by comparing the survival rates between the BMP4-positive and BMP4-negative HCC patients. Immunohistochemically, BMP4 protein expression in the HCC tissues (120/156, 76.9%) was significantly higher than that in the paracarcinomatous tissues (19/156, 12.2%, P < 0.01). The expression of BMP4 in HCC was associated with number of tumor nodules (P = 0.02), Edmondson grade (P = 0.03), TNM stage (P = 0.009), and vascular invasion (P = 0.006). In univariate survival analysis, the significant associations of the BMP4 protein overexpression with shortened patients' overall and disease-free survival were found (P = 0.001 and 0.006, respectively). Furthermore, its expression was found to be an independent factor for predicting both overall (P = 0.009) and disease-free survival (P = 0.022) of HCC in multivariate analysis. Our data suggest for the first time that BMP4 is overexpressed in HCC tissues and may also act as a novel marker for predicting the recurrence and prognosis of HCC patients after surgery.
Collapse
Affiliation(s)
- Xiaodong Guo
- Chinese PLA Postgraduate Medical School, Beijing 100853, China
| | | | | | | |
Collapse
|
23
|
Slattery ML, Lundgreen A, Herrick JS, Wolff RK, Caan BJ. Genetic variation in the transforming growth factor-β signaling pathway and survival after diagnosis with colon and rectal cancer. Cancer 2011; 117:4175-83. [PMID: 21365634 DOI: 10.1002/cncr.26018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/12/2011] [Accepted: 02/01/2011] [Indexed: 01/10/2023]
Abstract
BACKGROUND The transforming growth factor-β (TGF-β) signaling pathway is involved in many aspects of tumorigenesis, including angiogenesis and metastasis. The authors evaluated this pathway in association with survival after a diagnosis of colon or rectal cancer. METHODS The study included 1553 patients with colon cancer and 754 patients with rectal cancer who had incident first primary disease and were followed for a minimum of 7 years after diagnosis. Genetic variations were evaluated in the genes TGF-β1 (2 single nucleotide polymorphisms [SNPs]), TGF-β receptor 1 (TGF-βR1) (3 SNPs), smooth muscle actin/mothers against decapentaplegic homolog 1 (Smad1) (5 SNPs), Smad2 (4 SNPs), Smad3 (37 SNPs), Smad4 (2 SNPs), Smad7 (11 SNPs), bone morphogenetic protein 1 (BMP1) (11 SNPs), BMP2 (5 SNPs), BMP4 (3 SNPs), bone morphogenetic protein receptor 1A (BMPR1A) (9 SNPs), BMPR1B (21 SNPs), BMPR2 (11 SNPs), growth differentiation factor 10 (GDF10) (7 SNPs), Runt-related transcription factor 1 (RUNX1) (40 SNPs), RUNX2 (19 SNPs), RUNX3 (9 SNPs), eukaryotic translation initiation factor 4E (eiF4E) (3 SNPs), eukaryotic translation initiation factor 4E-binding protein 3 (eiF4EBP2) (2 SNPs), eiF4EBP3 (2 SNPs), and mitogen-activated protein kinase 1 (MAPK1) (6 SNPs). RESULTS After adjusting for American Joint Committee on Cancer stage and tumor molecular phenotype, 12 genes and 18 SNPs were associated with survival in patients with colon cancer, and 7 genes and 15 tagSNPs were associated with survival after a diagnosis of rectal cancer. A summary score based on "at-risk" genotypes revealed a hazard rate ratio of 5.10 (95% confidence interval, 2.56-10.15) for the group with the greatest number of "at-risk" genotypes; for rectal cancer, the hazard rate ratio was 6.03 (95% confidence interval, 2.83-12.75). CONCLUSIONS The current findings suggest that the presence of several higher risk alleles in the TGF-β signaling pathway increase the likelihood of dying after a diagnosis of colon or rectal cancer.
Collapse
Affiliation(s)
- Martha L Slattery
- Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah 84108, USA.
| | | | | | | | | |
Collapse
|