1
|
Miyazaki K, Hoshino D, Kasajima R, Koizume S, Koshikawa N, Miyagi Y. Oncofetal morphogenesis similar to embryonic gut formation by a subpopulation of DLD-1 human colon cancer cells. Exp Cell Res 2024; 442:114188. [PMID: 39128553 DOI: 10.1016/j.yexcr.2024.114188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/25/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024]
Abstract
Cancer stem cells (CSC) are thought to be responsible for cancer phenotypes and cellular heterogeneity. Here we demonstrate that the human colon cancer cell line DLD1 contains two types of CSC-like cells that undergo distinct morphogenesis in the reconstituted basement membrane gel Matrigel. In our method with cancer cell spheroids, the parent cell line (DLD1-P) developed grape-like budding structures, whereas the other (DLD1-Wm) and its single-cell clones dynamically developed worm-like ones. Gene expression analysis suggested that the former mimicked intestinal crypt-villus morphogenesis, while the latter mimicked embryonic hindgut development. The organoids of DLD1-Wm cells rapidly extended in two opposite directions by expressing dipolar proteolytic activity. The invasive morphogenesis required the expression of MMP-2 and CD133 genes and ROCK activity. These cells also exhibited gastrula-like morphogenesis even in two-dimensional cultures without Matrigel. Moreover, the two DLD1 cell lines showed clear differences in cellular growth, tumor growth and susceptibility to paclitaxel. This study also provides a simple organoid culture method for human cancer cell lines. HT-29 and other cancer cell lines underwent characteristic morphogenesis in direct contact with normal fibroblasts. Such organoid cultures would be useful for investigating the nature of CSCs and for screening anti-cancer drugs. Our results lead to the hypothesis that CSC-like cells with both invasive activity and a fetal phenotype, i. e. oncofetal CSCs, are generated in some types of colon cancers.
Collapse
Affiliation(s)
- Kaoru Miyazaki
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama, 241-8515, Japan.
| | - Daisuke Hoshino
- Cancer Biology Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama, 241-8515, Japan.
| | - Rika Kasajima
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama, 241-8515, Japan.
| | - Shiro Koizume
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama, 241-8515, Japan.
| | - Naohiko Koshikawa
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama, 226-8501, Japan.
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama, 241-8515, Japan.
| |
Collapse
|
2
|
He K, Wang Z, Luo M, Li B, Ding N, Li L, He B, Wang H, Cao J, Huang C, Yang J, Chen HN. Metastasis organotropism in colorectal cancer: advancing toward innovative therapies. J Transl Med 2023; 21:612. [PMID: 37689664 PMCID: PMC10493031 DOI: 10.1186/s12967-023-04460-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/19/2023] [Indexed: 09/11/2023] Open
Abstract
Distant metastasis remains a leading cause of mortality among patients with colorectal cancer (CRC). Organotropism, referring to the propensity of metastasis to target specific organs, is a well-documented phenomenon in CRC, with the liver, lungs, and peritoneum being preferred sites. Prior to establishing premetastatic niches within host organs, CRC cells secrete substances that promote metastatic organotropism. Given the pivotal role of organotropism in CRC metastasis, a comprehensive understanding of its molecular underpinnings is crucial for biomarker-based diagnosis, innovative treatment development, and ultimately, improved patient outcomes. In this review, we focus on metabolic reprogramming, tumor-derived exosomes, the immune system, and cancer cell-organ interactions to outline the molecular mechanisms of CRC organotropic metastasis. Furthermore, we consider the prospect of targeting metastatic organotropism for CRC therapy.
Collapse
Affiliation(s)
- Kai He
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Ning Ding
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lei Li
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Han Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jiangjun Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Canhua Huang
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jun Yang
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Hai-Ning Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- Department of General Surgery, State Key Laboratory of Biotherapy and Cancer Center, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
3
|
Hong XC, Liang QL, Chen M, Yang HX, Huang J, Yi SL, Wang ZW, Liang HY, Zhang DY, Huang ZY. PRL-3 and MMP9 Expression and Epithelial-Mesenchymal Transition Markers in Circulating Tumor Cells From Patients With Colorectal Cancer: Potential Value in Clinical Practice. Front Oncol 2022; 12:878639. [PMID: 35574414 PMCID: PMC9104807 DOI: 10.3389/fonc.2022.878639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/04/2022] [Indexed: 12/01/2022] Open
Abstract
Objective To evaluate the clinical correlation of epithelial-mesenchymal transition (EMT) with PRL-3 and MMP9 expression in the circulating tumor cells (CTCs) of patients with colorectal cancer (CRC). Materials and Methods Between January 2016 and December 2018, the EMT phenotype-based subsets of CTCs and the expression levels of PRL-3 and MMP9 in CTCs were identified, and their clinical values in 172 patients were evaluated. The CTCs were isolated, classified, and counted using the CanPatrol™ CTC filtration system. The CTC subsets (epithelial cells, mesenchymal cells and biphenotypic cells), as well as PRL-3 and MMP9 expression, were detected by RNA in situ hybridization. Results CTCs were detected in 93.0% (160/172) of the included patients with CRC. Positive PRL-3 and MMP9 expression in CTC and M-CTC was found in 75.0% (102/136) and 80.8% (97/120) of the patients, respectively. The proportion of patients with positive PRL-3 and MMP9 expression in M-CTC was significantly associated with distant metastasis (p<0.05). The patients with ≥6 CTCs tended to show poorer progression-free survival (PFS) and overall survival (OS) rates (p=0.016, 0.02, respectively), and the patients with ≥3 M-CTC also showed poor PFS (p=0.0013). Additionally, the patients with positive PRL-3 and MMP9 expression in CTCs had significantly poorer PFS (p=0.0024) and OS (p=0.095) than the patients with negative PRL-3 and MMP9 expression. Multivariate Cox analysis uncovered that positive PRL-3 and MMP9 expression in CTCs may be an independent prognostic factor for worse PFS. Conclusion EMT phenotypes and CTC numbers can be used as prognostic indicators for metastasis and survival in patients with CRC, and the combination of PRL-3 and MMP9 expression in CTCs is a promising clinical marker for patients with CRC.
Collapse
Affiliation(s)
- Xiao-Cui Hong
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qi-Lian Liang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- *Correspondence: Qi-Lian Liang,
| | - Man Chen
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hai-Xia Yang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jie Huang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Si-Lin Yi
- Pathology Department, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhen-Wei Wang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hai-Yan Liang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ding-Yue Zhang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zeng-Yi Huang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
4
|
Zhou H, Liu Z, Wang Y, Wen X, Amador EH, Yuan L, Ran X, Xiong L, Ran Y, Chen W, Wen Y. Colorectal liver metastasis: molecular mechanism and interventional therapy. Signal Transduct Target Ther 2022; 7:70. [PMID: 35246503 PMCID: PMC8897452 DOI: 10.1038/s41392-022-00922-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently occurring malignancy tumors with a high morbidity additionally, CRC patients may develop liver metastasis, which is the major cause of death. Despite significant advances in diagnostic and therapeutic techniques, the survival rate of colorectal liver metastasis (CRLM) patients remains very low. CRLM, as a complex cascade reaction process involving multiple factors and procedures, has complex and diverse molecular mechanisms. In this review, we summarize the mechanisms/pathophysiology, diagnosis, treatment of CRLM. We also focus on an overview of the recent advances in understanding the molecular basis of CRLM with a special emphasis on tumor microenvironment and promise of newer targeted therapies for CRLM, further improving the prognosis of CRLM patients.
Collapse
Affiliation(s)
- Hui Zhou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Zhongtao Liu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Yongxiang Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Xiaoyong Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Eric H Amador
- Department of Physics, The University of Texas, Arlington, TX, 76019, USA
| | - Liqin Yuan
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Xin Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China.
| | - Yuping Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wei Chen
- Department of Physics, The University of Texas, Arlington, TX, 76019, USA.
- Medical Technology Research Centre, Chelmsford Campus, Anglia Ruskin University, Chelmsford, CM1 1SQ, UK.
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China.
| |
Collapse
|
5
|
PTP4A3, A Novel Target Gene of HIF-1alpha, Participates in Benzene-Induced Cell Proliferation Inhibition and Apoptosis through PI3K/AKT Pathway. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030910. [PMID: 32024182 PMCID: PMC7037067 DOI: 10.3390/ijerph17030910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Benzene, a commonly used chemical, has been confirmed to specifically affect the hematopoietic system as well as overall human health. PTP4A3 is overexpressed in leukemia cells and is related to cell proliferation. We previously found that HIF-1alpha was involved in benzene toxicity and PTP4A3 may be the target gene of HIF-1alpha via ChIP-seq. The aim of this study is to confirm the relationship between HIF-1alpha and PTP4A3 in benzene toxicity, as well as the function of PTP4A3 on cell toxicity induced by 1,4-benzoquinone (1,4-BQ). Our results indicate that HIF-1alpha could regulate PTP4A3 with in vivo and in vitro experiments. A cell line with suppressed PTP4A3 was established to investigate the function of PTP4A3 in 1,4-BQ toxicity in vitro. The results revealed that cell proliferation inhibition was more aggravated in PTP4A3 low-expression cells than in the control cells after 1,4-BQ treatment. The relative oxygen species (ROS) significantly increased in cells with inhibited PTP4A3, while the rise was inferior to the control cells at the 20 μM 1,4-BQ group. An increase in DNA damage was seen in PTP4A3 down-regulated cells at the 10 μM 1,4-BQ group, whereas the results reversed at the concentration of 20 μM. Moreover, the apoptosis rate increased higher in down-regulated PTP4A3 cells after 1,4-BQ exposure. In addition, PI3K/AKT pathway was significantly restrained in cells with inhibited PTP4A3 after 1,4-BQ treatment. Our results indicate that HIF-1alpha may regulate PTP4A3 to be involved in benzene toxicity. Inhibition of PTP4A3 could aggravate cell proliferation suppression and apoptosis by regulating PI3K/AKT pathway after 1,4-BQ treatment.
Collapse
|
6
|
Duciel L, Monraz Gomez LC, Kondratova M, Kuperstein I, Saule S. The Phosphatase PRL-3 Is Involved in Key Steps of Cancer Metastasis. J Mol Biol 2019; 431:3056-3067. [DOI: 10.1016/j.jmb.2019.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/24/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022]
|
7
|
Li BH, Wang Y, Wang CY, Zhao MJ, Deng T, Ren XQ. Up-Regulation of Phosphatase in Regenerating Liver-3 (PRL-3) Contributes to Malignant Progression of Hepatocellular Carcinoma by Activating Phosphatase and Tensin Homolog Deleted on Chromosome Ten (PTEN)/Phosphoinositide 3-Kinase (PI3K)/AKT Signaling Pathway. Med Sci Monit 2018; 24:8105-8114. [PMID: 30418964 PMCID: PMC6243833 DOI: 10.12659/msm.913307] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/23/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The purpose of the study was to investigate the functional roles of phosphatase in regenerating liver-3 (PRL-3) in hepatocellular carcinoma (HCC), as well as the related molecular mechanisms. MATERIAL AND METHODS HCC tissues and adjacent normal tissues were collected from 124 HCC patients. The mRNA and protein levels of PRL-3 were detected using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot assays, respectively. The relationship between PRL-3 expression and clinical characteristics of HCC patients was evaluated by chi-square test. MTT and Transwell assays were performed to estimate cell proliferation and motility, respectively. RESULTS The expression of PRL-3 was significantly increased in HCC tissues and cells at both protein and mRNA levels (P<0.01 for all). Furthermore, the up-regulation of PRL-3 was positively correlated with hepatic vascular invasion (P=0.019), lymph node metastasis (P=0.012), and TNM stage (P=0.001). The knockdown of PRL-3 suppressed HCC cell proliferation, migration, and invasion, and PR3K/AKT pathway activity was also obviously inhibited in HCC cells with PRL-3 deficiency. The levels of PTEN were negatively associated with PRL-3 expression. PRL-3 might inhibit the protein level of PTEN through enhancing its phosphorylation level. The transfection of si-PTEN can reverse the anti-tumor action caused by PRL-3 knockdown in HCC cells. CONCLUSIONS Up-regulation of PRL-3 may activate the PI3K/AKT signaling pathway and enhance malignant progression of HCC through targeting PTEN.
Collapse
Affiliation(s)
- Bing-Hui Li
- Department of General Surgery, Center for Evidence-Based Medicine and Clinical Research, Huaihe Hospital of Henan University, Kaifeng, Henan, P.R. China
| | - Yang Wang
- Department of General Surgery, Center for Evidence-Based Medicine and Clinical Research, Huaihe Hospital of Henan University, Kaifeng, Henan, P.R. China
| | - Chao-Yang Wang
- Department of General Surgery, Center for Evidence-Based Medicine and Clinical Research, Huaihe Hospital of Henan University, Kaifeng, Henan, P.R. China
| | - Ming-Juan Zhao
- Department of Cardiology, The First Affiliated Hospital of Henan University, Kaifeng, Henan, P.R. China
| | - Tong Deng
- Department of General Surgery, Center for Evidence-Based Medicine and Clinical Research, Huaihe Hospital of Henan University, Kaifeng, Henan, P.R. China
| | - Xue-Qun Ren
- Department of General Surgery, Center for Evidence-Based Medicine and Clinical Research, Huaihe Hospital of Henan University, Kaifeng, Henan, P.R. China
| |
Collapse
|
8
|
Hardy S, Kostantin E, Hatzihristidis T, Zolotarov Y, Uetani N, Tremblay ML. Physiological and oncogenic roles of thePRLphosphatases. FEBS J 2018; 285:3886-3908. [DOI: 10.1111/febs.14503] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/30/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Serge Hardy
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
| | - Elie Kostantin
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
| | - Teri Hatzihristidis
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Medicine Division of Experimental Medicine McGill University Montreal Canada
| | - Yevgen Zolotarov
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
| | - Noriko Uetani
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
| | - Michel L. Tremblay
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
- Department of Medicine Division of Experimental Medicine McGill University Montreal Canada
| |
Collapse
|
9
|
Lin SY, Lee YX, Yu SL, Chang GC, Chen JJW. Phosphatase of regenerating liver-3 inhibits invasiveness and proliferation in non-small cell lung cancer by regulating the epithelial-mesenchymal transition. Oncotarget 2017; 7:21799-811. [PMID: 26967563 PMCID: PMC5008324 DOI: 10.18632/oncotarget.7985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 02/16/2016] [Indexed: 01/03/2023] Open
Abstract
Phosphatase of regenerating liver-3 (PRL-3) has been reported to be associated with colon and gastric cancer metastasis. However, the role and function of PRL-3 in human non-small cell lung cancer cells is unknown. Our studies showed that the expression of PRL-3mRNA and protein are higher in less invasive human lung adenocarcinoma cells than in highly invasive cell lines. Ectopic expression of PRL-3 reduced cell capacity for anchorage-dependent growth, anchorage-independent growth, migration, and invasion in vitro, as well as tumorigenesis in vivo. Conversely, catalytic (C104S) and prenylation-site (C170S) mutants enhanced cell invasion. Microarray profiling of PRL-3 transfectants revealed the pathways potentially involving PRL-3, including the epithelial-mesenchymal transition (EMT), extracellular matrix remodeling, and the WNT signaling pathway. Furthermore, we demonstrated that increased PRL-3 reduced Slug and enhanced E-cadherin gene expression through the AKT/GSK3β/β-catenin pathway. In conclusion, our data suggest that PRL-3 might play a tumor suppressor role in lung cancer, distinct from other cancers, by inhibiting EMT-related pathways.
Collapse
Affiliation(s)
- Sheng-Yi Lin
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Yue-Xun Lee
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Gee-Chen Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jeremy J W Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
10
|
Bocuk D, Wolff A, Krause P, Salinas G, Bleckmann A, Hackl C, Beissbarth T, Koenig S. The adaptation of colorectal cancer cells when forming metastases in the liver: expression of associated genes and pathways in a mouse model. BMC Cancer 2017; 17:342. [PMID: 28525976 PMCID: PMC5437520 DOI: 10.1186/s12885-017-3342-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 05/11/2017] [Indexed: 01/28/2023] Open
Abstract
Background Colorectal cancer (CRC) is the second leading cause of cancer-related death in men and women. Systemic disease with metastatic spread to distant sites such as the liver reduces the survival rate considerably. The aim of this study was to investigate the changes in gene expression that occur on invasion and expansion of CRC cells when forming metastases in the liver. Methods The livers of syngeneic C57BL/6NCrl mice were inoculated with 1 million CRC cells (CMT-93) via the portal vein, leading to the stable formation of metastases within 4 weeks. RNA sequencing performed on the Illumina platform was employed to evaluate the expression profiles of more than 14,000 genes, utilizing the RNA of the cell line cells and liver metastases as well as from corresponding tumour-free liver. Results A total of 3329 differentially expressed genes (DEGs) were identified when cultured CMT-93 cells propagated as metastases in the liver. Hierarchical clustering on heat maps demonstrated the clear changes in gene expression of CMT-93 cells on propagation in the liver. Gene ontology analysis determined inflammation, angiogenesis, and signal transduction as the top three relevant biological processes involved. Using a selection list, matrix metallopeptidases 2, 7, and 9, wnt inhibitory factor, and chemokine receptor 4 were the top five significantly dysregulated genes. Conclusion Bioinformatics assists in elucidating the factors and processes involved in CRC liver metastasis. Our results support the notion of an invasion-metastasis cascade involving CRC cells forming metastases on successful invasion and expansion within the liver. Furthermore, we identified a gene expression signature correlating strongly with invasiveness and migration. Our findings may guide future research on novel therapeutic targets in the treatment of CRC liver metastasis. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3342-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Derya Bocuk
- Department of General, Visceral and Paediatric Surgery, University Medical Centre, Georg - August - University Goettingen, Göttingen, Germany
| | - Alexander Wolff
- Statistical Bioinformatics, Department of Medical Statistics, University Medical Centre, Georg - August - University Goettingen, Göttingen, Germany
| | - Petra Krause
- Department of General, Visceral and Paediatric Surgery, University Medical Centre, Georg - August - University Goettingen, Göttingen, Germany
| | - Gabriela Salinas
- Microarray and Deep-Sequencing Core Facility, Institute for Developmental Biochemistry, University Medical Centre, Georg - August - University Goettingen, Göttingen, Germany
| | - Annalen Bleckmann
- Statistical Bioinformatics, Department of Medical Statistics, University Medical Centre, Georg - August - University Goettingen, Göttingen, Germany.,Department of Haematology and Medical Oncology, University Medical Centre, Georg - August - University Goettingen, Göttingen, Germany
| | - Christina Hackl
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Tim Beissbarth
- Statistical Bioinformatics, Department of Medical Statistics, University Medical Centre, Georg - August - University Goettingen, Göttingen, Germany
| | - Sarah Koenig
- Department of General, Visceral and Paediatric Surgery, University Medical Centre, Georg - August - University Goettingen, Göttingen, Germany. .,Medical Teaching and Medical Education Research, University Hospital Wuerzburg, Julius-Maximilians-University Wuerzburg, Josef-Schneider-Str. 2/D6, 97080, Wuerzburg, Germany.
| |
Collapse
|
11
|
Wang J, Yao X, Huang J. New tricks for human farnesyltransferase inhibitor: cancer and beyond. MEDCHEMCOMM 2017; 8:841-854. [PMID: 30108801 PMCID: PMC6072492 DOI: 10.1039/c7md00030h] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/15/2017] [Indexed: 12/18/2022]
Abstract
Human protein farnesyltransferase (FTase) catalyzes the addition of a C15-farnesyl lipid group to the cysteine residue located in the COOH-terminal tetrapeptide motif of a variety of important substrate proteins, including well-known Ras protein superfamily. The farnesylation of Ras protein is required both for its normal physiological function, and for the transforming capacity of its oncogenic mutants. Over the last several decades, FTase inhibitors (FTIs) were developed to disrupt the farnesylation of oncogenic Ras as anti-cancer agents, and some of them have entered cancer clinical investigation. On the other hand, some substrates of FTase were demonstrated to be related with other human diseases, including Hutchinson-Gilford progeria syndrome, chronic hepatitis D, and cardiovascular diseases. In this review, we summarize the roles of FTase in malignant transformation, proliferation, apoptosis, angiogenesis, and metastasis of tumor cells, and the recently anticancer clinical research advances of FTIs. The therapeutic prospect of FTIs on several other human diseases is also discussed.
Collapse
Affiliation(s)
- Jingyuan Wang
- Shanghai Key Laboratory of New Drug Design , School of Pharmacy , East China University of Science and Technology , 130 Mei Long Road , Shanghai 200237 , China . ; Tel: (+86)21 64253681
| | - Xue Yao
- Shanghai Key Laboratory of New Drug Design , School of Pharmacy , East China University of Science and Technology , 130 Mei Long Road , Shanghai 200237 , China . ; Tel: (+86)21 64253681
| | - Jin Huang
- Shanghai Key Laboratory of New Drug Design , School of Pharmacy , East China University of Science and Technology , 130 Mei Long Road , Shanghai 200237 , China . ; Tel: (+86)21 64253681
| |
Collapse
|
12
|
Sun F, Li W, Wang L, Jiao C. Expression of phosphatase of regenerating liver-3 is associated with prognosis of Wilms' tumor. Onco Targets Ther 2017; 10:311-317. [PMID: 28138254 PMCID: PMC5237596 DOI: 10.2147/ott.s107076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Objective The current study was undertaken to explore the clinical and prognostic value of phosphatase of regenerating liver-3 (PRL-3) expression in Wilms’ tumor. Methods Seventy-six patients with Wilms’ tumor in Qilu Hospital from January 2003 to July 2009 were enrolled in the study. Protein expression level of PRL-3 was examined by immunohistochemical staining, and the correlation between PRL-3 expression and histopathological parameters, clinical variables, and outcome of patients with Wilms’ tumor were analyzed. Results We found that 19% of patients with unfavorable histology had tumor recurrence and 16% of patients died following the operation. PRL-3 was expressed in 15 out of 76 tumors (19%) and expressed highly in unfavorable histology Wilms’ tumor (P=0.04). PRL-3 protein expression level was correlated to 2.5-fold increase in recurrence rate of Wilms’ tumor (P=0.06) without any statistically significant difference. However, in favorable histology Wilms’ tumor, PRL-3 expression was correlated to an increase of 3.4-fold in recurrence rate (P=0.03). Conclusion The expression of PRL-3 protein was correlated with an increased recurrence rate of favorable histology Wilms’ tumor. PRL-3 may serve as a promising biomarker for predicting patients with high risk of Wilms’ tumor. Further investigations are warranted to investigate the clinical function of PRL-3 in Wilms’ tumor.
Collapse
Affiliation(s)
- Fengyin Sun
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province
| | - Wenyi Li
- Department of General Surgery, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou, Fujian Province; Department of Vascular Surgery, Xinzhou City People's Hospital, Xinzhou, Shanxi Province, People's Republic of China
| | - Lie Wang
- Department of General Surgery, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou, Fujian Province
| | - Changfeng Jiao
- Department of Vascular Surgery, Xinzhou City People's Hospital, Xinzhou, Shanxi Province, People's Republic of China
| |
Collapse
|
13
|
Wang L, Liu J, Zhong Z, Gong X, Liu W, Shi L, Li X. PTP4A3 is a target for inhibition of cell proliferatin, migration and invasion through Akt/mTOR signaling pathway in glioblastoma under the regulation of miR-137. Brain Res 2016; 1646:441-450. [DOI: 10.1016/j.brainres.2016.06.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022]
|
14
|
Ren S, Zhou Y, Fang X, She X, Wu Y, Wu X. PRL-3 Is Involved in Estrogen- and IL-6-Induced Migration of Endometrial Stromal Cells From Ectopic Endometrium. Reprod Sci 2016; 24:124-132. [PMID: 27222233 DOI: 10.1177/1933719116650751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To investigate the role of phosphatase of regenerating liver-3 (PRL-3) in the 17β-estradiol (E2)- and interleukin 6 (IL-6)-induced migration of endometrial stromal cells (ESCs) from ectopic endometrium. METHODS Ectopic endometrial tissues were collected from patients with endometriosis, and PRL-3 expression in ectopic and eutopic endometrium was examined by immunohistochemistry. Endometrial stromal cells isolated from ectopic endometrium were treated with E2, progesterone (P), IL-6, or sodium orthovanadate (Sov) to inhibit PRL-3. Total RNA and protein were extracted from ESCs after treatment for quantitative real-time polymerase chain reaction and Western blot analyses. Cell migration was assessed using a scratch wound assay. RESULTS Phosphatase of regenerating liver 3 protein was highly expressed in the endometrial glandular cells (EGCs) and ESCs in ectopic endometrium, whereas its weak expression was observed only in EGCs in eutopic endometrium. Both E2 and IL-6 treatment significantly increased PRL-3 messenger RNA and protein expression, and P treatment significantly inhibited PRL-3 expression. However, E2-induced PRL-3 expression in ESCs from ectopic endometrium was significantly blocked by IL-6 antibody. Moreover, E2- and IL-6-enhanced cell migration was completely abrogated by Sov treatment. Furthermore, Sov treatment could significantly promote PTEN expression but inhibit E2- and IL-6-induced p-AKT activation. CONCLUSION Phosphatase of regenerating liver 3 plays a key role in the E2- and IL-6-induced migration of ESCs from ectopic endometrium, a process that is involved in the PTEN-AKT signaling pathway.
Collapse
Affiliation(s)
- Shifan Ren
- 1 Department of Gynecology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, PRC
| | - Yefang Zhou
- 2 Laboratory of Cell Biology, Xiangya Medical School, Central South University, Changsha, Hunan, PRC
| | - Xiaoling Fang
- 3 Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PRC
| | - Xiaoling She
- 4 Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PRC
| | - Yilin Wu
- 3 Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PRC
| | - Xianqing Wu
- 3 Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PRC
| |
Collapse
|
15
|
Zhan H, Ma J, Ruan F, Bedaiwy MA, Peng B, Wu R, Lin J. Elevated phosphatase of regenerating liver 3 (PRL-3) promotes cytoskeleton reorganization, cell migration and invasion in endometrial stromal cells from endometrioma. Hum Reprod 2016; 31:723-33. [PMID: 26874360 DOI: 10.1093/humrep/dew015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 01/14/2016] [Indexed: 01/14/2023] Open
Abstract
STUDY QUESTION Is phosphatase of regenerating liver-3 (PRL-3) associated with increased motility of endometriotic cells from endometrioma? SUMMARY ANSWER Elevated PRL-3 promotes cytoskeleton reorganization, cell migration and invasion of endometrial stromal cells (ESCs) from endometrioma. WHAT IS KNOWN ALREADY Overexpression of PRL-3 is associated with cancer cell migration, invasion and metastatic phenotype. STUDY DESIGN, SIZE, DURATION Primary human ESCs were isolated from eutopic endometrium of women without endometriosis (EuCo, n = 10), with histologically proven endometrioma (EuEM, n = 19) and from the cyst wall of ovarian endometriosis (OvEM, n = 26). PARTICIPANTS/MATERIALS, SETTING, METHODS The expression of PRL-3 in ESCs derived from EuCo, EuEM and OvEM at different phases of menstrual cycle were compared. The protein and mRNA levels of PRL-3 were examined by western blot and RT-qPCR, respectively. ESCs from OvEM were transfected with/without short hairpin RNA (shRNA) or small interfering RNA (siRNA). Additionally, a plasmid-mediated delivery system was used to achieve PRL-3 overexpression in ESCs from EuEM. The cellular distribution of F-actin and α-tubulin were examined by immunocytochemistry. Cell motility was evaluated by a transwell migration/invasion assay. MAIN RESULTS AND THE ROLE OF CHANCE The protein and mRNA levels of PRL-3 are significantly elevated in ESCs from OvEM compared with EuCo and EuEM. The expression of PRL-3 was not altered between proliferative phase and secretory phase in ESCs from all groups. Knockdown of PRL-3 significantly modified the distribution of F-actin and α-tubulin cytoskeleton, inhibited cell migration and invasion. Endogenous inhibition of PRL-3 attenuated the expression of Ras homolog gene family members A and C (RhoA, RhoC), Rho-associated coiled-coil-containing protein kinase 1 (ROCK1) and matrix metalloproteinase (MMP) 9, but not MMP2 in ESCs from OvEM. Additionally, overexpression of PRL-3 in ESCs from EuEM up-regulates cell migration and invasion, and increases the expression of RhoA, RhoC, ROCK1 and MMP9. LIMITATIONS, REASONS FOR CAUTION Lack of in vivo animal studies is the major limitation of our report. Our results should be further confirmed in a larger cohort of patients and extended to include eutopic and ectopic endometrium from patients with peritoneal endometriosis at different stages of the disease. WIDER IMPLICATIONS OF THE FINDINGS Our study describes that elevated expression of PRL-3 contributes to the cell motility of ESCs from endometrioma. The results emphasize the importance of metastatic-related factor PRL-3 in the pathogenesis of endometrioma. STUDY FUNDING/COMPETING INTEREST This work was supported by National Natural Science Foundation of China (No. 81170546) and Zhejiang Medicine Science and Technology Projects (No. Y13H040003). The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Hong Zhan
- Department of Gynecology and Obstetrics, Women's Hospital, Zhejiang University Medical College, Hangzhou 310006, P.R. China
| | - Junyan Ma
- Department of Gynecology and Obstetrics, Women's Hospital, Zhejiang University Medical College, Hangzhou 310006, P.R. China
| | - Fei Ruan
- Department of Gynecology and Obstetrics, Women's Hospital, Zhejiang University Medical College, Hangzhou 310006, P.R. China
| | - Mohamed A Bedaiwy
- Department of Obstetrics & Gynaecology, Child & Family Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Bo Peng
- Department of Obstetrics & Gynaecology, Child & Family Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Ruijin Wu
- Department of Gynecology and Obstetrics, Women's Hospital, Zhejiang University Medical College, Hangzhou 310006, P.R. China
| | - Jun Lin
- Department of Gynecology and Obstetrics, Women's Hospital, Zhejiang University Medical College, Hangzhou 310006, P.R. China
| |
Collapse
|
16
|
Nakayama N, Yamashita K, Tanaka T, Kawamata H, Ooki A, Sato T, Nakamura T, Watanabe M. Genomic gain of the PRL-3 gene may represent poor prognosis of primary colorectal cancer, and associate with liver metastasis. Clin Exp Metastasis 2015; 33:3-13. [PMID: 26563151 DOI: 10.1007/s10585-015-9749-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/18/2015] [Indexed: 12/30/2022]
Abstract
PRL-3 genomic copy number is increased in colorectal cancer (CRC), and PRL-3 expression is closely associated with lymph node and liver metastasis of CRC. However, the clinical significance of PRL-3 genomic gain for CRC remains obscure. Here, PRL-3 genomic status in 109 primary CRC tumors and in 44 CRC tumors that had metastasized to the liver, was quantified using real time PCR. Association of PRL-3 genomic status with clinicopathological factors and prognosis was assessed in detail. PRL-3 genomic gain was identified in 31 primary CRC (27.4 %) and was more frequently seen in stage III than in stage II (p = 0.025). Among the clinicopathological factors assessed, PRL-3 genomic gain was significantly associated with poorly differentiated histology (p = 0.0039). Moreover, CRC patients with PRL-3 genomic gain exhibited poorer prognosis than those with no gain in stage II-IV CRC (p = 0.017). PRL-3 genomic gain was identified in 18 (41 %) of the liver metastasis tumors, and this frequency of gain was significantly increased as compared to that of the corresponding primary CRCs (11 %) (p = 0.001). Our findings suggested that PRL-3 genomic gain may represent an aggressive phenotype of primary CRC, and may associate with liver metastasis.
Collapse
Affiliation(s)
- N Nakayama
- Department of Surgery, Kitasato University School of Medicine, Asamizodai 2-1-1, Minami-ku, Sagamihara, Kanagawa, 252-0380, Japan
| | - K Yamashita
- Department of Surgery, Kitasato University School of Medicine, Asamizodai 2-1-1, Minami-ku, Sagamihara, Kanagawa, 252-0380, Japan.
| | - T Tanaka
- Department of Surgery, Kitasato University School of Medicine, Asamizodai 2-1-1, Minami-ku, Sagamihara, Kanagawa, 252-0380, Japan
| | - H Kawamata
- Department of Surgery, Kitasato University School of Medicine, Asamizodai 2-1-1, Minami-ku, Sagamihara, Kanagawa, 252-0380, Japan
| | - A Ooki
- Department of Surgery, Kitasato University School of Medicine, Asamizodai 2-1-1, Minami-ku, Sagamihara, Kanagawa, 252-0380, Japan
| | - T Sato
- Department of Surgery, Kitasato University School of Medicine, Asamizodai 2-1-1, Minami-ku, Sagamihara, Kanagawa, 252-0380, Japan
| | - T Nakamura
- Department of Surgery, Kitasato University School of Medicine, Asamizodai 2-1-1, Minami-ku, Sagamihara, Kanagawa, 252-0380, Japan
| | - M Watanabe
- Department of Surgery, Kitasato University School of Medicine, Asamizodai 2-1-1, Minami-ku, Sagamihara, Kanagawa, 252-0380, Japan
| |
Collapse
|
17
|
Molecular targets and pathways involved in liver metastasis of colorectal cancer. Clin Exp Metastasis 2015; 32:623-35. [DOI: 10.1007/s10585-015-9732-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/17/2015] [Indexed: 02/08/2023]
|
18
|
MMP7 is required to mediate cell invasion and tumor formation upon Plakophilin3 loss. PLoS One 2015; 10:e0123979. [PMID: 25875355 PMCID: PMC4395386 DOI: 10.1371/journal.pone.0123979] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/24/2015] [Indexed: 11/30/2022] Open
Abstract
Plakophilin3 (PKP3) loss results in increased transformation in multiple cell lines in vitro and increased tumor formation in vivo. A microarray analysis performed in the PKP3 knockdown clones, identified an inflammation associated gene signature in cell lines derived from stratified epithelia as opposed to cell lines derived from simple epithelia. However, in contrast to the inflammation associated gene signature, the expression of MMP7 was increased upon PKP3 knockdown in all the cell lines tested. Using vector driven RNA interference, it was demonstrated that MMP7 was required for in-vitro cell migration and invasion and tumor formation in vivo. The increase in MMP7 levels was due to the increase in levels of the Phosphatase of Regenerating Liver3 (PRL3), which is observed upon PKP3 loss. The results suggest that MMP7 over-expression may be one of the mechanisms by which PKP3 loss leads to increased cell invasion and tumor formation.
Collapse
|
19
|
Amiri F, Jahanian-Najafabadi A, Roudkenar MH. In vitro augmentation of mesenchymal stem cells viability in stressful microenvironments : In vitro augmentation of mesenchymal stem cells viability. Cell Stress Chaperones 2015; 20:237-51. [PMID: 25527070 PMCID: PMC4326383 DOI: 10.1007/s12192-014-0560-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/02/2014] [Accepted: 12/07/2014] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are under intensive investigation for use in cell-based therapies because their differentiation abilities, immunomodulatory effects, and homing properties offer potential for significantly augmenting regenerative capacity of many tissues. Nevertheless, major impediments to their therapeutic application, such as low proliferation and survival rates remain as obstacles to broad clinical use of MSCs. Another major challenge to evolution of MSC-based therapies is functional degradation of these cells as a result of their exposure to oxidative stressors during isolation. Indeed, oxidative stress-mediated MSC depletion occurs due to inflammatory processes associated with chemotherapy, radiotherapy, and expression of pro-apoptotic factors, and the microenvironment of damaged tissue in patients receiving MSC therapy is typically therapeutic not favorable to their survival. For this reason, any strategies that enhance the viability and proliferative capacity of MSCs associated with their therapeutic use are of great value. Here, recent strategies used by various researchers to improve MSC allograft function are reviewed, with particular focus on in vitro conditioning of MSCs in preparation for clinical application. Preconditioning, genetic manipulation, and optimization of MSC culture conditions are some examples of the methodologies described in the present article, along with novel strategies such as treatment of MSCs with secretome and MSC-derived microvesicles. This topic material is likely to find value as a guide for both research and clinical use of MSC allografts and for improvement of the value that use of these cells brings to health care.
Collapse
Affiliation(s)
- Fatemeh Amiri
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ali Jahanian-Najafabadi
- />Department of Pharmaceutical Biotechnology, School of Pharmacy, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | - Mehryar Habibi Roudkenar
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
20
|
Increased metabolites of 5-lipoxygenase from hypoxic ovarian cancer cells promote tumor-associated macrophage infiltration. Oncogene 2014; 34:1241-52. [PMID: 24662827 DOI: 10.1038/onc.2014.85] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/11/2014] [Accepted: 02/25/2014] [Indexed: 12/27/2022]
Abstract
5-lipoxygenase (5-LOX), a member of the lipoxygenase gene family, is a key enzyme assisting in the conversion of arachidonic acid to 5-HETE and leukotrienes. Tumor-associated macrophages (TAMs) have a critical role in the progression and metastasis of many tumors, including ovarian tumors. Moreover, TAMs are often found in a high density in the hypoxic areas of tumors. However, the relevant mechanisms have not been studied explicitly until now. In this study, we found that the expression of 5-LOX strongly correlated with the density of TAMs in hypoxic areas of human ovarian tumor tissues. In cultured ovarian cancer cells, 5-LOX metabolites were increased under hypoxic conditons. Increased 5-LOX metabolites from hypoxic ovarian cancer cells promoted migration and invasion of macrophages, which was further demonstrated to be mediated by the upregulation of matrix metalloproteinase (MMP)-7 expression through the p38 pathway. Besides, we also showed that 5-LOX metabolites enhanced the release of tumor necrosis factor (TNF-α) and heparin-binding epidermal growth factor-like growth factor through upregulation of MMP-7. Furthermore, in animal models, Zileuton (a selective and specific 5-LOX inhibitor) reduced the MMP-7 expression and the number of macrophages infiltrating in the xenograft. Our findings suggest for the first time that increased metabolites of 5-LOX from hypoxic ovarian cancer cells promote TAM infiltration. These results of this study have immediate translational implications for the therapeutic exploitation of TAMs.
Collapse
|
21
|
Zhang J, Luo J, Ni J, Tang L, Zhang HP, Zhang L, Xu JF, Zheng D. MMP-7 is upregulated by COX-2 and promotes proliferation and invasion of lung adenocarcinoma cells. Eur J Histochem 2014; 58:2262. [PMID: 24704993 PMCID: PMC3980206 DOI: 10.4081/ejh.2014.2262] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 01/04/2014] [Accepted: 01/13/2014] [Indexed: 12/02/2022] Open
Abstract
Matrix metalloproteinases (MMPs) have been implicated in a variety of pathophysiological conditions, of which MMP-7 is expressed by tumor cells of epithelial and mesenchymal origin. However, the function of MMP-7 in human lung adenocarcinoma (LAC) is unclear. In the present study the expression of MMP-7 in LAC was examined by immunohistochemical assay using a tissue microarray procedure. A loss-of-function experiment was performed to explore the effects and molecular mechanisms of lentiviral vector-mediated MMP-7 siRNA (siMMP-7) on cell proliferation and invasive potential in LAC A549 cells, measured by MTT and Transwell assays, respectively. It was found that, the expression of MMP-7 protein in LAC was significantly increased compared with that in adjacent non-cancerous tissues (ANCT) (76.0% vs 44.0%, P<0.001), and positively correlated with lymph node metastases of the tumor (P=0.014). Furthermore, targeted inhibition of cyclooxygenase-2 (COX-2) by siRNA downregulated the expression of MMP-7 and inhibited invasion of LAC cells, and knockdown of MMP-7 suppressed tumor proliferation and invasion in LAC cells. Taken together, our findings indicate that increased expression of MMP-7 is associated with lymph node metastasis and upregulated by COX-2, and promotes the tumorigenesis of LAC, suggesting that MMP-7 may be a potential therapeutic target for the treatment of cancer.
Collapse
|
22
|
Survivin promotes the invasion of human colon carcinoma cells by regulating the expression of MMP‑7. Mol Med Rep 2014; 9:825-30. [PMID: 24425325 DOI: 10.3892/mmr.2014.1897] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 11/25/2013] [Indexed: 11/05/2022] Open
Abstract
Increased expression levels of survivin are crucial for invasion activity in several types of human cancer, including colon carcinoma. However, the molecular mechanisms whereby survivin regulates cancer invasion have not been completely elucidated. To the best of our knowledge, this study is the first to investigate the role of matrix metalloprotease‑7 (MMP‑7) in cell invasion that is induced by survivin by using in vitro assays, including western blot, immunofluorescence and qPCR analyses. The results demonstrated that the ectopic expression of survivin significantly promoted the invasive activity of colon carcinoma cells (SW620 and HCT‑116) and resulted in increased levels of MMP‑7 activation. By contrast, the small interfering RNA (siRNA)‑based knockdown of survivin markedly reduced cell migration and led to a dose‑dependent decrease in MMP‑7 expression levels. Compared with the controls, knockdown of MMP‑7 by siRNA in colon carcinoma cells led to reduced invasion ability, whereas no obvious changes were observed when MMP‑7 expression was silenced in survivin‑overexpressing colon carcinoma cells. These findings demonstrate that MMP‑7 is crucial for survivin‑mediated invasiveness, suggesting that the survivin‑mediated MMP‑7 signaling pathway is a potential therapeutic target for the treatment of colon carcinoma.
Collapse
|
23
|
Haas DA, Bala K, Büsche G, Weidner-Glunde M, Santag S, Kati S, Gramolelli S, Damas M, Dittrich-Breiholz O, Kracht M, Rückert J, Varga Z, Keri G, Schulz TF. The inflammatory kinase MAP4K4 promotes reactivation of Kaposi's sarcoma herpesvirus and enhances the invasiveness of infected endothelial cells. PLoS Pathog 2013; 9:e1003737. [PMID: 24244164 PMCID: PMC3820715 DOI: 10.1371/journal.ppat.1003737] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/15/2013] [Indexed: 12/15/2022] Open
Abstract
Kaposi's sarcoma (KS) is a mesenchymal tumour, which is caused by Kaposi's sarcoma herpesvirus (KSHV) and develops under inflammatory conditions. KSHV-infected endothelial spindle cells, the neoplastic cells in KS, show increased invasiveness, attributed to the elevated expression of metalloproteinases (MMPs) and cyclooxygenase-2 (COX-2). The majority of these spindle cells harbour latent KSHV genomes, while a minority undergoes lytic reactivation with subsequent production of new virions and viral or cellular chemo- and cytokines, which may promote tumour invasion and dissemination. In order to better understand KSHV pathogenesis, we investigated cellular mechanisms underlying the lytic reactivation of KSHV. Using a combination of small molecule library screening and siRNA silencing we found a STE20 kinase family member, MAP4K4, to be involved in KSHV reactivation from latency and to contribute to the invasive phenotype of KSHV-infected endothelial cells by regulating COX-2, MMP-7, and MMP-13 expression. This kinase is also highly expressed in KS spindle cells in vivo. These findings suggest that MAP4K4, a known mediator of inflammation, is involved in KS aetiology by regulating KSHV lytic reactivation, expression of MMPs and COX-2, and, thereby modulating invasiveness of KSHV-infected endothelial cells. Kaposi's sarcoma (KS) is a tumour caused by Kaposi's sarcoma herpesvirus (KSHV) and dysregulated inflammation. Both factors contribute to the high angiogenicity and invasiveness of KS. Various cellular kinases have been reported to regulate the KSHV latent-lytic switch and thereby virus pathogenicity. In this study, we have identified a STE20 kinase family member – MAP4K4 – as a modulator of KSHV lytic cycle and invasive phenotype of KSHV-infected endothelial cells. Moreover, we were able to link MAP4K4 to a known mediator of inflammation and invasiveness, cyclooxygenase-2, which also contributes to KSHV lytic replication. Finally, we could show that MAP4K4 is highly expressed in KS lesions, suggesting an important role for this kinase in tumour development and invasion.
Collapse
Affiliation(s)
- Darya A Haas
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Xu M, Cao Y, Jiang MM, Jie ZG, Li ZR. MiR495- and miR551a-mediated down-regulation of PRL-3 expression inhibits peritoneal metastasis in a mouse model of gastric cancer. Shijie Huaren Xiaohua Zazhi 2013; 21:1693-1700. [DOI: 10.11569/wcjd.v21.i18.1693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of miR495 and miR551 on PRL-3 expression in gastric cancer SGC7901 cells to explore gene interference therapies for gastric cancer.
METHODS: SGC7901 cells stably transfected with miR495 or miR551a and non-transfected SGC7901 cells were inoculated intraperitoneally in BALB/CA (nu/nu) nude mice. One month after inoculation, the mice were killed to observe the rate of tumor formation, tumor growth and migration. Real-time PCR was performed to quantify mRNA levels of miR495, miR551a and PRL-3.
RESULTS: Compared to nude mice inoculated with non-transfected cells, miR495 and miR551a levels were increased, PRL-3 level was decreased, and migration of gastric cancer was suppressed in mice inoculated with SGC7901 cells stably transfected with miR495 or miR551a.
CONCLUSION: MiR495 and miR551a can suppress the migration of gastric cancer by inhibiting PRL-3 expression in mice.
Collapse
|
25
|
Min G, Lee SK, Kim HN, Han YM, Lee RH, Jeong DG, Han DC, Kwon BM. Rhodanine-based PRL-3 inhibitors blocked the migration and invasion of metastatic cancer cells. Bioorg Med Chem Lett 2013; 23:3769-74. [PMID: 23726031 DOI: 10.1016/j.bmcl.2013.04.092] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 04/21/2013] [Accepted: 04/30/2013] [Indexed: 11/28/2022]
Abstract
PRL-3, phosphatase of regenerating liver-3, plays a role in cancer progression through its involvement in invasion, migration, metastasis, and angiogenesis. We synthesized rhodanine derivatives, CG-707 and BR-1, which inhibited PRL-3 enzymatic activity with IC50 values of 0.8 μM and 1.1 μM, respectively. CG-707 and BR-1 strongly inhibited the migration and invasion of PRL-3 overexpressing colon cancer cells without exhibiting cytotoxicity. The specificity of the inhibitors on PRL-3 phosphatase activity was confirmed by the phosphorylation recovery of known PRL-3 substrates such as ezrin and cytokeratin 8. The compounds selectively inhibited PRL-3 in comparison with other phosphatases, and CG-707 regulated epithelial-to-mesenchymal transition (EMT) marker proteins. The results of the present study reveal that rhodanine is a specific PRL-3 inhibitor and a good lead molecule for obtaining a selective PRL-3 inhibitor.
Collapse
Affiliation(s)
- Garam Min
- Laboratory of Chemical Genomics and Biology, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, 125 Gwahakro, Yoosunggu, Daejeon 305-600, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Chong H, Zhu C, Song J, Feng L, Yang Q, Liu L, Lv F, Wang S. Preparation and Optical Property of New Fluorescent Nanoparticles. Macromol Rapid Commun 2013; 34:736-42. [DOI: 10.1002/marc.201200755] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 01/18/2013] [Indexed: 01/06/2023]
|
27
|
Shin S, Oh S, An S, Janknecht R. ETS variant 1 regulates matrix metalloproteinase-7 transcription in LNCaP prostate cancer cells. Oncol Rep 2012; 29:306-14. [PMID: 23076342 DOI: 10.3892/or.2012.2079] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 08/30/2012] [Indexed: 01/10/2023] Open
Abstract
Prostate cancer is characterized by the recurrent translocation of ETS transcription factors, including ETS variant 1 (ETV1) [also known as ETS-related 81 (ER81)]. Transgenic ETV1 mice develop prostatic intraepithelial neoplasia, yet the mechanisms by which ETV1 exerts its deleterious function remain largely unexplored. In this study, we demonstrated that ETV1 is capable of binding to the matrix metalloproteinase-7 (MMP-7) gene promoter both in vitro and in vivo. ETV1 stimulated the activity of the MMP-7 promoter, which was suppressed upon mutation of two ETV1 binding sites located within 200 base pairs upstream of the MMP-7 transcription start site. ETV1 overexpression in human LNCaP prostate cancer cells induced endogenous MMP-7 gene transcription, whereas ETV1 downregulation had the opposite effect. While MMP-7 overexpression did not influence LNCaP cell proliferation, it increased cell migration, which may be important during later stages of tumorigenesis. Finally, MMP-7 mRNA was significantly overexpressed in human prostate tumors compared to normal tissue. Together, these results showed that MMP-7 is a bona fide ETV1 target gene, implicating that MMP-7 upregulation is partially responsible for the oncogenic effects of ETV1 in the prostate.
Collapse
Affiliation(s)
- Sook Shin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
28
|
|