1
|
Xu B, Shi Y, Yuan C, Wang Z, Chen Q, Wang C, Chai J. Integrated gene-metabolite association network analysis reveals key metabolic pathways in gastric adenocarcinoma. Heliyon 2024; 10:e37156. [PMID: 39319160 PMCID: PMC11419903 DOI: 10.1016/j.heliyon.2024.e37156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/22/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
Gastric adenocarcinoma is one of the most death cause cancers worldwide. Metabolomics is an effective approach for investigating the occurrence and progression of cancer and detecting prognostic biomarkers by studying the profiles of small bioactive molecules. To fully decipher the functional roles of the disrupted metabolites that modulate the cellular mechanism of gastric cancer, integrated gene-metabolite association network methods are critical to map the associations between metabolites and genes. In this study, we constructed a knowledge-based gene-metabolite association network of gastric cancer using the dysregulated metabolites and genes between gastric cancer patients and control group. The topological pathway analysis and gene-protein-metabolite-disease association analysis revealed four key gene-metabolite pathways which include eleven metabolites associated with modulated genes. The integrated gene-metabolite association network enables mechanistic investigation and provides a comprehensive overview regarding the investigation of molecular mechanisms of gastric cancer, which facilitates the in-depth understanding of metabolic biomarker roles in gastric cancer.
Collapse
Affiliation(s)
- Botao Xu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Yuying Shi
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- National Institute of Health Data Science of China, Shandong University, Jinan, 250000, China
- National Science Library (Chengdu), Chinese Academy of Sciences, Chengdu, 610299, China
| | - Chuang Yuan
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Zhe Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Qitao Chen
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- National Institute of Health Data Science of China, Shandong University, Jinan, 250000, China
| | - Cheng Wang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- National Institute of Health Data Science of China, Shandong University, Jinan, 250000, China
| | - Jie Chai
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| |
Collapse
|
2
|
Yu G, Luo T, Liu Y, Huo X, Mo C, Huang B, Li Y, Feng L, Sun Y, Zhang J, Zhang Z. Multi-omics reveal disturbance of glucose homeostasis in pregnant rats exposed to short-chain perfluorobutanesulfonic acid. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116402. [PMID: 38728940 DOI: 10.1016/j.ecoenv.2024.116402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024]
Abstract
Perfluorobutanesulfonic acid (PFBS), a short-chain alternative to perfluorooctanesulfonic acid (PFOS), is widely used in various products and is increasingly present in environmental media and human bodies. Recent epidemiological findings have raised concerns about its potential adverse health effects, although the specific toxic mechanism remains unclear. This study aimed to investigate the metabolic toxicity of gestational PFBS exposure in maternal rats. Pregnant Sprague Dawley (SD) rats were randomly assigned to three groups and administered either 3% starch gel (control), 5, or 50 mg/kg bw·d PFBS. Oral glucose tolerance tests (OGTT) and lipid profiles were measured, and integrated omics analysis (transcriptomics and non-targeted metabolomics) was employed to identify changes in genes and metabolites and their relationships with metabolic phenotypes. The results revealed that rats exposed to 50 mg/kg bw·d PFBS exhibited a significant decrease in 1-h glucose levels and the area under the curve (AUC) of OGTT compared with the starch group. Transcriptomics analysis indicated significant alterations in gene expression related to cytochrome P450 exogenous metabolism, glutathione metabolism, bile acid secretion, tumor pathways, and retinol metabolism. Differentially expressed metabolites (DEMs) were enriched in pathways such as pyruvate metabolism, the glucagon signaling pathway, central carbon metabolism in cancer, and the citric acid cycle. Co-enrichment analysis and pairwise correlation analysis among genes, metabolites, and outcomes identified several differentially expressed genes (DEGs), including Gstm1, Kit, Adcy1, Gck, Ppp1r3c, Ppp1r3d, and DEMs such as fumaric acid, L-lactic acid, 4-hydroxynonenal, and acetylvalerenolic acid. These DEGs and DEMs may play a role in the modulation of glucolipid metabolic pathways. In conclusion, our results suggest that gestational exposure to PFBS may induce molecular perturbations in glucose homeostasis. These findings provide insights into the potential mechanisms contributing to the heightened risk of abnormal glucose tolerance associated with PFBS exposure.
Collapse
Affiliation(s)
- Guoqi Yu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Global Centre for Asian Women's Health, Yong Loo Lin School of Medicine, National University of Singapore, 117549, Singapore; Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 117549, Singapore
| | - Tingyu Luo
- School of Public Health, Guilin Medical University, Guilin 541001, China
| | - Yongjie Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaona Huo
- International Peace Maternity and Child Health Hospital, Shanghai 200030, China
| | - Chunbao Mo
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bo Huang
- School of Public Health, Guilin Medical University, Guilin 541001, China
| | - You Li
- School of Public Health, Guilin Medical University, Guilin 541001, China
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Yan Sun
- School of Public Health, Guilin Medical University, Guilin 541001, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Zhiyong Zhang
- School of Public Health, Guilin Medical University, Guilin 541001, China; The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin 541001, China.
| |
Collapse
|
3
|
Djos A, Thombare K, Vaid R, Gaarder J, Umapathy G, Reinsbach SE, Georgantzi K, Stenman J, Carén H, Ek T, Mondal T, Kogner P, Martinsson T, Fransson S. Telomere Maintenance Mechanisms in a Cohort of High-Risk Neuroblastoma Tumors and Its Relation to Genomic Variants in the TERT and ATRX Genes. Cancers (Basel) 2023; 15:5732. [PMID: 38136279 PMCID: PMC10741428 DOI: 10.3390/cancers15245732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Tumor cells are hallmarked by their capacity to undergo unlimited cell divisions, commonly accomplished either by mechanisms that activate TERT or through the alternative lengthening of telomeres pathway. Neuroblastoma is a heterogeneous pediatric cancer, and the aim of this study was to characterize telomere maintenance mechanisms in a high-risk neuroblastoma cohort. All tumor samples were profiled with SNP microarrays and, when material was available, subjected to whole genome sequencing (WGS). Telomere length was estimated from WGS data, samples were assayed for the ALT biomarker c-circles, and selected samples were subjected to methylation array analysis. Samples with ATRX aberration in this study were positive for c-circles, whereas samples with either MYCN amplification or TERT re-arrangement were negative for c-circles. Both ATRX aberrations and TERT re-arrangement were enriched in 11q-deleted samples. An association between older age at diagnosis and 1q-deletion was found in the ALT-positive group. TERT was frequently placed in juxtaposition to a previously established gene in neuroblastoma tumorigenesis or cancer in general. Given the importance of high-risk neuroblastoma, means for mitigating active telomere maintenance must be therapeutically explored.
Collapse
Affiliation(s)
- Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (A.D.); (K.T.); (R.V.); (J.G.); (G.U.); (T.M.); (T.M.)
| | - Ketan Thombare
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (A.D.); (K.T.); (R.V.); (J.G.); (G.U.); (T.M.); (T.M.)
| | - Roshan Vaid
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (A.D.); (K.T.); (R.V.); (J.G.); (G.U.); (T.M.); (T.M.)
| | - Jennie Gaarder
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (A.D.); (K.T.); (R.V.); (J.G.); (G.U.); (T.M.); (T.M.)
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Ganesh Umapathy
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (A.D.); (K.T.); (R.V.); (J.G.); (G.U.); (T.M.); (T.M.)
| | - Susanne E. Reinsbach
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden;
| | - Kleopatra Georgantzi
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden; (K.G.); (J.S.); (P.K.)
| | - Jakob Stenman
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden; (K.G.); (J.S.); (P.K.)
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden;
| | - Torben Ek
- Children’s Cancer Center, Sahlgrenska University Hospital, 41650 Gothenburg, Sweden;
| | - Tanmoy Mondal
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (A.D.); (K.T.); (R.V.); (J.G.); (G.U.); (T.M.); (T.M.)
- Department of Clinical Chemistry, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden; (K.G.); (J.S.); (P.K.)
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (A.D.); (K.T.); (R.V.); (J.G.); (G.U.); (T.M.); (T.M.)
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (A.D.); (K.T.); (R.V.); (J.G.); (G.U.); (T.M.); (T.M.)
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| |
Collapse
|
4
|
Valcarcel-Jimenez L, Frezza C. Fumarate hydratase (FH) and cancer: a paradigm of oncometabolism. Br J Cancer 2023; 129:1546-1557. [PMID: 37689804 PMCID: PMC10645937 DOI: 10.1038/s41416-023-02412-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/11/2023] Open
Abstract
Fumarate hydratase (FH) is an enzyme of the Tricarboxylic Acid (TCA) cycle whose mutations lead to hereditary and sporadic forms of cancer. Although more than twenty years have passed since its discovery as the leading cause of the cancer syndrome Hereditary leiomyomatosis and Renal Cell Carcinoma (HLRCC), it is still unclear how the loss of FH causes cancer in a tissue-specific manner and with such aggressive behaviour. It has been shown that FH loss, via the accumulation of FH substrate fumarate, activates a series of oncogenic cascades whose contribution to transformation is still under investigation. In this review, we will summarise these recent findings in an integrated fashion and put forward the case that understanding the biology of FH and how its mutations promote transformation will be vital to establish novel paradigms of oncometabolism.
Collapse
Affiliation(s)
- Lorea Valcarcel-Jimenez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, UPV/EHU, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.
| | - Christian Frezza
- University of Cologne, Faculty of Mathematics and Natural Sciences, Institute of Genetics, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany.
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany.
| |
Collapse
|
5
|
Bassal MA. The Interplay between Dysregulated Metabolism and Epigenetics in Cancer. Biomolecules 2023; 13:944. [PMID: 37371524 DOI: 10.3390/biom13060944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular metabolism (or energetics) and epigenetics are tightly coupled cellular processes. It is arguable that of all the described cancer hallmarks, dysregulated cellular energetics and epigenetics are the most tightly coregulated. Cellular metabolic states regulate and drive epigenetic changes while also being capable of influencing, if not driving, epigenetic reprogramming. Conversely, epigenetic changes can drive altered and compensatory metabolic states. Cancer cells meticulously modify and control each of these two linked cellular processes in order to maintain their tumorigenic potential and capacity. This review aims to explore the interplay between these two processes and discuss how each affects the other, driving and enhancing tumorigenic states in certain contexts.
Collapse
Affiliation(s)
- Mahmoud Adel Bassal
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Alzahrani AS, Alswailem M, Alghamdi B, Al-Hindi H. Fumarate Hydratase is a Novel Gene for Familial Non-Medullary Thyroid Cancer. J Clin Endocrinol Metab 2022; 107:2539-2544. [PMID: 35751867 DOI: 10.1210/clinem/dgac386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT The majority of cases of epithelial cell-derived thyroid cancer are sporadic. Familial non-medullary thyroid cancer (FNMTC) occurs in about 5% to 9% of cases, either as a part of known syndromes such as Cowden syndrome or in the form of familial clustering of 2 or more affected family members. Hereditary leiomyoma and renal cell cancer (HLRCC) syndrome is a rare familial cancer syndrome. The underlying etiology is heterozygous germline mutations of the fumarate hydratase (FH) gene. In addition to extensive uterine and skin leiomyomas and RCC, other tumors may arise in this syndrome. However, thyroid cancer has never been described as part of HLRCC. Here, we describe a woman who presented with an aggressive poorly differentiated thyroid cancer (PDTC) and was found to have HLRCC syndrome because of a novel heterozygous germline FH mutation. RESULTS A 43-year-old woman presented with a large lower neck mass that was found to be PDTC. During her evaluation, she was found to have extensive uterine leiomyomatosis and bilateral adrenal nodules. Whole exome and subsequent Sanger sequencing of leucocyte DNA revealed a novel monoallelic nonsense FH mutation (c.760C>T, p.Q254*). Sequencing of the thyroid tumor tissue showed a biallelic loss at the same mutation site (loss of heterozygosity) and immunohistochemistry of the PDTC showed loss of FH staining in the tumor tissue, indicating the pathogenic role of this mutation in the development of PDTC in this patient. CONCLUSION Thyroid cancer is a novel feature of the FH-related HLRCC syndrome. This syndrome can be added to the rare genetic causes of syndromic FNMTC.
Collapse
Affiliation(s)
- Ali S Alzahrani
- Department of Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
| | - Meshael Alswailem
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
| | - Balgees Alghamdi
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
| | - Hindi Al-Hindi
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
| |
Collapse
|
7
|
Chen C, Wang Z, Qin Y. Connections between metabolism and epigenetics: mechanisms and novel anti-cancer strategy. Front Pharmacol 2022; 13:935536. [PMID: 35935878 PMCID: PMC9354823 DOI: 10.3389/fphar.2022.935536] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/29/2022] [Indexed: 12/26/2022] Open
Abstract
Cancer cells undergo metabolic adaptations to sustain their growth and proliferation under several stress conditions thereby displaying metabolic plasticity. Epigenetic modification is known to occur at the DNA, histone, and RNA level, which can alter chromatin state. For almost a century, our focus in cancer biology is dominated by oncogenic mutations. Until recently, the connection between metabolism and epigenetics in a reciprocal manner was spotlighted. Explicitly, several metabolites serve as substrates and co-factors of epigenetic enzymes to carry out post-translational modifications of DNA and histone. Genetic mutations in metabolic enzymes facilitate the production of oncometabolites that ultimately impact epigenetics. Numerous evidences also indicate epigenome is sensitive to cancer metabolism. Conversely, epigenetic dysfunction is certified to alter metabolic enzymes leading to tumorigenesis. Further, the bidirectional relationship between epigenetics and metabolism can impact directly and indirectly on immune microenvironment, which might create a new avenue for drug discovery. Here we summarize the effects of metabolism reprogramming on epigenetic modification, and vice versa; and the latest advances in targeting metabolism-epigenetic crosstalk. We also discuss the principles linking cancer metabolism, epigenetics and immunity, and seek optimal immunotherapy-based combinations.
Collapse
|
8
|
Abstract
Although tumourigenesis occurs due to genetic mutations, the role of epigenetic dysregulations in cancer is also well established. Epigenetic dysregulations in cancer may occur as a result of mutations in genes encoding histone/DNA-modifying enzymes and chromatin remodellers or mutations in histone protein itself. It is also true that misregulated gene expression without genetic mutations in these factors could also support tumour initiation and progression. Interestingly, metabolic rewiring has emerged as a hallmark of cancer due to gene mutations in specific metabolic enzymes or dietary/environmental factors. Recent studies report an intricate cross-talk between epigenetic and metabolic reprogramming in cancer. This review discusses the role of epigenetic and metabolic dysregulations and their cross-talk in tumourigenesis with a special focus on gliomagenesis. We also discuss the role of recently developed human embryonic stem cells/induced pluripotent stem cells-derived organoid models of gliomas and how these models are proving instrumental in uncovering human-specific cellular and molecular complexities of gliomagenesis.
Collapse
Affiliation(s)
- Bismi Phasaludeen
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Suraiya Anjum Ansari
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| |
Collapse
|
9
|
Bailleux S, Somja J, Martin M, De Prijck B, Nikkels AF. HEREDITARY LEIOMYOMATOSIS AND ACUTE LYMPHOBLASTIC LEUKEMIA: a LINK THROUGH FUMARATE DYSHYDRATASE MUTATION? Acta Clin Belg 2021; 77:778-781. [PMID: 34515613 DOI: 10.1080/17843286.2021.1980669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND : Hereditary leiomyomatosis (HL) is an autosomal dominant condition due to a variety of fumarate hydratase (FH) mutations in which individuals tend to develop cutaneous leiomyomas, multiple uterine leiomyomas and are at risk for developing aggressive papillary renal cell carcinoma. CASE PRESENTATION : A 26-year-old man with a past history of acute lymphoblastic leukemia (T-ALL) presented with numerous painful light brown papules and nodules spread all over his body except for the head, appearing since infancy. Similar lesions were present in his mother's family. A cutaneous biopsy revealed a cutaneous leiomyoma. His mother died from metastatic uterine neoplasia and his sister suffered from leiomyoma of the uterus. No renal cancer was reported in his family. A heterozygous pathogenic variant was detected in the FH gene. CONCLUSION : To our knowledge, this is the first case possibly linking HL and T-ALL through FH deficiency.
Collapse
Affiliation(s)
- Sophie Bailleux
- Departments of Dermatology, Centre Hospitalier Universitaire De Liege, Belgium
| | - Joan Somja
- Departments of Dermatopathology, Centre Hospitalier Universitaire De Liege, Belgium
| | - Marie Martin
- Departments of Genetics, and Centre Hospitalier Universitaire De Liege, Belgium
| | - Bernard De Prijck
- Departments of Hematology, Chu Du Sart Tilman, University of Liège, Liège, Belgium
| | - Arjen F. Nikkels
- Departments of Dermatology, Centre Hospitalier Universitaire De Liege, Belgium
| |
Collapse
|
10
|
Zhang D, Xu X, Ye Q. Metabolism and immunity in breast cancer. Front Med 2020; 15:178-207. [PMID: 33074528 DOI: 10.1007/s11684-020-0793-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Breast cancer is one of the most common malignancies that seriously threaten women's health. In the process of the malignant transformation of breast cancer, metabolic reprogramming and immune evasion represent the two main fascinating characteristics of cancer and facilitate cancer cell proliferation. Breast cancer cells generate energy through increased glucose metabolism. Lipid metabolism contributes to biological signal pathways and forms cell membranes except energy generation. Amino acids act as basic protein units and metabolic regulators in supporting cell growth. For tumor-associated immunity, poor immunogenicity and heightened immunosuppression cause breast cancer cells to evade the host's immune system. For the past few years, the complex mechanisms of metabolic reprogramming and immune evasion are deeply investigated, and the genes involved in these processes are used as clinical therapeutic targets for breast cancer. Here, we review the recent findings related to abnormal metabolism and immune characteristics, regulatory mechanisms, their links, and relevant therapeutic strategies.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| |
Collapse
|
11
|
Luo Y, Ma J, Lu W. The Significance of Mitochondrial Dysfunction in Cancer. Int J Mol Sci 2020; 21:ijms21165598. [PMID: 32764295 PMCID: PMC7460667 DOI: 10.3390/ijms21165598] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
As an essential organelle in nucleated eukaryotic cells, mitochondria play a central role in energy metabolism, maintenance of redox balance, and regulation of apoptosis. Mitochondrial dysfunction, either due to the TCA cycle enzyme defects, mitochondrial DNA genetic mutations, defective mitochondrial electron transport chain, oxidative stress, or aberrant oncogene and tumor suppressor signaling, has been observed in a wide spectrum of human cancers. In this review, we summarize mitochondrial dysfunction induced by these alterations that promote human cancers.
Collapse
Affiliation(s)
- Yongde Luo
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
- Correspondence: (Y.L.); (W.L.)
| | - Jianjia Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Weiqin Lu
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
- Correspondence: (Y.L.); (W.L.)
| |
Collapse
|
12
|
Abstract
Significance: Mitochondria undergo constant morphological changes through fusion, fission, and mitophagy. As the key organelle in cells, mitochondria are responsible for numerous essential cellular functions such as metabolism, regulation of calcium (Ca2+), generation of reactive oxygen species, and initiation of apoptosis. Unsurprisingly, mitochondrial dysfunctions underlie many pathologies including cancer. Recent Advances: Currently, the gold standard for cancer treatment is chemotherapy, radiation, and surgery. However, the efficacy of these treatments varies across different cancer cells. It has been suggested that mitochondria may be at the center of these diverse responses. In the past decade, significant advances have been made in understanding distinct types of mitochondrial dysfunctions in cancer. Through investigations of underlying mechanisms, more effective treatment options are developed. Critical Issues: We summarize various mitochondria dysfunctions in cancer progression that have led to the development of therapeutic options. Current mitochondrial-targeted therapies and challenges are discussed. Future Directions: To address the "root" of cancer, utilization of mitochondrial-targeted therapy to target cancer stem cells may be valuable. Investigation of other areas such as mitochondrial trafficking may offer new insights into cancer therapy. Moreover, common antibiotics could be explored as mitocans, and synthetic lethality screens can be utilized to overcome the plasticity of cancer cells.
Collapse
Affiliation(s)
- Hsin Yao Chiu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Emmy Xue Yun Tay
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Derrick Sek Tong Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Depuydt P, Boeva V, Hocking TD, Cannoodt R, Ambros IM, Ambros PF, Asgharzadeh S, Attiyeh EF, Combaret V, Defferrari R, Fischer M, Hero B, Hogarty MD, Irwin MS, Koster J, Kreissman S, Ladenstein R, Lapouble E, Laureys G, London WB, Mazzocco K, Nakagawara A, Noguera R, Ohira M, Park JR, Pötschger U, Theissen J, Tonini GP, Valteau-Couanet D, Varesio L, Versteeg R, Speleman F, Maris JM, Schleiermacher G, De Preter K. Genomic Amplifications and Distal 6q Loss: Novel Markers for Poor Survival in High-risk Neuroblastoma Patients. J Natl Cancer Inst 2019. [PMID: 29514301 PMCID: PMC6186524 DOI: 10.1093/jnci/djy022] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Neuroblastoma is characterized by substantial clinical heterogeneity. Despite intensive treatment, the survival rates of high-risk neuroblastoma patients are still disappointingly low. Somatic chromosomal copy number aberrations have been shown to be associated with patient outcome, particularly in low- and intermediate-risk neuroblastoma patients. To improve outcome prediction in high-risk neuroblastoma, we aimed to design a prognostic classification method based on copy number aberrations. Methods In an international collaboration, normalized high-resolution DNA copy number data (arrayCGH and SNP arrays) from 556 high-risk neuroblastomas obtained at diagnosis were collected from nine collaborative groups and segmented using the same method. We applied logistic and Cox proportional hazard regression to identify genomic aberrations associated with poor outcome. Results In this study, we identified two types of copy number aberrations that are associated with extremely poor outcome. Distal 6q losses were detected in 5.9% of patients and were associated with a 10-year survival probability of only 3.4% (95% confidence interval [CI] = 0.5% to 23.3%, two-sided P = .002). Amplifications of regions not encompassing the MYCN locus were detected in 18.1% of patients and were associated with a 10-year survival probability of only 5.8% (95% CI = 1.5% to 22.2%, two-sided P < .001). Conclusions Using a unique large copy number data set of high-risk neuroblastoma cases, we identified a small subset of high-risk neuroblastoma patients with extremely low survival probability that might be eligible for inclusion in clinical trials of new therapeutics. The amplicons may also nominate alternative treatments that target the amplified genes.
Collapse
Affiliation(s)
- Pauline Depuydt
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Valentina Boeva
- Institut Cochin, Inserm U1016, CNRS UMR 8104, Université Paris Descartes UMR-S1016, Paris, France.,Institut Curie, Inserm U900, Mines ParisTech, PSL Research University, Paris, France
| | - Toby D Hocking
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Robrecht Cannoodt
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium.,Data Mining and Modelling for Biomedicine Group, VIB Center for Inflammation Research, Ghent, Belgium
| | - Inge M Ambros
- Children's Cancer Research Institute, Austria.,Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Peter F Ambros
- Children's Cancer Research Institute, Austria.,Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Shahab Asgharzadeh
- Division of Hematology/Oncology, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Edward F Attiyeh
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA.,Center for Childhood Cancer Research, University of Pennsylvania, Philadelphia, PA.,Department of Pediatrics, University of Pennsylvania, Philadelphia, PA
| | - Valérie Combaret
- Centre Léon-Bérard, Laboratoire de Recherche Translationnelle, Lyon, France
| | | | - Matthias Fischer
- Department of Experimental Pediatric Oncology, University of Cologne, Cologne, Germany.,University Children's Hospital Cologne, Medical Faculty, and Center for Molecular Medicine Cologne
| | - Barbara Hero
- Department of Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
| | - Michael D Hogarty
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA.,Perelman School of Medicine (MDH), University of Pennsylvania, Philadelphia, PA
| | - Meredith S Irwin
- Division of Hematology-Oncology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Susan Kreissman
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
| | - Ruth Ladenstein
- Children's Cancer Research Institute, Austria.,Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Eve Lapouble
- Genetic Somatic Unit.,Institut Curie, Paris, France
| | - Geneviève Laureys
- Department of Pediatric Hematology and Oncology, Ghent University Hospital, De Pintelaan, Ghent, Belgium
| | - Wendy B London
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | - Katia Mazzocco
- Department of Pathology, Istituto Giannina Gaslini, Genova, Italy
| | | | - Rosa Noguera
- Pathology Department, Medical School, University of Valencia, Valencia, Spain.,Medical Research Foundation INCLIVA, Valencia, Spain.,CIBERONC, Madrid, Spain
| | - Miki Ohira
- Research Institute for Clinical Oncology Saitama Cancer Center, Saitama, Japan
| | - Julie R Park
- Seattle Children's Hospital and University of Washington, Seattle, WA
| | | | - Jessica Theissen
- Department of Experimental Pediatric Oncology, University of Cologne, Cologne, Germany
| | - Gian Paolo Tonini
- Laboratory of Neuroblastoma, Onco/Haematology Laboratory, University of Padua, Pediatric Research Institute (IRP)-Città della Speranza, Padova, Italy
| | | | - Luigi Varesio
- Laboratory of Molecular Biology (LV), Istituto Giannina Gaslini, Genova, Italy
| | - Rogier Versteeg
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Frank Speleman
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - John M Maris
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA.,Center for Childhood Cancer Research, University of Pennsylvania, Philadelphia, PA.,Department of Pediatrics, University of Pennsylvania, Philadelphia, PA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.,Abramson Family Cancer Research Institute, Philadelphia, PA
| | - Gudrun Schleiermacher
- U830 INSERM, Recherche Translationelle en Oncologie Pédiatrique (RTOP) and Department of Pediatric Oncology
| | - Katleen De Preter
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
14
|
Saatchi F, Kirchmaier AL. Tolerance of DNA Replication Stress Is Promoted by Fumarate Through Modulation of Histone Demethylation and Enhancement of Replicative Intermediate Processing in Saccharomyces cerevisiae. Genetics 2019; 212:631-654. [PMID: 31123043 PMCID: PMC6614904 DOI: 10.1534/genetics.119.302238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 05/07/2019] [Indexed: 12/28/2022] Open
Abstract
Fumarase is a well-characterized TCA cycle enzyme that catalyzes the reversible conversion of fumarate to malate. In mammals, fumarase acts as a tumor suppressor, and loss-of-function mutations in the FH gene in hereditary leiomyomatosis and renal cell cancer result in the accumulation of intracellular fumarate-an inhibitor of α-ketoglutarate-dependent dioxygenases. Fumarase promotes DNA repair by nonhomologous end joining in mammalian cells through interaction with the histone variant H2A.Z, and inhibition of KDM2B, a H3 K36-specific histone demethylase. Here, we report that Saccharomyces cerevisiae fumarase, Fum1p, acts as a response factor during DNA replication stress, and fumarate enhances survival of yeast lacking Htz1p (H2A.Z in mammals). We observed that exposure to DNA replication stress led to upregulation as well as nuclear enrichment of Fum1p, and raising levels of fumarate in cells via deletion of FUM1 or addition of exogenous fumarate suppressed the sensitivity to DNA replication stress of htz1Δ mutants. This suppression was independent of modulating nucleotide pool levels. Rather, our results are consistent with fumarate conferring resistance to DNA replication stress in htz1Δ mutants by inhibiting the H3 K4-specific histone demethylase Jhd2p, and increasing H3 K4 methylation. Although the timing of checkpoint activation and deactivation remained largely unaffected by fumarate, sensors and mediators of the DNA replication checkpoint were required for fumarate-dependent resistance to replication stress in the htz1Δ mutants. Together, our findings imply metabolic enzymes and metabolites aid in processing replicative intermediates by affecting chromatin modification states, thereby promoting genome integrity.
Collapse
Affiliation(s)
- Faeze Saatchi
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907
| | - Ann L Kirchmaier
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
15
|
Death effector domain-containing protein induces vulnerability to cell cycle inhibition in triple-negative breast cancer. Nat Commun 2019; 10:2860. [PMID: 31253784 PMCID: PMC6599020 DOI: 10.1038/s41467-019-10743-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 05/30/2019] [Indexed: 02/07/2023] Open
Abstract
Lacking targetable molecular drivers, triple-negative breast cancer (TNBC) is the most clinically challenging subtype of breast cancer. In this study, we reveal that Death Effector Domain-containing DNA-binding protein (DEDD), which is overexpressed in > 60% of TNBCs, drives a mitogen-independent G1/S cell cycle transition through cytoplasm localization. The gain of cytosolic DEDD enhances cyclin D1 expression by interacting with heat shock 71 kDa protein 8 (HSC70). Concurrently, DEDD interacts with Rb family proteins and promotes their proteasome-mediated degradation. DEDD overexpression renders TNBCs vulnerable to cell cycle inhibition. Patients with TNBC have been excluded from CDK 4/6 inhibitor clinical trials due to the perceived high frequency of Rb-loss in TNBCs. Interestingly, our study demonstrated that, irrespective of Rb status, TNBCs with DEDD overexpression exhibit a DEDD-dependent vulnerability to combinatorial treatment with CDK4/6 inhibitor and EGFR inhibitor in vitro and in vivo. Thus, our study provided a rationale for the clinical application of CDK4/6 inhibitor combinatorial regimens for patients with TNBC.
Collapse
|
16
|
Bioorthogonal oncometabolite ligation. Methods Enzymol 2019. [PMID: 31155064 DOI: 10.1016/bs.mie.2019.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Dysregulated cellular metabolism is an emerging hallmark of cancer. Improved methods to profile aberrant metabolic activity thus have substantial applications as tools for diagnosis and understanding the biology of malignant tumors. Here we describe the utilization of a bioorthogonal ligation to fluorescently detect the TCA cycle oncometabolite fumarate. This method enables the facile measurement of fumarate hydratase activity in cell and tissue samples, and can be used to detect disruptions in metabolism that underlie the genetic cancer syndrome hereditary leiomyomatosis and renal cell cancer (HLRCC). The current method has substantial utility for sensitive fumarate hydratase activity profiling, and also provides a foundation for future applications in diagnostic detection and imaging of cancer metabolism.
Collapse
|
17
|
Zhu XR, Yang FY, Lu J, Zhang HR, Sun R, Zhou JB, Yang JK. Plasma metabolomic profiling of proliferative diabetic retinopathy. Nutr Metab (Lond) 2019; 16:37. [PMID: 31160916 PMCID: PMC6540396 DOI: 10.1186/s12986-019-0358-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/01/2019] [Indexed: 02/08/2023] Open
Abstract
Background Proliferative diabetic retinopathy (PDR), a sight-threatening retinopathy, is the leading cause of irreversible blindness in adults. Despite strict control of systemic risk factors, a fraction of patients with diabetes develop PDR, suggesting the existence of other potential pathogenic factors underlying PDR. This study aimed to investigate the plasma metabotype of patients with PDR and to identify novel metabolite markers for PDR. Biomarkers identified from this study will provide scientific insight and new strategies for the early diagnosis and intervention of diabetic retinopathy. Methods A total of 1024 patients with type 2 diabetes were screened. To match clinical parameters between case and control subjects, patients with PDR (PDR, n = 21) or those with a duration of diabetes of ≥10 years but without diabetic retinopathy (NDR, n = 21) were assigned to the present case-control study. Distinct metabolite profiles of serum were examined using liquid chromatography-mass spectrometry (LC-MS). Results The distinct metabolites between PDR and NDR groups were significantly enriched in 9 KEGG pathways (P < 0.05, impact > 0.1), namely, alanine, aspartate and glutamate metabolism, caffeine metabolism, beta-alanine metabolism, purine metabolism, cysteine and methionine metabolism, sulfur metabolism, sphingosine metabolism, and arginine and proline metabolism. A total of 63 altered metabolites played important roles in these pathways. Finally, 4 metabolites were selected as candidate biomarkers for PDR, namely, fumaric acid, uridine, acetic acid, and cytidine. The area under the curve for these biomarkers were 0.96, 0.95, 1.0, and 0.95, respectively. Conclusions This study suggested that impairment in the metabolism of pyrimidines, arginine and proline were identified as metabolic dysregulation associated with PDR. And fumaric acid, uridine, acetic acid, and cytidine might be potential biomarkers for PDR. Fumaric acid was firstly reported as a novel metabolite marker with no prior reports of association with diabetes or diabetic retinopathy, which might provide insights into potential new pathogenic pathways for diabetic retinopathy.
Collapse
Affiliation(s)
- Xiao-Rong Zhu
- 1Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100073 China
| | - Fang-Yuan Yang
- 1Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100073 China.,Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Jing Lu
- 1Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100073 China.,Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Hui-Rong Zhang
- 1Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100073 China
| | - Ran Sun
- 1Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100073 China
| | - Jian-Bo Zhou
- 1Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100073 China
| | - Jin-Kui Yang
- 1Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100073 China.,Beijing Key Laboratory of Diabetes Research and Care, Beijing, China.,Beijing Diabetes Institute, Beijing, China
| |
Collapse
|
18
|
Fumarate hydratase in cancer: A multifaceted tumour suppressor. Semin Cell Dev Biol 2019; 98:15-25. [PMID: 31085323 DOI: 10.1016/j.semcdb.2019.05.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023]
Abstract
Cancer is now considered a multifactorial disorder with different aetiologies and outcomes. Yet, all cancers share some common molecular features. Among these, the reprogramming of cellular metabolism has emerged as a key player in tumour initiation and progression. The finding that metabolic enzymes such as fumarate hydratase (FH), succinate dehydrogenase (SDH) and isocitrate dehydrogenase (IDH), when mutated, cause cancer suggested that metabolic dysregulation is not only a consequence of oncogenic transformation but that it can act as cancer driver. However, the mechanisms underpinning the link between metabolic dysregulation and cancer remain only partially understood. In this review we discuss the role of FH loss in tumorigenesis, focusing on the role of fumarate as a key activator of a variety of oncogenic cascades. We also discuss how these alterations are integrated and converge towards common biological processes. This review highlights the complexity of the signals elicited by FH loss, describes that fumarate can act as a bona fide oncogenic event, and provides a compelling hypothesis of the stepwise neoplastic progression after FH loss.
Collapse
|
19
|
Du N, Bao W, Zhang K, Lu X, Crew R, Wang X, Liu G, Wang F. Cytogenetic characterization of the malignant primitive neuroectodermal SK-PN-DW tumor cell line. BMC Cancer 2019; 19:412. [PMID: 31046733 PMCID: PMC6498632 DOI: 10.1186/s12885-019-5625-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 04/18/2019] [Indexed: 11/10/2022] Open
Abstract
Background The SK-PN-DW cell line was established in 1979 and is commercially available. Despite the use of this cell line as an in vitro model for functional and therapeutic studies of malignant primitive neuroectodermal tumor (PNET), there is a lack of complete information about the genetic alterations that are present at the cytogenetic level. Thus, the current study aimed to characterize the cytogenetic profile of this cell line. Methods Routine G-banded chromosome analysis, fluorescence in situ hybridization, and oligonucleotide array comparative genomic hybridization assays were performed to characterize the chromosomal changes in this cell line. Results The G-banded karyotype analysis showed that the number of chromosomes in this cell line ranged between 36 and 41. Importantly, all cells displayed a loss of chromosomes Y, 11, 13, and 18. However, some cells showed an additional loss of chromosome 10. Additionally, the observed structural changes indicated: a) unbalanced translocation between chromosomes 1 and 7; b) translocation between chromosomes 11 and 22 at breakpoints 11q24 and 22q12, which is a classical translocation that is associated with Ewing sarcoma; c) a derivative chromosome due to a whole arm translocation between chromosomes 16 and 17 at likely breakpoints 16p10 and 17q10; and d) possible rearrangement in the short arm of chromosome 18. Moreover, a variable number of double minutes were also observed in each metaphase cell. Furthermore, the microarray assay results not only demonstrated genomic-wide chromosomal imbalance in this cell line and precisely placed chromosomal breakpoints on unbalanced, rearranged chromosomes, but also revealed information about subtle chromosomal changes and the chromosomal origin of double minutes. Finally, the fluorescence in situ hybridization assay confirmed the findings of the routine cytogenetic analysis and microarrays. Conclusion The accurate determination of the cytogenetic profile of the SK-PN-DW cell line is helpful in enabling the research community to utilize this cell line for future identity and comparability studies, in addition to demonstrating the utility of the complete cytogenetic profile, as a public resource.
Collapse
Affiliation(s)
- Na Du
- Department of Infectious Diseases, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021, People's Republic of China.,Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Wanguo Bao
- Department of Infectious Diseases, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021, People's Republic of China
| | - Kaiyu Zhang
- Department of Infectious Diseases, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021, People's Republic of China
| | - Xianglan Lu
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Rebecca Crew
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Xianfu Wang
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Guangming Liu
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.,Department of Gastroenterology, the First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Feng Wang
- Department of Infectious Diseases, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
20
|
Kulkarni RA, Briney CA, Crooks DR, Bergholtz SE, Mushti C, Lockett SJ, Lane AN, Fan TWM, Swenson RE, Linehan WM, Meier JL. Photoinducible Oncometabolite Detection. Chembiochem 2019; 20:360-365. [PMID: 30358041 PMCID: PMC8141106 DOI: 10.1002/cbic.201800651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Indexed: 12/14/2022]
Abstract
Dysregulated metabolism can fuel cancer by altering the production of bioenergetic building blocks and directly stimulating oncogenic gene-expression programs. However, relatively few optical methods for the direct study of metabolites in cells exist. To address this need and facilitate new approaches to cancer treatment and diagnosis, herein we report an optimized chemical approach to detect the oncometabolite fumarate. Our strategy employs diaryl tetrazoles as cell-permeable photoinducible precursors to nitrileimines. Uncaging these species in cells and cell extracts enables them to undergo 1,3-dipolar cycloadditions with endogenous dipolarophile metabolites such as fumarate to form pyrazoline cycloadducts that can be readily detected by their intrinsic fluorescence. The ability to photolytically uncage diaryl tetrazoles provides greatly improved sensitivity relative to previous methods, and enables the facile detection of dysregulated fumarate metabolism through biochemical activity assays, intracellular imaging, and flow cytometry. Our studies showcase an intersection of bioorthogonal chemistry and metabolite reactivity that can be applied for biological profiling, imaging, and diagnostics.
Collapse
Affiliation(s)
| | - Chloe A. Briney
- Chemical Biology Laboratory, National Cancer Institute, NIH, Frederick MD, 21702, USA
| | - Daniel R. Crooks
- Urologic Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, 20817, USA
| | - Sarah E. Bergholtz
- Chemical Biology Laboratory, National Cancer Institute, NIH, Frederick MD, 21702, USA
| | - Chandrasekhar Mushti
- Imaging Probe Development Center, National Heart Lung and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Stephen J. Lockett
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Andrew N. Lane
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Teresa W-M. Fan
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Rolf E. Swenson
- Imaging Probe Development Center, National Heart Lung and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - W. Marston Linehan
- Urologic Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, 20817, USA
| | - Jordan L. Meier
- Chemical Biology Laboratory, National Cancer Institute, NIH, Frederick MD, 21702, USA
| |
Collapse
|
21
|
Depuydt P, Koster J, Boeva V, Hocking TD, Speleman F, Schleiermacher G, De Preter K. Meta-mining of copy number profiles of high-risk neuroblastoma tumors. Sci Data 2018; 5:180240. [PMID: 30375995 PMCID: PMC6207068 DOI: 10.1038/sdata.2018.240] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/10/2018] [Indexed: 02/01/2023] Open
Abstract
Neuroblastoma, a pediatric tumor of the sympathetic nervous system, is predominantly driven by copy number aberrations, which predict survival outcome in global neuroblastoma cohorts and in low-risk cases. For high-risk patients there is still a need for better prognostic biomarkers. Via an international collaboration, we collected copy number profiles of 556 high-risk neuroblastomas generated on different array platforms. This manuscript describes the composition of the dataset, the methods used to process the data, including segmentation and aberration calling, and data validation. t-SNE analysis shows that samples cluster according to MYCN status, and shows a difference between array platforms. 97.3% of samples are characterized by the presence of segmental aberrations, in regions frequently affected in neuroblastoma. Focal aberrations affect genes known to be involved in neuroblastoma, such as ALK and LIN28B. To conclude, we compiled a unique large copy number dataset of high-risk neuroblastoma tumors, available via R2 and a Shiny web application. The availability of patient survival data allows to further investigate the prognostic value of copy number aberrations.
Collapse
Affiliation(s)
- Pauline Depuydt
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Valentina Boeva
- Institut Cochin, Inserm U1016, CNRS UMR 8104, Université Paris Descartes UMR-S1016, F-75014 Paris, France.,Institut Curie, Inserm U900, Mines ParisTech, PSL Research University, F-75005 Paris, France
| | - Toby D Hocking
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Frank Speleman
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Gudrun Schleiermacher
- Recherche Translationelle en Oncologie Pédiatrique (RTOP) and Department of Pediatric Oncology, Institut Curie, Paris, France.,U830, INSERM, Paris, France
| | - Katleen De Preter
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| |
Collapse
|
22
|
Zhu Y, Dean AE, Horikoshi N, Heer C, Spitz DR, Gius D. Emerging evidence for targeting mitochondrial metabolic dysfunction in cancer therapy. J Clin Invest 2018; 128:3682-3691. [PMID: 30168803 DOI: 10.1172/jci120844] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mammalian cells use a complex network of redox-dependent processes necessary to maintain cellular integrity during oxidative metabolism, as well as to protect against and/or adapt to stress. The disruption of these redox-dependent processes, including those in the mitochondria, creates a cellular environment permissive for progression to a malignant phenotype and the development of resistance to commonly used anticancer agents. An extension of this paradigm is that when these mitochondrial functions are altered by the events leading to transformation and ensuing downstream metabolic processes, they can be used as molecular biomarkers or targets in the development of new therapeutic interventions to selectively kill and/or sensitize cancer versus normal cells. In this Review we propose that mitochondrial oxidative metabolism is altered in tumor cells, and the central theme of this dysregulation is electron transport chain activity, folate metabolism, NADH/NADPH metabolism, thiol-mediated detoxification pathways, and redox-active metal ion metabolism. It is proposed that specific subgroups of human malignancies display distinct mitochondrial transformative and/or tumor signatures that may benefit from agents that target these pathways.
Collapse
Affiliation(s)
- Yueming Zhu
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Angela Elizabeth Dean
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Nobuo Horikoshi
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Collin Heer
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| | - David Gius
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
23
|
Tevosian SG, Ghayee HK. Pheochromocytoma/Paraganglioma: A Poster Child for Cancer Metabolism. J Clin Endocrinol Metab 2018; 103:1779-1789. [PMID: 29409060 DOI: 10.1210/jc.2017-01991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/26/2018] [Indexed: 12/26/2022]
Abstract
CONTEXT Pheochromocytomas (PCCs) are tumors that are derived from the chromaffin cells of the adrenal medulla. Extra-adrenal PCCs called paragangliomas (PGLs) are derived from the sympathetic and parasympathetic chain ganglia. PCCs secrete catecholamines, which cause hypertension and have adverse cardiovascular consequences as a result of catecholamine excess. PGLs may or may not produce catecholamines depending on their genetic type and anatomical location. The most worrisome aspect of these tumors is their ability to become aggressive and metastasize; there are no known cures for metastasized PGLs. METHODS Original articles and reviews indexed in PubMed were identified by querying with specific PCC/PGL- and Krebs cycle pathway-related terms. Additional references were selected through the in-depth analysis of the relevant publications. RESULTS We primarily discuss Krebs cycle mutations that can be instrumental in helping investigators identify key biological pathways and molecules that may serve as biomarkers of or treatment targets for PCC/PGL. CONCLUSION The mainstay of treatment of patients with PCC/PGLs is surgical. However, the tide may be turning with the discovery of new genes associated with PCC/PGLs that may shed light on oncometabolites used by these tumors.
Collapse
Affiliation(s)
- Sergei G Tevosian
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | - Hans K Ghayee
- Department of Medicine, Division of Endocrinology, University of Florida, Gainesville, Florida
- Malcom Randall VA Medical Center, Gainesville, Florida
| |
Collapse
|
24
|
Collins RRJ, Patel K, Putnam WC, Kapur P, Rakheja D. Oncometabolites: A New Paradigm for Oncology, Metabolism, and the Clinical Laboratory. Clin Chem 2017; 63:1812-1820. [PMID: 29038145 DOI: 10.1373/clinchem.2016.267666] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Pediatric clinical laboratories commonly measure tricarboxylic acid cycle intermediates for screening, diagnosis, and monitoring of specific inborn errors of metabolism, such as organic acidurias. In the past decade, the same tricarboxylic acid cycle metabolites have been implicated and studied in cancer. The accumulation of these metabolites in certain cancers not only serves as a biomarker but also directly contributes to cellular transformation, therefore earning them the designation of oncometabolites. CONTENT D-2-hydroxyglutarate, L-2-hydroxyglutarate, succinate, and fumarate are the currently recognized oncometabolites. They are structurally similar and share metabolic proximity in the tricarboxylic acid cycle. As a result, they promote tumorigenesis in cancer cells through similar mechanisms. This review summarizes the currently understood common and distinct biological features of these compounds. In addition, we will review the current laboratory methodologies that can be used to quantify these metabolites and their downstream targets. SUMMARY Oncometabolites play an important role in cancer biology. The metabolic pathways that lead to the production of oncometabolites and the downstream signaling pathways that are activated by oncometabolites represent potential therapeutic targets. Clinical laboratories have a critical role to play in the management of oncometabolite-associated cancers through development and validation of sensitive and specific assays that measure oncometabolites and their downstream effectors. These assays can be used as screening tools and for follow-up to measure response to treatment, as well as to detect minimal residual disease and recurrence.
Collapse
Affiliation(s)
- Rebecca R J Collins
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX.,Department of Pathology and Laboratory Medicine, Children's Health, Dallas, TX
| | - Khushbu Patel
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX.,Department of Pathology and Laboratory Medicine, Children's Health, Dallas, TX
| | - William C Putnam
- Office of Clinical and Translational Research, Texas Tech University Health Sciences Center, Dallas, TX
| | - Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX; .,Department of Pathology and Laboratory Medicine, Children's Health, Dallas, TX.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
25
|
Kennedy I, Francis H, Meng F, Glaser S, Alpini G. Diagnostic and therapeutic potentials of microRNAs in cholangiopathies. LIVER RESEARCH 2017; 1:34-41. [PMID: 29085701 PMCID: PMC5659325 DOI: 10.1016/j.livres.2017.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cholangiopathies are a group of rare, devastating diseases that arise from damaged cholangiocytes, the cells that line the intra- and extra-hepatic bile ducts of the biliary epithelium. Cholangiopathies result in significant morbidity and mortality and are a major cause of liver transplantation. A better understanding of the underlying pathogenesis that influences cholangiocyte dysregulation and cholangiopathy progression is necessary, considering the dismal prognosis associated with these diseases. MicroRNAs are a class of small, non-coding RNAs that regulate post-transcriptional mRNA expression of specific genes. The role of microRNAs has expanded to include the initiation and development of many diseases, including cholangiopathies. Understanding microRNA regulation of cholangiopathies may provide diagnostic and therapeutic benefit for these diseases. In this review, the authors primarily focus on studies published within the last five years that help determine the diagnostic and therapeutic potential of microRNAs in cholangiopathies.
Collapse
Affiliation(s)
- indsey Kennedy
- Research, Central Texas Veterans Health Care System,Department of Medicine, Texas A&M Health Science Center, College of Medicine
| | - Heather Francis
- Research, Central Texas Veterans Health Care System,Department of Medicine, Texas A&M Health Science Center, College of Medicine,Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health3, Temple, Texas, USA
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System,Department of Medicine, Texas A&M Health Science Center, College of Medicine,Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health3, Temple, Texas, USA
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System,Department of Medicine, Texas A&M Health Science Center, College of Medicine,Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health3, Temple, Texas, USA
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System,Department of Medicine, Texas A&M Health Science Center, College of Medicine,Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health3, Temple, Texas, USA,Corresponding author: Texas A&M Health Science Center Olin E. Teague Medical Center 1901 South 1st Street, Bldg. 205, 1R60 Temple, TX, 76504, USA
| |
Collapse
|
26
|
Sciacovelli M, Frezza C. Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer. FEBS J 2017; 284:3132-3144. [PMID: 28444969 DOI: 10.1111/febs.14090] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/23/2017] [Accepted: 04/24/2017] [Indexed: 12/16/2022]
Abstract
Several lines of evidence indicate that during transformation epithelial cancer cells can acquire mesenchymal features via a process called epithelial-to-mesenchymal transition (EMT). This process endows cancer cells with increased invasive and migratory capacity, enabling tumour dissemination and metastasis. EMT is associated with a complex metabolic reprogramming, orchestrated by EMT transcription factors, which support the energy requirements of increased motility and growth in harsh environmental conditions. The discovery that mutations in metabolic genes such as FH, SDH and IDH activate EMT provided further evidence that EMT and metabolism are intertwined. In this review, we discuss the role of EMT in cancer and the underpinning metabolic reprogramming. We also put forward the hypothesis that, by altering chromatin structure and function, metabolic pathways engaged by EMT are necessary for its full activation.
Collapse
Affiliation(s)
- Marco Sciacovelli
- Medical Research Council Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, UK
| | - Christian Frezza
- Medical Research Council Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, UK
| |
Collapse
|
27
|
Abbasi MR, Rifatbegovic F, Brunner C, Mann G, Ziegler A, Pötschger U, Crazzolara R, Ussowicz M, Benesch M, Ebetsberger-Dachs G, Chan GCF, Jones N, Ladenstein R, Ambros IM, Ambros PF. Impact of Disseminated Neuroblastoma Cells on the Identification of the Relapse-Seeding Clone. Clin Cancer Res 2017; 23:4224-4232. [PMID: 28228384 DOI: 10.1158/1078-0432.ccr-16-2082] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/20/2016] [Accepted: 02/12/2017] [Indexed: 02/07/2023]
Abstract
Purpose: Tumor relapse is the most frequent cause of death in stage 4 neuroblastomas. Since genomic information on the relapse precursor cells could guide targeted therapy, our aim was to find the most appropriate tissue for identifying relapse-seeding clones.Experimental design: We analyzed 10 geographically and temporally separated samples of a single patient by SNP array and validated the data in 154 stage 4 patients.Results: In the case study, aberrations unique to certain tissues and time points were evident besides concordant aberrations shared by all samples. Diagnostic bone marrow-derived disseminated tumor cells (DTCs) as well as the metastatic tumor and DTCs at relapse displayed a 1q deletion, not detected in any of the seven primary tumor samples. In the validation cohort, the frequency of 1q deletion was 17.8%, 10%, and 27.5% in the diagnostic DTCs, diagnostic tumors, and DTCs at relapse, respectively. This aberration was significantly associated with 19q and ATRX deletions. We observed a significant increased likelihood of an adverse event in the presence of 19q deletion in the diagnostic DTCs.Conclusions: Different frequencies of 1q and 19q deletions in the primary tumors as compared with DTCs, their relatively high frequency at relapse, and their effect on event-free survival (19q deletion) indicate the relevance of analyzing diagnostic DTCs. Our data support the hypothesis of a branched clonal evolution and a parallel progression of primary and metastatic tumor cells. Therefore, searching for biomarkers to identify the relapse-seeding clone should involve diagnostic DTCs alongside the tumor tissue. Clin Cancer Res; 23(15); 4224-32. ©2017 AACR.
Collapse
Affiliation(s)
- M Reza Abbasi
- CCRI, Children's Cancer Research Institute, Vienna, Austria.
| | | | | | - Georg Mann
- St. Anna Children's Hospital, Vienna, Austria
| | - Andrea Ziegler
- CCRI, Children's Cancer Research Institute, Vienna, Austria
| | | | - Roman Crazzolara
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria
| | - Marek Ussowicz
- Department of Pediatric Hematology and Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Martin Benesch
- Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | | | - Godfrey C F Chan
- Department of Pediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong
| | - Neil Jones
- Department of Pediatrics and Adolescent Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Ruth Ladenstein
- CCRI, Children's Cancer Research Institute, Vienna, Austria.,Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Inge M Ambros
- CCRI, Children's Cancer Research Institute, Vienna, Austria
| | - Peter F Ambros
- CCRI, Children's Cancer Research Institute, Vienna, Austria. .,Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Sajnani K, Islam F, Smith RA, Gopalan V, Lam AKY. Genetic alterations in Krebs cycle and its impact on cancer pathogenesis. Biochimie 2017; 135:164-172. [PMID: 28219702 DOI: 10.1016/j.biochi.2017.02.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 01/26/2023]
Abstract
Cancer cells exhibit alterations in many cellular processes, including oxygen sensing and energy metabolism. Glycolysis in non-oxygen condition is the main energy production process in cancer rather than mitochondrial respiration as in benign cells. Genetic and epigenetic alterations of Krebs cycle enzymes favour the shift of cancer cells from oxidative phosphorylation to anaerobic glycolysis. Mutations in genes encoding aconitase, isocitrate dehydrogenase, succinate dehydrogenase, fumarate hydratase, and citrate synthase are noted in many cancers. Abnormalities of Krebs cycle enzymes cause ectopic production of Krebs cycle intermediates (oncometabolites) such as 2-hydroxyglutarate, and citrate. These oncometabolites stabilize hypoxia inducible factor 1 (HIF1), nuclear factor like 2 (Nrf2), inhibit p53 and prolyl hydroxylase 3 (PDH3) activities as well as regulate DNA/histone methylation, which in turn activate cell growth signalling. They also stimulate increased glutaminolysis, glycolysis and production of reactive oxygen species (ROS). Additionally, genetic alterations in Krebs cycle enzymes are involved with increased fatty acid β-oxidations and epithelial mesenchymal transition (EMT) induction. These altered phenomena in cancer could in turn promote carcinogenesis by stimulating cell proliferation and survival. Overall, epigenetic and genetic changes of Krebs cycle enzymes lead to the production of oncometabolite intermediates, which are important driving forces of cancer pathogenesis and progression. Understanding and applying the knowledge of these mechanisms opens new therapeutic options for patients with cancer.
Collapse
Affiliation(s)
- Karishma Sajnani
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Farhadul Islam
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Robert Anthony Smith
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; Genomics Research Centre, Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
29
|
Bommarito PA, Martin E, Fry RC. Effects of prenatal exposure to endocrine disruptors and toxic metals on the fetal epigenome. Epigenomics 2017; 9:333-350. [PMID: 28234024 DOI: 10.2217/epi-2016-0112] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Exposure to environmental contaminants during pregnancy has been linked to adverse outcomes at birth and later in life. The link between prenatal exposures and latent health outcomes suggests that these exposures may result in long-term epigenetic reprogramming. Toxic metals and endocrine disruptors are two major classes of contaminants that are ubiquitously present in the environment and represent threats to human health. In this review, we present evidence that prenatal exposures to these contaminants result in fetal epigenomic changes, including altered global DNA methylation, gene-specific CpG methylation and microRNA expression. Importantly, these changes may have functional cellular consequences, impacting health outcomes later in life. Therefore, these epigenetic changes represent a critical mechanism that warrants further study.
Collapse
Affiliation(s)
- Paige A Bommarito
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth Martin
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rebecca C Fry
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Curriculum in Toxicology, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| |
Collapse
|
30
|
Metabolic synthetic lethality in cancer therapy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1858:723-731. [PMID: 27956047 DOI: 10.1016/j.bbabio.2016.12.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/23/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022]
Abstract
Our understanding of cancer has recently seen a major paradigm shift resulting in it being viewed as a metabolic disorder, and altered cellular metabolism being recognised as a hallmark of cancer. This concept was spurred by the findings that the oncogenic mutations driving tumorigenesis induce a reprogramming of cancer cell metabolism that is required for unrestrained growth and proliferation. The recent discovery that mutations in key mitochondrial enzymes play a causal role in tumorigenesis suggested that dysregulation of metabolism could also be a driver of tumorigenesis. These mutations induce profound adaptive metabolic alterations that are a prerequisite for the survival of the mutated cells. Because these metabolic events are specific to cancer cells, they offer an opportunity to develop new therapies that specifically target tumour cells without affecting healthy tissue. Here, we will describe recent developments in metabolism-based cancer therapy, in particular focusing on the concept of metabolic synthetic lethality. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.
Collapse
|
31
|
Sciacovelli M, Frezza C. Oncometabolites: Unconventional triggers of oncogenic signalling cascades. Free Radic Biol Med 2016; 100:175-181. [PMID: 27117029 PMCID: PMC5145802 DOI: 10.1016/j.freeradbiomed.2016.04.025] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/11/2016] [Accepted: 04/19/2016] [Indexed: 01/27/2023]
Abstract
Cancer is a complex and heterogeneous disease thought to be caused by multiple genetic lesions. The recent finding that enzymes of the tricarboxylic acid (TCA) cycle are mutated in cancer rekindled the hypothesis that altered metabolism might also have a role in cellular transformation. Attempts to link mitochondrial dysfunction to cancer uncovered the unexpected role of small molecule metabolites, now known as oncometabolites, in tumorigenesis. In this review, we describe how oncometabolites can contribute to tumorigenesis. We propose that lesions of oncogenes and tumour suppressors are only one of the possible routes to tumorigenesis, which include accumulation of oncometabolites triggered by environmental cues.
Collapse
Affiliation(s)
- Marco Sciacovelli
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, United Kingdom
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, United Kingdom.
| |
Collapse
|
32
|
Sciacovelli M, Gonçalves E, Johnson TI, Zecchini VR, da Costa ASH, Gaude E, Drubbel AV, Theobald SJ, Abbo SR, Tran MGB, Rajeeve V, Cardaci S, Foster S, Yun H, Cutillas P, Warren A, Gnanapragasam V, Gottlieb E, Franze K, Huntly B, Maher ER, Maxwell PH, Saez-Rodriguez J, Frezza C. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature 2016; 537:544-547. [PMID: 27580029 PMCID: PMC5136292 DOI: 10.1038/nature19353] [Citation(s) in RCA: 420] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/10/2016] [Indexed: 12/18/2022]
Abstract
Mutations of the tricarboxylic acid cycle enzyme fumarate hydratase cause hereditary leiomyomatosis and renal cell cancer. Fumarate hydratase-deficient renal cancers are highly aggressive and metastasize even when small, leading to a very poor clinical outcome. Fumarate, a small molecule metabolite that accumulates in fumarate hydratase-deficient cells, plays a key role in cell transformation, making it a bona fide oncometabolite. Fumarate has been shown to inhibit α-ketoglutarate-dependent dioxygenases that are involved in DNA and histone demethylation. However, the link between fumarate accumulation, epigenetic changes, and tumorigenesis is unclear. Here we show that loss of fumarate hydratase and the subsequent accumulation of fumarate in mouse and human cells elicits an epithelial-to-mesenchymal-transition (EMT), a phenotypic switch associated with cancer initiation, invasion, and metastasis. We demonstrate that fumarate inhibits Tet-mediated demethylation of a regulatory region of the antimetastatic miRNA cluster mir-200ba429, leading to the expression of EMT-related transcription factors and enhanced migratory properties. These epigenetic and phenotypic changes are recapitulated by the incubation of fumarate hydratase-proficient cells with cell-permeable fumarate. Loss of fumarate hydratase is associated with suppression of miR-200 and the EMT signature in renal cancer and is associated with poor clinical outcome. These results imply that loss of fumarate hydratase and fumarate accumulation contribute to the aggressive features of fumarate hydratase-deficient tumours.
Collapse
Affiliation(s)
- Marco Sciacovelli
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Emanuel Gonçalves
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Cambridge CB10 1SD, UK
| | - Timothy Isaac Johnson
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | | | | | - Edoardo Gaude
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | | | | | - Sandra Riekje Abbo
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Maxine Gia Binh Tran
- Department of Oncology, Uro-Oncology Research Group, University of Cambridge, Cambridge CB2 0Ql, UK
| | - Vinothini Rajeeve
- Integrative Cell Signalling and Proteomics, Centre for Haemato-Oncology, John Vane Science Centre, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Simone Cardaci
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Sarah Foster
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Haiyang Yun
- Department of Haematology, Cambridge Institute for Medical Research and Addenbrooke's Hospital, and Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0XY, UK
| | - Pedro Cutillas
- Integrative Cell Signalling and Proteomics, Centre for Haemato-Oncology, John Vane Science Centre, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Anne Warren
- Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Vincent Gnanapragasam
- Academic Urology Group, Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Eyal Gottlieb
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Brian Huntly
- Department of Haematology, Cambridge Institute for Medical Research and Addenbrooke's Hospital, and Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0XY, UK
| | - Eamonn Richard Maher
- Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Patrick Henry Maxwell
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Julio Saez-Rodriguez
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Cambridge CB10 1SD, UK
- RWTH Aachen University, Faculty of Medicine, Joint Research Center for Computational Biomedicine, Aachen 52074, Germany
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| |
Collapse
|
33
|
Li Q, Kappil MA, Li A, Dassanayake PS, Darrah TH, Friedman AE, Friedman M, Lambertini L, Landrigan P, Stodgell CJ, Xia Y, Nanes JA, Aagaard KM, Schadt EE, Murray JC, Clark EB, Dole N, Culhane J, Swanson J, Varner M, Moye J, Kasten C, Miller RK, Chen J. Exploring the associations between microRNA expression profiles and environmental pollutants in human placenta from the National Children's Study (NCS). Epigenetics 2015; 10:793-802. [PMID: 26252056 DOI: 10.1080/15592294.2015.1066960] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The placenta is the principal regulator of the in utero environment, and disruptions to this environment can result in adverse offspring health outcomes. To better characterize the impact of in utero perturbations, we assessed the influence of known environmental pollutants on the expression of microRNA (miRNA) in placental samples collected from the National Children's Study (NCS) Vanguard birth cohort. This study analyzed the expression of 654 miRNAs in 110 term placentas. Environmental pollutants measured in these placentas included dichlorodiphenyldichloroethylene (DDE), bisphenol A (BPA), polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), arsenic (As), mercury (Hg), lead (Pb), and cadmium (Cd). A moderated t-test was used to identify a panel of differentially expressed miRNAs, which were further analyzed using generalized linear models. We observed 112 miRNAs consistently expressed in >70% of the samples. Consistent with the literature, miRNAs located within the imprinted placenta-specific C19MC cluster, specifically mir-517a, mir-517c, mir-522, and mir-23a, are among the top expressed miRNA in our study. We observed a positive association between PBDE 209 and miR-188-5p and an inverse association between PBDE 99 and let-7c. Both PCBs and Cd were positively associated with miR-1537 expression level. In addition, multiple let-7 family members were downregulated with increasing levels of Hg and Pb. We did not observe DDE or BPA levels to be associated with placental miRNA expression. This is the first birth cohort study linking environmental pollutants and placental expression of miRNAs. Our results suggest that placental miRNA profiles may signal in utero exposures to environmental chemicals.
Collapse
Affiliation(s)
- Qian Li
- a Departments of Preventive Medicine, Pediatrics, Oncological Science, Obstetrics , Gynecology and Reproductive Sciences; Icahn School of Medicine at Mount Sinai ; New York , NY USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gaude E, Frezza C. Defects in mitochondrial metabolism and cancer. Cancer Metab 2014; 2:10. [PMID: 25057353 PMCID: PMC4108232 DOI: 10.1186/2049-3002-2-10] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/09/2014] [Indexed: 02/03/2023] Open
Abstract
Cancer is a heterogeneous set of diseases characterized by different molecular and cellular features. Over the past decades, researchers have attempted to grasp the complexity of cancer by mapping the genetic aberrations associated with it. In these efforts, the contribution of mitochondria to the pathogenesis of cancer has tended to be neglected. However, more recently, a growing body of evidence suggests that mitochondria play a key role in cancer. In fact, dysfunctional mitochondria not only contribute to the metabolic reprogramming of cancer cells but they also modulate a plethora of cellular processes involved in tumorigenesis. In this review, we describe the link between mutations to mitochondrial enzymes and tumor formation. We also discuss the hypothesis that mutations to mitochondrial and nuclear DNA could cooperate to promote the survival of cancer cells in an evolving metabolic landscape.
Collapse
Affiliation(s)
- Edoardo Gaude
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Box 197, Cambridge CB2 0XZ, UK
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Box 197, Cambridge CB2 0XZ, UK
| |
Collapse
|
35
|
Carotenuto M, Pedone E, Diana D, de Antonellis P, Džeroski S, Marino N, Navas L, Di Dato V, Scoppettuolo MN, Cimmino F, Correale S, Pirone L, Monti SM, Bruder E, Zenko B, Slavkov I, Pastorino F, Ponzoni M, Schulte JH, Schramm A, Eggert A, Westermann F, Arrigoni G, Accordi B, Basso G, Saviano M, Fattorusso R, Zollo M. Neuroblastoma tumorigenesis is regulated through the Nm23-H1/h-Prune C-terminal interaction. Sci Rep 2013; 3:1351. [PMID: 23448979 PMCID: PMC3584926 DOI: 10.1038/srep01351] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/12/2013] [Indexed: 12/21/2022] Open
Abstract
Nm23-H1 is one of the most interesting candidate genes for a relevant role in Neuroblastoma pathogenesis. H-Prune is the most characterized Nm23-H1 binding partner, and its overexpression has been shown in different human cancers. Our study focuses on the role of the Nm23-H1/h-Prune protein complex in Neuroblastoma. Using NMR spectroscopy, we performed a conformational analysis of the h-Prune C-terminal to identify the amino acids involved in the interaction with Nm23-H1. We developed a competitive permeable peptide (CPP) to impair the formation of the Nm23-H1/h-Prune complex and demonstrated that CPP causes impairment of cell motility, substantial impairment of tumor growth and metastases formation. Meta-analysis performed on three Neuroblastoma cohorts showed Nm23-H1 as the gene highly associated to Neuroblastoma aggressiveness. We also identified two other proteins (PTPRA and TRIM22) with expression levels significantly affected by CPP. These data suggest a new avenue for potential clinical application of CPP in Neuroblastoma treatment.
Collapse
|
36
|
Villamón E, Berbegall AP, Piqueras M, Tadeo I, Castel V, Djos A, Martinsson T, Navarro S, Noguera R. Genetic instability and intratumoral heterogeneity in neuroblastoma with MYCN amplification plus 11q deletion. PLoS One 2013; 8:e53740. [PMID: 23341988 PMCID: PMC3544899 DOI: 10.1371/journal.pone.0053740] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/03/2012] [Indexed: 12/14/2022] Open
Abstract
Background/Aim Genetic analysis in neuroblastoma has identified the profound influence of MYCN amplification and 11q deletion in patients’ prognosis. These two features of high-risk neuroblastoma usually occur as mutually exclusive genetic markers, although in rare cases both are present in the same tumor. The purpose of this study was to characterize the genetic profile of these uncommon neuroblastomas harboring both these high-risk features. Methods We selected 18 neuroblastomas with MNA plus 11q loss detected by FISH. Chromosomal aberrations were analyzed using Multiplex Ligation-dependent Probe Amplification and Single Nucleotide Polymorphism array techniques. Results and Conclusion This group of tumors has approximately the same high frequency of aberrations as found earlier for 11q deleted tumors. In some cases, DNA instability generates genetic heterogeneity, and must be taken into account in routine genetic diagnosis.
Collapse
Affiliation(s)
- Eva Villamón
- Department of Pathology, Medical School, University of Valencia, Valencia, Spain
| | - Ana P. Berbegall
- Department of Pathology, Medical School, University of Valencia, Valencia, Spain
| | - Marta Piqueras
- Department of Pathology, Medical School, University of Valencia, Valencia, Spain
| | - Irene Tadeo
- Research Foundation of Hospital Clínico Universitario of Valencia, Valencia, Spain
| | - Victoria Castel
- Pediatric Oncology Unit, Hospital Universitario La Fe, Valencia, Spain
| | - Anna Djos
- Department of Clinical Genetics, The Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tommy Martinsson
- Department of Clinical Genetics, The Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Samuel Navarro
- Department of Pathology, Medical School, University of Valencia, Valencia, Spain
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia, Valencia, Spain
- * E-mail:
| |
Collapse
|
37
|
Molenaar JJ, Domingo-Fernández R, Ebus ME, Lindner S, Koster J, Drabek K, Mestdagh P, van Sluis P, Valentijn LJ, van Nes J, Broekmans M, Haneveld F, Volckmann R, Bray I, Heukamp L, Sprüssel A, Thor T, Kieckbusch K, Klein-Hitpass L, Fischer M, Vandesompele J, Schramm A, van Noesel MM, Varesio L, Speleman F, Eggert A, Stallings RL, Caron HN, Versteeg R, Schulte JH. LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression. Nat Genet 2012; 44:1199-206. [PMID: 23042116 DOI: 10.1038/ng.2436] [Citation(s) in RCA: 307] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 09/12/2012] [Indexed: 12/14/2022]
Abstract
LIN28B regulates developmental processes by modulating microRNAs (miRNAs) of the let-7 family. A role for LIN28B in cancer has been proposed but has not been established in vivo. Here, we report that LIN28B showed genomic aberrations and extensive overexpression in high-risk neuroblastoma compared to several other tumor entities and normal tissues. High LIN28B expression was an independent risk factor for adverse outcome in neuroblastoma. LIN28B signaled through repression of the let-7 miRNAs and consequently resulted in elevated MYCN protein expression in neuroblastoma cells. LIN28B-let-7-MYCN signaling blocked differentiation of normal neuroblasts and neuroblastoma cells. These findings were fully recapitulated in a mouse model in which LIN28B expression in the sympathetic adrenergic lineage induced development of neuroblastomas marked by low let-7 miRNA levels and high MYCN protein expression. Interference with this pathway might offer therapeutic perspectives.
Collapse
Affiliation(s)
- Jan J Molenaar
- Department of Oncogenomics, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Neuroblastoma genetics and phenotype: a tale of heterogeneity. Semin Cancer Biol 2011; 21:238-44. [PMID: 21839839 DOI: 10.1016/j.semcancer.2011.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 07/13/2011] [Indexed: 12/31/2022]
Abstract
Cancer is a complex disease driven by multiple genetic and epigenetic alterations. Understanding the (epi-)genetic changes and consequent deregulation of regulatory networks controlling the various normal critical cellular phenotypes that are perturbed in cancer cells can provide clues to new therapeutic opportunities. Moreover, such insights into the molecular pathology of a given cancer type can offer clinical relevant genetic markers or molecular signatures for assessment of prognosis and response to therapy, and prediction of risk for relapse. Therefore, as for many other tumour entities, neuroblastoma (NB) has been the subject of intensive ongoing genomic research. Here we will summarize the current state-of-the-art of these studies with focus on genome wide DNA copy number and gene expression analyses in relation to the relevance for present and future clinical management of NB patients.
Collapse
|