1
|
Li J, Jia Z, Dong L, Cao H, Huang Y, Xu H, Xie Z, Jiang Y, Wang X, Liu J. DNA damage response in breast cancer and its significant role in guiding novel precise therapies. Biomark Res 2024; 12:111. [PMID: 39334297 PMCID: PMC11437670 DOI: 10.1186/s40364-024-00653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
DNA damage response (DDR) deficiency has been one of the emerging targets in treating breast cancer in recent years. On the one hand, DDR coordinates cell cycle and signal transduction, whose dysfunction may lead to cell apoptosis, genomic instability, and tumor development. Conversely, DDR deficiency is an intrinsic feature of tumors that underlies their response to treatments that inflict DNA damage. In this review, we systematically explore various mechanisms of DDR, the rationale and research advances in DDR-targeted drugs in breast cancer, and discuss the challenges in its clinical applications. Notably, poly (ADP-ribose) polymerase (PARP) inhibitors have demonstrated favorable efficacy and safety in breast cancer with high homogenous recombination deficiency (HRD) status in a series of clinical trials. Moreover, several studies on novel DDR-related molecules are actively exploring to target tumors that become resistant to PARP inhibition. Before further clinical application of new regimens or drugs, novel and standardized biomarkers are needed to develop for accurately characterizing the benefit population and predicting efficacy. Despite the promising efficacy of DDR-related treatments, challenges of off-target toxicity and drug resistance need to be addressed. Strategies to overcome drug resistance await further exploration on DDR mechanisms, and combined targeted drugs or immunotherapy will hopefully provide more precise or combined strategies and expand potential responsive populations.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Ziqi Jia
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Dong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Heng Cao
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yansong Huang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Hengyi Xu
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhixuan Xie
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Yiwen Jiang
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Xiang Wang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jiaqi Liu
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
2
|
Jiang J, Xu J, Ji S, Yu X, Chen J. Unraveling the mysteries of MGMT: Implications for neuroendocrine tumors. Biochim Biophys Acta Rev Cancer 2024; 1879:189184. [PMID: 39303858 DOI: 10.1016/j.bbcan.2024.189184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Neuroendocrine tumors (NETs) are a diverse group of tumors that arise from neuroendocrine cells and are commonly found in various organs. A considerable proportion of NET patients were diagnosed at an advanced or metastatic stage. Alkylating agents are the primary treatment for NET, and O6-methylguanine methyltransferase (MGMT) remains the first-line of defense against DNA damage caused by these agents. Clinical trials have indicated that MGMT promoter methylation or its low/lacked expression can predict a favorable outcome with Temozolomide in NETs. Its status could help select NET patients who can benefit from alkylating agents. Therefore, MGMT status serves as a biomarker to guide decisions on the efficacy of Temozolomide as a personalized treatment option. Additionally, delving into the regulatory mechanisms of MGMT status can lead to the development of MGMT-targeted therapies, benefiting individuals with high levels of MGMT expression. This review aims to explore the polymorphism of MGMT regulation and summarize its clinical implications in NETs, which would help establish the role of MGMT as a biomarker and its potential as a therapeutic target in NETs. Additionally, we explore the benefits of combining Temozolomide and immunotherapy in MGMT hypermethylated subgroups. Future studies can focus on optimizing Temozolomide administration to induce specific immunomodulatory changes.
Collapse
Affiliation(s)
- Jianyun Jiang
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Junfeng Xu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Shunrong Ji
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Xianjun Yu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Jie Chen
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
3
|
Wu Z, Dai J, Li J, Zhang Z, Shen X. Exploiting the role of O6-methylguanine-DNA-methyltransferase (MGMT) in gastrointestinal cancers. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03365-4. [PMID: 39167167 DOI: 10.1007/s00210-024-03365-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Gastrointestinal (GI) cancer is a prevalent disease and is recognized as the primary cause of cancer-related mortality globally. Therefore, there is an urgent need for novel diagnostic and treatment approaches for GC. The methylation of the O(6)-methylguanine DNA methyltransferase (MGMT) gene promoter is a significant factor in the development of colorectal cancer (CRC), namely in roughly 30-40% of cases where the cancer has spread. MGMT plays a role in the repair of DNA damage caused by methylating drugs like temozolomide (TMZ) and chloroethylating compounds like carmustine. As a result, it contributes to the resistance of chemotherapy when these agents are utilized. Although MGMT's role in the development of CRC is well established, its prognostic significance remains a subject of debate. Only a limited number of research have been conducted to examine the prognostic significance of MGMT methylation, yielding varying outcomes. This review explores the structural functions and repair processes of MGMT, focusing on the putative structural and functional significance of the N-terminal domain of MGMT. It also investigates the advancement of cancer treatment techniques that specifically target MGMT.
Collapse
Affiliation(s)
- Ziming Wu
- School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jie Dai
- Anqing 116 Hospital, Anqing, 246001, Anhui, China
| | - Jie Li
- Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Zhengyu Zhang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zheijiang, China
| | - Xbing Shen
- School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
4
|
Satgunaseelan L, Lee M, Iannuzzi S, Hallal S, Deang K, Stanceski K, Wei H, Mason S, Shivalingam B, Sim HW, Buckland ME, Alexander KL. 'The Reports of My Death Are Greatly Exaggerated'-Evaluating the Effect of Necrosis on MGMT Promoter Methylation Testing in High-Grade Glioma. Cancers (Basel) 2024; 16:1906. [PMID: 38791984 PMCID: PMC11120496 DOI: 10.3390/cancers16101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
(1) Background: MGMT (O-6-methylguanine-DNA methyltransferase) promoter methylation remains an important predictive biomarker in high-grade gliomas (HGGs). The influence of necrosis on the fidelity of MGMT promoter (MGMTp) hypermethylation testing is currently unknown. Therefore, our study aims to evaluate the effect of varying degrees of necrosis on MGMTp status, as determined by pyrosequencing, in a series of primary and recurrent HGGs; (2) Methods: Within each case, the most viable blocks (assigned as 'true' MGMTp status) and the most necrotic block were determined by histopathology review. MGMTp status was determined by pyrosequencing. Comparisons of MGMTp status were made between the most viable and most necrotic blocks. (3) Results: 163 samples from 64 patients with HGGs were analyzed. MGMTp status was maintained in 84.6% of primary and 78.3% of recurrent HGGs between the most viable and necrotic blocks. A threshold of ≥60% tumor cellularity was established at which MGMTp status was unaltered, irrespective of the degree of necrosis. (4) Conclusions: MGMTp methylation status, as determined by pyrosequencing, does not appear to be influenced by necrosis in the majority of cases at a cellularity of at least 60%. Further investigation into the role of intratumoral heterogeneity on MGMTp status will increase our understanding of this predictive marker.
Collapse
Affiliation(s)
- Laveniya Satgunaseelan
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (M.L.); (S.I.); (S.H.); (K.S.); (H.W.); (M.E.B.); (K.L.A.)
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
| | - Maggie Lee
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (M.L.); (S.I.); (S.H.); (K.S.); (H.W.); (M.E.B.); (K.L.A.)
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
| | - Sebastian Iannuzzi
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (M.L.); (S.I.); (S.H.); (K.S.); (H.W.); (M.E.B.); (K.L.A.)
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
| | - Susannah Hallal
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (M.L.); (S.I.); (S.H.); (K.S.); (H.W.); (M.E.B.); (K.L.A.)
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
- Department of Neurosurgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
| | - Kristine Deang
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
- Department of Neurosurgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
| | - Kristian Stanceski
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (M.L.); (S.I.); (S.H.); (K.S.); (H.W.); (M.E.B.); (K.L.A.)
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
| | - Heng Wei
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (M.L.); (S.I.); (S.H.); (K.S.); (H.W.); (M.E.B.); (K.L.A.)
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
| | - Sofia Mason
- Department of Medical Oncology, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia; (S.M.); (H.-W.S.)
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Brindha Shivalingam
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
- Department of Neurosurgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
- Department of Neurosurgery, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Hao-Wen Sim
- Department of Medical Oncology, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia; (S.M.); (H.-W.S.)
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, NSW 2050, Australia
- Department of Medical Oncology, The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia
| | - Michael E. Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (M.L.); (S.I.); (S.H.); (K.S.); (H.W.); (M.E.B.); (K.L.A.)
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
| | - Kimberley L. Alexander
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (M.L.); (S.I.); (S.H.); (K.S.); (H.W.); (M.E.B.); (K.L.A.)
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
- Department of Neurosurgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
| |
Collapse
|
5
|
Zappe K, Cichna-Markl M. Temperature-Wise Calibration Increases the Accuracy of DNA Methylation Levels Determined by High-Resolution Melting (HRM). Int J Mol Sci 2024; 25:5082. [PMID: 38791122 PMCID: PMC11121480 DOI: 10.3390/ijms25105082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
High-resolution melting (HRM) is a cost-efficient tool for targeted DNA methylation analysis. HRM yields the average methylation status across all CpGs in PCR products. Moreover, it provides information on the methylation pattern, e.g., the occurrence of monoallelic methylation. HRM assays have to be calibrated by analyzing DNA methylation standards of known methylation status and mixtures thereof. In general, DNA methylation levels determined by the classical calibration approach, including the whole temperature range in between normalization intervals, are in good agreement with the mean of the DNA methylation status of individual CpGs determined by pyrosequencing (PSQ), the gold standard of targeted DNA methylation analysis. However, the classical calibration approach leads to highly inaccurate results for samples with heterogeneous DNA methylation since they result in more complex melt curves, differing in their shape compared to those of DNA standards and mixtures thereof. Here, we present a novel calibration approach, i.e., temperature-wise calibration. By temperature-wise calibration, methylation profiles over temperature are obtained, which help in finding the optimal calibration range and thus increase the accuracy of HRM data, particularly for heterogeneous DNA methylation. For explaining the principle and demonstrating the potential of the novel calibration approach, we selected the promoter and two enhancers of MGMT, a gene encoding the repair protein MGMT.
Collapse
Affiliation(s)
| | - Margit Cichna-Markl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
6
|
Mazarakis NK, Robinson SD, Sinha P, Koutsarnakis C, Komaitis S, Stranjalis G, Short SC, Chumas P, Giamas G. Management of glioblastoma in elderly patients: A review of the literature. Clin Transl Radiat Oncol 2024; 46:100761. [PMID: 38500668 PMCID: PMC10945210 DOI: 10.1016/j.ctro.2024.100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024] Open
Abstract
High grade gliomas are the most common primary aggressive brain tumours with a very poor prognosis and a median survival of less than 2 years. The standard management protocol of newly diagnosed glioblastoma patients involves surgery followed by radiotherapy, chemotherapy in the form of temozolomide and further adjuvant temozolomide. The recent advances in molecular profiling of high-grade gliomas have further enhanced our understanding of the disease. Although the management of glioblastoma is standardised in newly diagnosed adult patients there is a lot of debate regarding the best treatment approach for the newly diagnosed elderly glioblastoma patients. In this review article we attempt to summarise the findings regarding surgery, radiotherapy, chemotherapy, and their combination in order to offer the best possible management modality for this group of patients. Elderly patients 65-70 with an excellent functional level could be considered as candidates for the standards treatment consisting of surgery, standard radiotherapy with concomitant and adjuvant temozolomide. Similarly, elderly patients above 70 with good functional status could receive the above with the exception of receiving a shorter course of radiotherapy instead of standard. In elderly GBM patients with poorer functional status and MGMT promoter methylation temozolomide chemotherapy can be considered. For elderly patients who cannot tolerate chemotherapy, hypofractionated radiotherapy is an option. In contrast to the younger adult patients, it seems that a careful individualised approach is a key element in deciding the best treatment options for this group of patients.
Collapse
Affiliation(s)
- Nektarios K. Mazarakis
- Royal Sussex County Hospital, University Hospitals Sussex NHS Foundation Trust, Eastern Rd, Brighton BN2 5BE, UK
- School of Medicine RCSI, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland
| | - Stephen D. Robinson
- Royal Sussex County Hospital, University Hospitals Sussex NHS Foundation Trust, Eastern Rd, Brighton BN2 5BE, UK
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Priyank Sinha
- Department of Neurosurgery, Leeds General Infirmary, Great George Street, LS1 3EX, UK
| | | | - Spyridon Komaitis
- Department of Neurosurgery, Evaggelismos Hospital, Ipsilantou 45-47, Athens, Greece
| | - George Stranjalis
- Department of Neurosurgery, Evaggelismos Hospital, Ipsilantou 45-47, Athens, Greece
| | - Susan C. Short
- Leeds Institute of Medical Research at St James’s Wellcome Trust Brenner Building St James’s University Hospital Leeds, LS9 7TF, UK
| | - Paul Chumas
- School of Medicine RCSI, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| |
Collapse
|
7
|
Qi P, Yao QL, Lao IW, Ren M, Bai QM, Cai X, Xue T, Wei R, Zhou XY. A custom next-generation sequencing panel for 1p/19q codeletion and mutational analysis in gliomas. J Neuropathol Exp Neurol 2024; 83:258-267. [PMID: 38408388 DOI: 10.1093/jnen/nlae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
The World Health Organization has updated their classification system for the diagnosis of gliomas, combining histological features with molecular data including isocitrate dehydrogenase 1 and codeletion of chromosomal arms 1p and 19q. 1p/19q codeletion analysis is commonly performed by fluorescence in situ hybridization (FISH). In this study, we developed a 57-gene targeted next-generation sequencing (NGS) panel including 1p/19q codeletion detection mainly to assess diagnosis and potential treatment response in melanoma, gastrointestinal stromal tumor, and glioma patients. Loss of heterozygosity analysis was performed using the NGS method on 37 formalin-fixed paraffin-embedded glioma tissues that showed 1p and/or 19q loss determined by FISH. Conventional methods were applied for the validation of some glioma-related gene mutations. In 81.1% (30 of 37) and 94.6% (35 of 37) of cases, 1p and 19q were found to be in agreement whereas concordance for 1p/19q codeletion and no 1p/19q codeletion was found in 94.7% (18 of 19) and 94.4% (17 of 18) of cases, respectively. Overall, comparing NGS results with those of conventional methods showed high concordance. In conclusion, the NGS panel allows reliable analysis of 1p/19q codeletion and mutation at the same time.
Collapse
Affiliation(s)
- Peng Qi
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Qian-Lan Yao
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - I Weng Lao
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Min Ren
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Qian-Ming Bai
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Xu Cai
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Tian Xue
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Ran Wei
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Xiao-Yan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Weber R, Weller M, Reifenberger G, Vasella F. Epigenetic modification and characterization of the MGMT promoter region using CRISPRoff in glioblastoma cells. Front Oncol 2024; 14:1342114. [PMID: 38357209 PMCID: PMC10864556 DOI: 10.3389/fonc.2024.1342114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024] Open
Abstract
The methylation status of the O6-methylguanine DNA methyltransferase (MGMT) promoter region is a critical predictor of response to alkylating agents in glioblastoma. However, current approaches to study the MGMT status focus on analyzing models with non-identical backgrounds. Here, we present an epigenetic editing approach using CRISPRoff to introduce site-specific CpG methylation in the MGMT promoter region of glioma cell lines. Sanger sequencing revealed successful introduction of methylation, effectively generating differently methylated glioma cell lines with an isogenic background. The introduced methylation resulted in reduced MGMT mRNA and protein levels. Furthermore, the cell lines with MGMT promoter region methylation exhibited increased sensitivity to temozolomide, consistent with the impact of methylation on treatment outcomes in patients with glioblastoma. This precise epigenome-editing approach provides valuable insights into the functional relevance of MGMT promoter regional methylation and its potential for prognostic and predictive assessments, as well as epigenetic-targeted therapies.
Collapse
Affiliation(s)
- Remi Weber
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University of Zurich, Zurich, Switzerland
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Flavio Vasella
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Fang Q. The Versatile Attributes of MGMT: Its Repair Mechanism, Crosstalk with Other DNA Repair Pathways, and Its Role in Cancer. Cancers (Basel) 2024; 16:331. [PMID: 38254819 PMCID: PMC10814553 DOI: 10.3390/cancers16020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
O6-methylguanine-DNA methyltransferase (MGMT or AGT) is a DNA repair protein with the capability to remove alkyl groups from O6-AlkylG adducts. Moreover, MGMT plays a crucial role in repairing DNA damage induced by methylating agents like temozolomide and chloroethylating agents such as carmustine, and thereby contributes to chemotherapeutic resistance when these agents are used. This review delves into the structural roles and repair mechanisms of MGMT, with emphasis on the potential structural and functional roles of the N-terminal domain of MGMT. It also explores the development of cancer therapeutic strategies that target MGMT. Finally, it discusses the intriguing crosstalk between MGMT and other DNA repair pathways.
Collapse
Affiliation(s)
- Qingming Fang
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
10
|
Weller M, Felsberg J, Hentschel B, Gramatzki D, Kubon N, Wolter M, Reusche M, Roth P, Krex D, Herrlinger U, Westphal M, Tonn JC, Regli L, Maurage CA, von Deimling A, Pietsch T, Le Rhun E, Reifenberger G. Improved prognostic stratification of patients with isocitrate dehydrogenase-mutant astrocytoma. Acta Neuropathol 2024; 147:11. [PMID: 38183430 PMCID: PMC10771615 DOI: 10.1007/s00401-023-02662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 01/08/2024]
Abstract
Prognostic factors and standards of care for astrocytoma, isocitrate dehydrogenase (IDH)-mutant, CNS WHO grade 4, remain poorly defined. Here we sought to explore disease characteristics, prognostic markers, and outcome in patients with this newly defined tumor type. We determined molecular biomarkers and assembled clinical and outcome data in patients with IDH-mutant astrocytomas confirmed by central pathology review. Patients were identified in the German Glioma Network cohort study; additional cohorts of patients with CNS WHO grade 4 tumors were identified retrospectively at two sites. In total, 258 patients with IDH-mutant astrocytomas (114 CNS WHO grade 2, 73 CNS WHO grade 3, 71 CNS WHO grade 4) were studied. The median age at diagnosis was similar for all grades. Karnofsky performance status at diagnosis inversely correlated with CNS WHO grade (p < 0.001). Despite more intensive treatment upfront with higher grade, CNS WHO grade was strongly prognostic: median overall survival was not reached for grade 2 (median follow-up 10.4 years), 8.1 years (95% CI 5.4-10.8) for grade 3, and 4.7 years (95% CI 3.4-6.0) for grade 4. Among patients with CNS WHO grade 4 astrocytoma, median overall survival was 5.5 years (95% CI 4.3-6.7) without (n = 58) versus 1.8 years (95% CI 0-4.1) with (n = 12) homozygous CDKN2A deletion. Lower levels of global DNA methylation as detected by LINE-1 methylation analysis were strongly associated with CNS WHO grade 4 (p < 0.001) and poor outcome. MGMT promoter methylation status was not prognostic for overall survival. Histomolecular stratification based on CNS WHO grade, LINE-1 methylation level, and CDKN2A status revealed four subgroups of patients with significantly different outcomes. In conclusion, CNS WHO grade, global DNA methylation status, and CDKN2A homozygous deletion are prognostic in patients with IDH-mutant astrocytoma. Combination of these parameters allows for improved prediction of outcome. These data aid in designing upcoming trials using IDH inhibitors.
Collapse
Affiliation(s)
- Michael Weller
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland.
- Department of Neurology, University of Zurich, Zurich, Switzerland.
| | - Jörg Felsberg
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Bettina Hentschel
- Institute for Medical Informatics, Statistics and Epidemiology, University Leipzig, Leipzig, Germany
| | - Dorothee Gramatzki
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Nadezhda Kubon
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Marietta Wolter
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Matthias Reusche
- Institute for Medical Informatics, Statistics and Epidemiology, University Leipzig, Leipzig, Germany
| | - Patrick Roth
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
- Department of Neurology, University of Zurich, Zurich, Switzerland
| | - Dietmar Krex
- Faculty of Medicine, Department of Neurosurgery, Technische Universität Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| | | | - Manfred Westphal
- Department of Neurosurgery, University of Hamburg, Hamburg, Germany
| | - Joerg C Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Luca Regli
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Department of Neurosurgery, University of Zurich, Zurich, Switzerland
| | - Claude-Alain Maurage
- Department of Pathology, Centre Biologie Pathologie, Lille University Hospital, Hopital Nord, Lille, France
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Center (DKFZ), and German Cancer Consortium (DKTK), Partner Site Heidelberg, Heidelberg, Germany
| | - Torsten Pietsch
- Department of Neuropathology, University of Bonn Medical Center, DGNN Brain Tumor Reference Center, Bonn, Germany
| | - Emilie Le Rhun
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
- Department of Neurology, University of Zurich, Zurich, Switzerland
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Department of Neurosurgery, University of Zurich, Zurich, Switzerland
- Department of Neurosurgery, Lille University Hospital, Lille, France
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
11
|
Zapanta Rinonos S, Li T, Pianka ST, Prins TJ, Eldred BSC, Kevan BM, Liau LM, Nghiemphu PL, Cloughesy TF, Lai A. dCas9/CRISPR-based methylation of O-6-methylguanine-DNA methyltransferase enhances chemosensitivity to temozolomide in malignant glioma. J Neurooncol 2024; 166:129-142. [PMID: 38224404 PMCID: PMC10824881 DOI: 10.1007/s11060-023-04531-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Malignant glioma carries a poor prognosis despite current therapeutic modalities. Standard of care therapy consists of surgical resection, fractionated radiotherapy concurrently administered with temozolomide (TMZ), a DNA-alkylating chemotherapeutic agent, followed by adjuvant TMZ. O-6-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme, removes alkylated lesions from tumor DNA, thereby promoting chemoresistance. MGMT promoter methylation status predicts responsiveness to TMZ; patients harboring unmethylated MGMT (~60% of glioblastoma) have a poorer prognosis with limited treatment benefits from TMZ. METHODS Via lentiviral-mediated delivery into LN18 glioma cells, we employed deactivated Cas9-CRISPR technology to target the MGMT promoter and enhancer regions for methylation, as mediated by the catalytic domain of the methylation enzyme DNMT3A. Methylation patterns were examined at a clonal level in regions containing Differentially Methylation Regions (DMR1, DMR2) and the Methylation Specific PCR (MSP) region used for clinical assessment of MGMT methylation status. Correlative studies of genomic and transcriptomic effects of dCas9/CRISPR-based methylation were performed via Illumina 850K methylation array platform and bulk RNA-Seq analysis. RESULTS We used the dCas9/DNMT3A catalytic domain to achieve targeted MGMT methylation at specific CpG clusters in the vicinity of promoter, enhancer, DMRs and MSP regions. Consequently, we observed MGMT downregulation and enhanced glioma chemosensitivity in survival assays in vitro, with minimal off-target effects. CONCLUSION dCas9/CRISPR is a viable method of epigenetic editing, using the DNMT3A catalytic domain. This study provides initial proof-of-principle for CRISPR technology applications in malignant glioma, laying groundwork for subsequent translational studies, with implications for future epigenetic editing-based clinical applications.
Collapse
Affiliation(s)
- Serendipity Zapanta Rinonos
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Tie Li
- Department of Neurology, UCLA Medical Center, Los Angeles, CA, USA
| | | | - Terry J Prins
- Department of Neurology, UCLA Medical Center, Los Angeles, CA, USA
| | | | - Bryan M Kevan
- Department of Neurology, UCLA Medical Center, Los Angeles, CA, USA
| | - Linda M Liau
- Department of Neurosurgery, UCLA Medical Center, Los Angeles, CA, USA
| | | | | | - Albert Lai
- Department of Neurology, UCLA Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Alimohamadi M, Larijani A, Pour-Rashidi A, Farzin M, Ebrahimi H, Rahmani M, Hendi K, Yarandi KK, Aghajanian S, Shirani M. Comparative Analysis of the Prognostic Significance of IDH,TERT, EGFR and MGMT Status in Patients with Adult Non-H3-Altered Grade 4 Gliomas: A Prospective Cohort Study. World Neurosurg 2024; 181:e628-e639. [PMID: 37914076 DOI: 10.1016/j.wneu.2023.10.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
INTRODUCTION Gliomas continue to have a dismal prognosis. A myriad of genetic alterations has been described in this subset of tumors over the last decades. The integrative interpretation of the biomarker constellation for individual patients remains unclear. This study aims to evaluate the impact of some known genetic factors as prognostic biomarkers in grade 4 gliomas. METHODS Adult non-H3-altered grade 4 gliomas who underwent maximal safe resection accompanied by adjuvant therapy were successively enrolled since January 2019 till January 2021. Patient data were documented preoperatively and during the follow-up visits. The genetic profiling of the tumors included Isocitrate Dehydrogenase (IDH)-1 and IDH-2 mutation, MGMT promoter methylation rate, EGFR gene amplification and telomerase reverse transcriptase gene promoter (TERTp) mutation. RESULTS Mean Overall survival (OS) and Progression-free survival (PFS) were 14.45 ± 5.13 months (3-24 months) and 10.66 ± 4.87 months respectively. TERTp-mutant group had a significantly lower OS (10.9 vs. 15.9) and PFS (6.9 vs. 12.3) than TERTp wildtype group. In the TERT-mutant group, those with concomitant IDH wildtype tumor had higher OS and PFS, comparable to those with both TERTp and IDH wildtype tumors. In multivariate analysis, IDH mutation and TERTp wildtype status were predictive of longer OS and PFS. While IDH and absence of TERTp mutation were associated with KPS > 80 across the follow-ups, their predictive values were inferior to preoperative KPS scores. CONCLUSIONS TERTp mutation and IDH-wildtype status were associated with worse OS and PFS and lower follow-up KPS score in surgically resected gliomas, while MGMT and EGFR status did not have considerable prognostic value in this study.
Collapse
Affiliation(s)
- Maysam Alimohamadi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Larijani
- Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, Alborz University of Medical Sciences, Tehran, Iran.
| | - Ahmad Pour-Rashidi
- Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Farzin
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Radio-Oncology Department, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hannan Ebrahimi
- Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamad Rahmani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kasra Hendi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kourosh Karimi Yarandi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepehr Aghajanian
- Department of Neurosurgery, Alborz University of Medical Sciences, Tehran, Iran
| | - Mohammad Shirani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Archana B, D'Cruze L, Sundaram S, Ramanathan K, Ganesh K. Immunohistochemical expression of histone modification pattern in adult glioblastoma. J Cancer Res Ther 2024; 20:52-56. [PMID: 38554298 DOI: 10.4103/jcrt.jcrt_257_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Despite the growing advances in molecular research and therapeutics, glioblastomas are still considered highly invasive aggressive tumors with a median survival of 15 months. Genetic alterations have been studied in detail; however, additionally, there is now growing evidence on the role of epigenetic alterations in glioblastoma. Recently, histone modification patterns have been found to have a significant part in gene expression and prognosis. However, further research in this field is warranted to establish its role for the betterment of these patients with the deadly disease. AIMS To determine the immunohistochemical expression of histone modifications like histone-3-lysine-18 acetylation (H3K18Ac) and histone-4-lysine 20 trimethylation (H4K20triMe) in glioblastoma patients. MATERIALS AND METHODS This is a retrospective study of 48 glioblastoma patients who underwent surgery. Immunohistochemistry (IHC) for tri-methyl-histone-H4 (Lys20) (H4K20triMe) and acetyl-histone-H3 (Lys18) (H3K18Ac) was performed in paraffin-embedded tissues manually, and the expression was noted. Data on the mitotic index and overall survival was collected and statistically analyzed. RESULTS The mean age was 50 years with a M: F ratio of 1.6:1. Out of 48 cases, 60% (28 cases) demonstrated positivity for H3K18Ac and 98% (46 cases) for H4K20triMe. The pattern of expression was nuclear with increased expression adjacent to necrosis and at the invasive front. The overall median Q score for H3K18Ac was 1/12 and for H4K20triMe was 6/12. No significant statistical significance was observed between histone expression, Ki67%, and overall survival. CONCLUSION Histone modification patterns are being explored in detail in an array of tumors. They also have a potential role in glioblastoma for risk stratification and instituting appropriate treatment based on the prognosis. Epigenetic changes like histone modification patterns, in addition to genetics, can pave the way for a better molecular understanding of glioblastomas and provide hope in the future to improve the survival of these patients with deadly diseases.
Collapse
Affiliation(s)
- B Archana
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| | - Lawrence D'Cruze
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| | - Krishnakumar Ramanathan
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| | - Krishnamurthy Ganesh
- Department of Neurosurgery, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| |
Collapse
|
14
|
Zappe K, Pühringer K, Pflug S, Berger D, Weis S, Spiegl-Kreinecker S, Cichna-Markl M. Association of MGMT Promoter and Enhancer Methylation with Genetic Variants, Clinical Parameters, and Demographic Characteristics in Glioblastoma. Cancers (Basel) 2023; 15:5777. [PMID: 38136323 PMCID: PMC10742072 DOI: 10.3390/cancers15245777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The response of glioblastoma (GBM) patients to the alkylating agent temozolomide (TMZ) vitally depends on the expression level of the repair protein O6-methylguanine-DNA methyltransferase (MGMT). Since MGMT is strongly regulated by promoter methylation, the methylation status of the MGMT promoter has emerged as a prognostic and predictive biomarker for GBM patients. By determining the methylation levels of the four enhancers located within or close to the MGMT gene, we recently found that enhancer methylation contributes to MGMT regulation. In this study, we investigated if methylation of the four enhancers is associated with SNP rs16906252, TERT promoter mutations C228T and C250T, TERT SNP rs2853669, proliferation index Ki-67, overall survival (OS), age, and sex of the patients. In general, associations with genetic variants, clinical parameters, and demographic characteristics were caused by a complex interplay of multiple CpGs in the MGMT promoter and of multiple CpGs in enhancer regions. The observed associations for intragenic enhancer 4, located in intron 2 of MGMT, differed from associations observed for the three intergenic enhancers. Some findings were restricted to subgroups of samples with either methylated or unmethylated MGMT promoters, underpinning the relevance of the MGMT promoter status in GBMs.
Collapse
Affiliation(s)
- Katja Zappe
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (K.Z.); (K.P.); (S.P.); (D.B.)
| | - Katharina Pühringer
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (K.Z.); (K.P.); (S.P.); (D.B.)
| | - Simon Pflug
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (K.Z.); (K.P.); (S.P.); (D.B.)
| | - Daniel Berger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (K.Z.); (K.P.); (S.P.); (D.B.)
| | - Serge Weis
- Division of Neuropathology, Department of Pathology and Molecular Pathology, Kepler University Hospital GmbH, Johannes Kepler University, 4040 Linz, Austria;
| | - Sabine Spiegl-Kreinecker
- Department of Neurosurgery, Kepler University Hospital GmbH, Johannes Kepler University, 4040 Linz, Austria;
| | - Margit Cichna-Markl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (K.Z.); (K.P.); (S.P.); (D.B.)
| |
Collapse
|
15
|
Alafandi A, van Garderen KA, Klein S, van der Voort SR, Rizopoulos D, Nabors L, Stupp R, Weller M, Gorlia T, Tonn JC, Smits M. Association of pre-radiotherapy tumour burden and overall survival in newly diagnosed glioblastoma adjusted for MGMT promoter methylation status. Eur J Cancer 2023; 188:122-130. [PMID: 37235895 DOI: 10.1016/j.ejca.2023.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/07/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
PURPOSE We retrospectively evaluated the association between postoperative pre-radiotherapy tumour burden and overall survival (OS) adjusted for the prognostic value of O6-methylguanine DNA methyltransferase (MGMT) promoter methylation in patients with newly diagnosed glioblastoma treated with radio-/chemotherapy with temozolomide. MATERIALS AND METHODS Patients were included from the CENTRIC (EORTC 26071-22072) and CORE trials if postoperative magnetic resonance imaging scans were available within a timeframe of up to 4weeks before radiotherapy, including both pre- and post-contrast T1w images and at least one T2w sequence (T2w or T2w-FLAIR). Postoperative (residual) pre-radiotherapy contrast-enhanced tumour (CET) volumes and non-enhanced T2w abnormalities (NT2A) tissue volumes were obtained by three-dimensional segmentation. Cox proportional hazard models and Kaplan Meier estimates were used to assess the association of pre-radiotherapy CET/NT2A volume with OS adjusted for known prognostic factors (age, performance status, MGMT status). RESULTS 408 tumour (of which 270 MGMT methylated) segmentations were included. Median OS in patients with MGMT methylated tumours was 117 weeks versus 61weeks in MGMT unmethylated tumours (p < 0.001). When stratified for MGMT methylation status, higher CET volume (HR 1.020; 95% confidence interval CI [1.013-1.027]; p < 0.001) and older age (HR 1.664; 95% CI [1.214-2.281]; p = 0.002) were significantly associated with shorter OS while NT2A volume and performance status were not. CONCLUSION Pre-radiotherapy CET volume was strongly associated with OS in patients receiving radio-/chemotherapy for newly diagnosed glioblastoma stratified by MGMT promoter methylation status.
Collapse
Affiliation(s)
- A Alafandi
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands; Brain Tumour Centre, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - K A van Garderen
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands; Brain Tumour Centre, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Medical Delta, Delft, the Netherlands
| | - S Klein
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - S R van der Voort
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - D Rizopoulos
- Department of Biostatistics and Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - L Nabors
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - R Stupp
- Malnati Brain Tumor Institute, Departments of Neurological Surgery and Neurology, Northwestern University, Chicago, IL, USA
| | - M Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - T Gorlia
- European Organisation for Research and Treatmeant of Cancer Headquarters, Brussels, Belgium
| | - J-C Tonn
- Department of Neurosurgery, LMU University Munich, Munich, Germany
| | - M Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands; Brain Tumour Centre, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Medical Delta, Delft, the Netherlands.
| |
Collapse
|
16
|
Zappe K, Pühringer K, Pflug S, Berger D, Böhm A, Spiegl-Kreinecker S, Cichna-Markl M. Association between MGMT Enhancer Methylation and MGMT Promoter Methylation, MGMT Protein Expression, and Overall Survival in Glioblastoma. Cells 2023; 12:1639. [PMID: 37371109 DOI: 10.3390/cells12121639] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The repair protein O6-methylguanine-DNA methyltransferase (MGMT) is regulated epigenetically, mainly by the methylation of the MGMT promoter. MGMT promoter methylation status has emerged as a prognostic and predictive biomarker for patients with newly diagnosed glioblastoma (GBM). However, a strong negative correlation between MGMT promoter methylation and MGMT protein expression cannot be applied as a rule for all GBM patients. In order to investigate if the DNA methylation status of MGMT enhancers is associated with MGMT promoter methylation, MGMT expression, and the overall survival (OS) of GBM patients, we established assays based on high-resolution melting analysis and pyrosequencing for one intragenic and three intergenic MGMT enhancers. For CpGs in an enhancer located 560 kb upstream of the MGMT promoter, we found a significant negative correlation between the methylation status and MGMT protein levels of GBM samples expressing MGMT. The methylation status of CpGs in the intragenic enhancer (hs696) was strongly negatively correlated with MGMT promoter methylation and was significantly higher in MGMT-expressing GBM samples than in MGMT-non-expressing GBM samples. Moreover, low methylation of CpGs 01-03 and CpGs 09-13 was associated with the longer OS of the GBM patients. Our findings indicate an association between MGMT enhancer methylation and MGMT promoter methylation, MGMT protein expression, and/or OS.
Collapse
Affiliation(s)
- Katja Zappe
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Katharina Pühringer
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Simon Pflug
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Daniel Berger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Andreas Böhm
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Sabine Spiegl-Kreinecker
- Department of Neurosurgery, Kepler University Hospital GmbH, Johannes Kepler University, 4040 Linz, Austria
| | - Margit Cichna-Markl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
17
|
Ashkan K, Baig Mirza A, Soumpasis C, Syrris C, Kalaitzoglou D, Sharma C, James ZJ, Khoja AK, Ahmed R, Vastani A, Bartram J, Chia K, Al-Salihi O, Swampilai A, Brazil L, Laxton R, Reisz Z, Bodi I, King A, Gullan R, Vergani F, Bhangoo R, Al-Sarraj S, Lavrador JP. MGMT Promoter Methylation: Prognostication beyond Treatment Response. J Pers Med 2023; 13:999. [PMID: 37373988 DOI: 10.3390/jpm13060999] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
MGMT promoter methylation is related to the increased sensitivity of tumour tissue to chemotherapy with temozolomide (TMZ) and thus to improved patient survival. However, it is unclear how the extent of MGMT promoter methylation affects outcomes. In our study, a single-centre retrospective study, we explore the impact of MGMT promoter methylation in patients with glioblastoma who were operated upon with 5-ALA. Demographic, clinical and histology data, and survival rates were assessed. A total of 69 patients formed the study group (mean age 53.75 ± 15.51 years old). Positive 5-ALA fluorescence was noted in 79.41%. A higher percentage of MGMT promoter methylation was related to lower preoperative tumour volume (p = 0.003), a lower likelihood of 5-ALA positive fluorescence (p = 0.041) and a larger extent of resection EoR (p = 0.041). A higher MGMT promoter methylation rate was also related to improved progression-free survival (PFS) and overall survival (OS) (p = 0.008 and p = 0.006, respectively), even when adjusted for the extent of resection (p = 0.034 and p = 0.042, respectively). A higher number of adjuvant chemotherapy cycles was also related to longer PFS and OS (p = 0.049 and p = 0.030, respectively). Therefore, this study suggests MGMT promoter methylation should be considered as a continuous variable. It is a prognostic factor that goes beyond sensitivity to chemotherapy treatment, as a higher percentage of methylation is related not only to increased EoR and increased PFS and OS, but also to lower tumour volume at presentation and a lower likelihood of 5-ALA fluorescence intraoperatively.
Collapse
Affiliation(s)
- Keyoumars Ashkan
- Kings College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Asfand Baig Mirza
- Kings College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Christos Soumpasis
- Kings College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Christoforos Syrris
- Kings College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | | | - Chaitanya Sharma
- GKT School of Medicine, Kings College London, London SE1 1UL, UK
| | | | | | - Razna Ahmed
- GKT School of Medicine, Kings College London, London SE1 1UL, UK
| | - Amisha Vastani
- Kings College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - James Bartram
- Kings College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Kazumi Chia
- Kings College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Omar Al-Salihi
- Department of Neuro-Oncology, Cancer Centre, Guys Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Angela Swampilai
- Department of Neuro-Oncology, Cancer Centre, Guys Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Lucy Brazil
- Department of Neuro-Oncology, Cancer Centre, Guys Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Ross Laxton
- Department of Neuropathology, Kings College London, London SE5 9RS, UK
| | - Zita Reisz
- Department of Neuropathology, Kings College London, London SE5 9RS, UK
| | - Istvan Bodi
- Department of Neuropathology, Kings College London, London SE5 9RS, UK
| | - Andrew King
- Department of Neuropathology, Kings College London, London SE5 9RS, UK
| | - Richard Gullan
- Kings College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Francesco Vergani
- Kings College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Ranjeev Bhangoo
- Kings College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Safa Al-Sarraj
- Kings College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Jose Pedro Lavrador
- Kings College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| |
Collapse
|
18
|
Brawanski KR, Sprung S, Freyschlag CF, Hoeftberger R, Ströbel T, Haybaeck J, Thomé C, Manzl C, Birkl-Toeglhofer AM. Influence of MMR, MGMT Promotor Methylation and Protein Expression on Overall and Progression-Free Survival in Primary Glioblastoma Patients Treated with Temozolomide. Int J Mol Sci 2023; 24:ijms24076184. [PMID: 37047153 PMCID: PMC10094528 DOI: 10.3390/ijms24076184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Glioblastoma is the most common malignant brain tumor in adults. Standard treatment includes tumor resection, radio-chemotherapy and adjuvant chemotherapy with temozolomide (TMZ). TMZ methylates DNA, whereas O6-methylguanine DNA methyltransferase (MGMT) counteracts TMZ effects by removing the intended proteasomal degradation signal. Non-functional MGMT mediates the mismatch repair (MMR) system, leading to apoptosis after futile repair attempts. This study investigated the associations between MGMT promoter methylation, MGMT and MMR protein expression, and their effect on overall survival (OS) and progression-free survival (PFS) in patients with glioblastoma. MGMT promoter methylation was assessed in 42 treatment-naïve patients with glioblastoma WHO grade IV by pyrosequencing. MGMT and MMR protein expression was analyzed using immunohistochemistry. MGMT promoter methylation was present in 52%, whereas patients <70 years of age revealed a significantly longer OS using a log-rank test and a significance threshold of p ≤ 0.05. MGMT protein expression and methylation status showed no correlation. MMR protein expression was present in all patients independent of MGMT status and did not influence OS and PFS. Overall, MGMT promoter methylation implicates an improved OS in patients with glioblastoma aged <70 years. In the elderly, the extent of surgery has an impact on OS rather than the MGMT promoter methylation or protein expression.
Collapse
Affiliation(s)
| | - Susanne Sprung
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | - Romana Hoeftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Ströbel
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Diagnostic and Research Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Claudia Manzl
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anna M Birkl-Toeglhofer
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
19
|
Qureshi SA, Hussain L, Ibrar U, Alabdulkreem E, Nour MK, Alqahtani MS, Nafie FM, Mohamed A, Mohammed GP, Duong TQ. Radiogenomic classification for MGMT promoter methylation status using multi-omics fused feature space for least invasive diagnosis through mpMRI scans. Sci Rep 2023; 13:3291. [PMID: 36841898 PMCID: PMC9961309 DOI: 10.1038/s41598-023-30309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/21/2023] [Indexed: 02/27/2023] Open
Abstract
Accurate radiogenomic classification of brain tumors is important to improve the standard of diagnosis, prognosis, and treatment planning for patients with glioblastoma. In this study, we propose a novel two-stage MGMT Promoter Methylation Prediction (MGMT-PMP) system that extracts latent features fused with radiomic features predicting the genetic subtype of glioblastoma. A novel fine-tuned deep learning architecture, namely Deep Learning Radiomic Feature Extraction (DLRFE) module, is proposed for latent feature extraction that fuses the quantitative knowledge to the spatial distribution and the size of tumorous structure through radiomic features: (GLCM, HOG, and LBP). The application of the novice rejection algorithm has been found significantly effective in selecting and isolating the negative training instances out of the original dataset. The fused feature vectors are then used for training and testing by k-NN and SVM classifiers. The 2021 RSNA Brain Tumor challenge dataset (BraTS-2021) consists of four structural mpMRIs, viz. fluid-attenuated inversion-recovery, T1-weighted, T1-weighted contrast enhancement, and T2-weighted. We evaluated the classification performance, for the very first time in published form, in terms of measures like accuracy, F1-score, and Matthews correlation coefficient. The Jackknife tenfold cross-validation was used for training and testing BraTS-2021 dataset validation. The highest classification performance is (96.84 ± 0.09)%, (96.08 ± 0.10)%, and (97.44 ± 0.14)% as accuracy, sensitivity, and specificity respectively to detect MGMT methylation status for patients suffering from glioblastoma. Deep learning feature extraction with radiogenomic features, fusing imaging phenotypes and molecular structure, using rejection algorithm has been found to perform outclass capable of detecting MGMT methylation status of glioblastoma patients. The approach relates the genomic variation with radiomic features forming a bridge between two areas of research that may prove useful for clinical treatment planning leading to better outcomes.
Collapse
Affiliation(s)
- Shahzad Ahmad Qureshi
- Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan.
| | - Lal Hussain
- Department of Computer Science and IT, Neelum Campus, The University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir, Pakistan. .,Department of Computer Science and IT, King Abdullah Campus, The University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir, Pakistan. .,Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 111 East 210th Street, Bronx, NY, 10467, USA.
| | - Usama Ibrar
- grid.461150.7Farooq Hospital, Lahore, Pakistan
| | - Eatedal Alabdulkreem
- grid.449346.80000 0004 0501 7602Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671 Saudi Arabia
| | - Mohamed K. Nour
- grid.412832.e0000 0000 9137 6644Department of Computer Sciences, College of Computing and Information System, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Mohammed S. Alqahtani
- grid.412144.60000 0004 1790 7100Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421 Saudi Arabia
| | - Faisal Mohammed Nafie
- grid.449051.d0000 0004 0441 5633Department of Computer Science, College of Science and Humanities at Alghat, Majmaah University, Al-Majmaah, 11952 Saudi Arabia
| | - Abdullah Mohamed
- grid.440865.b0000 0004 0377 3762Research Centre, Future University in Egypt, New Cairo, 11845 Egypt
| | - Gouse Pasha Mohammed
- grid.449553.a0000 0004 0441 5588Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam Bin Abdulaziz University, AlKharj, Saudi Arabia
| | - Tim Q. Duong
- grid.240283.f0000 0001 2152 0791Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 111 East 210th Street, Bronx, NY 10467 USA
| |
Collapse
|
20
|
Krigers A, Klingenschmid J, Cosar T, Moser P, Thomé C, Freyschlag CF. Age-Dependent Impact of Concomitant Radio-Chemotherapy and MGMT Promotor Methylation on PFS and OS in Patients with IDH Wild-Type Glioblastoma: The Real-Life Data. Cancers (Basel) 2022; 14:cancers14246180. [PMID: 36551664 PMCID: PMC9776384 DOI: 10.3390/cancers14246180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Biological but not chronological age plus performance have more impact on decision making in glioblastoma patients. We investigated how progression-free survival (PFS) and overall survival (OS) in older patients with IDH wild-type glioblastoma were influenced by concomitant radio-chemotherapy and MGMT promotor methylation status in real-life settings. In total, 142 out of 273 (52%) evaluated patients were older than 65 years, and 77 (55%) of them received concomitant radio-chemotherapy. In senior patients, the initiation of concomitant radio-chemotherapy was associated with significantly better PFS: 15.3 months (CI95: 11.7−18.9) vs. 7.0 months (CI95: 4.3−9.6; p = 0.002). The favorable influence on PFS was not related to MGMT promotor methylation status as it was in the younger cohort. In seniors, concomitant radio-chemotherapy was related to significantly better OS: 20.0 months (CI95: 14.3−26.7) vs. 4.9 months (CI95: 3.5−6.2), p < 0.001. MGMT promotor methylation was related to a more favorable OS only, if concomitant radio-chemotherapy was initiated. In conclusion, more than half of the glioblastoma cohort was older than 65 years of age. Even if PFS and OS were shorter than in the younger cohort, concomitant radio-chemotherapy provided a survival advantage. In real life, MGMT promotor methylation had a positive impact on OS only if the adjuvant therapy was applied.
Collapse
Affiliation(s)
- Aleksandrs Krigers
- Department of Neurosurgery, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Julia Klingenschmid
- Department of Neurosurgery, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Tolga Cosar
- Department of Neurosurgery, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Patrizia Moser
- Department of Neuropathology, Tirol Kliniken, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Christian F. Freyschlag
- Department of Neurosurgery, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
- Correspondence: ; Tel.: +43-512-504-27452
| |
Collapse
|
21
|
Liu S, Zhang Y, Kong Z, Jiang C, Wang Y, Zhao D, You H, Ma W, Feng F. Feasibility of evaluating the histologic and genetic subtypes of WHO grade II-IV gliomas by diffusion-weighted imaging. BMC Neurosci 2022; 23:72. [PMID: 36471242 PMCID: PMC9720933 DOI: 10.1186/s12868-022-00750-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/28/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND To explore the feasibility of diffusion-weighted imaging (DWI) metrics to predict the histologic subtypes and genetic status of gliomas (e.g., IDH, MGMT, and TERT) noninvasively. METHODS One hundred and eleven patients with pathologically confirmed WHO grade II-IV gliomas were recruited retrospectively. Apparent diffusion coefficient (ADC) values were measured in solid parts of gliomas on co-registered T2-weighted images and were compared with each other in terms of WHO grading and genotypes using t-tests. Receiver operating characteristic analysis was performed to assess the diagnostic performances of ADC. Subsequently, multiple linear regression was used to find independent variables, which can directly affect ADC values. RESULTS The values of overall mean ADC (omADC) and normalized ADC (nADC) of high grade gliomas and IDH wildtype gliomas were lower than low grade gliomas and IDH mutated gliomas (P < 0.05). nADC values showed better diagnostic performance than omADC in identifying tumor grade (AUC: 0.787 vs. 0.750) and IDH status (AUC: 0.836 vs. 0.777). ADC values had limited abilities in distinguishing TERT status (AUC = 0.607 for nADC and 0.617 for omADC) and MGMT status (AUC = 0.651 for nADC). Only tumor grade and IDH status were tightly associated with ADC values. CONCLUSION DWI metrics can predict glioma grading and IDH mutation noninvasively, but have limited use in detecting TERT mutation and MGMT methylation.
Collapse
Affiliation(s)
- Sirui Liu
- grid.506261.60000 0001 0706 7839Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China ,grid.8547.e0000 0001 0125 2443Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiwei Zhang
- grid.506261.60000 0001 0706 7839Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China ,grid.411472.50000 0004 1764 1621Department of Radiology, Peking University First Hospital, No.8 Xishiku, Beijing, China
| | - Ziren Kong
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Chendan Jiang
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Yu Wang
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Dachun Zhao
- grid.506261.60000 0001 0706 7839Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui You
- grid.506261.60000 0001 0706 7839Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Wenbin Ma
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Feng Feng
- grid.506261.60000 0001 0706 7839Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| |
Collapse
|
22
|
Smith HL, Wadhwani N, Horbinski C. Major Features of the 2021 WHO Classification of CNS Tumors. Neurotherapeutics 2022; 19:1691-1704. [PMID: 35578106 PMCID: PMC9723092 DOI: 10.1007/s13311-022-01249-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
Advances in the understanding of the molecular biology of central nervous system (CNS) tumors prompted a new World Health Organization (WHO) classification scheme in 2021, only 5 years after the prior iteration. The 2016 version was the first to include specific molecular alterations in the diagnoses of a few tumors, but the 2021 system greatly expanded this approach, with over 40 tumor types and subtypes now being defined by their key molecular features. Many tumors have also been reconceptualized into new "supercategories," including adult-type diffuse gliomas, pediatric-type diffuse low- and high-grade gliomas, and circumscribed astrocytic gliomas. Some entirely new tumors are in this scheme, particularly pediatric tumors. Naturally, these changes will impact how CNS tumor patients are diagnosed and treated, including clinical trial enrollment. This review addresses the most clinically relevant changes in the 2021 WHO book, including diffuse and circumscribed gliomas, ependymomas, embryonal tumors, and meningiomas.
Collapse
Affiliation(s)
- Heather L Smith
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Nitin Wadhwani
- Department of Pathology, Lurie Children's Hospital, Chicago, IL, USA
| | - Craig Horbinski
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Feinberg School of Medicine, Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
23
|
Genomic and Epigenomic Features of Glioblastoma Multiforme and its Biomarkers. JOURNAL OF ONCOLOGY 2022; 2022:4022960. [PMID: 36185622 PMCID: PMC9519330 DOI: 10.1155/2022/4022960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/14/2022] [Accepted: 09/10/2022] [Indexed: 11/22/2022]
Abstract
Glioblastoma multiforme is a serious and life-threatening tumor of central nervous system, characterized by aggressive behavior, poor prognosis, and low survival rate. Despite of the availability of aggressive antitumor therapeutic regimen for glioblastoma (radiotherapy followed by chemotherapeutic dose), recovery rate, and patients' survival ratio is attributed to the lack of selectivity of therapeutic drugs and less advancement in cancer therapeutics over last decade. Moreover, tools employed in conventional diagnosis of glioblastoma are more invasive and painful, making the process excruciating for the patients. These challenges urge for the need of novel biomarkers for diagnosis, prognosis, and prediction purpose with less invasiveness and more patient compliance. This article will explore the genetic biomarkers isocitrate dehydrogenase mutation, MGMT mutations, and EGFR that can be deployed as an analytical tool in diagnosis of disease and prognosis of a therapeutic course. The review also highlights the importance of employing novel microRNAs as prognostic biomarkers. Recent clinical advancements to treat GBM and to prevent relapse of the disease are also discussed in this article in the hope of finding a robust and effective method to treat GBM.
Collapse
|
24
|
MGMT Promoter Methylation as a Prognostic Factor in Primary Glioblastoma: A Single-Institution Observational Study. Biomedicines 2022; 10:biomedicines10082030. [PMID: 36009577 PMCID: PMC9405779 DOI: 10.3390/biomedicines10082030] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma is the most malignant central nervous system tumor, which represents 50% of all glial tumors. The understanding of glioma genesis, prognostic evaluation, and treatment planning has been significantly enhanced by the discovery of molecular genetic biomarkers. This study aimed to evaluate survival in patients with primary glioblastoma concerning O6-methylguanine–DNA methyltransferase (MGMT) promoter methylation and other clinical factors. The study included 41 newly diagnosed glioblastoma patients treated from 2011 to 2014 in the 10th Military Research Hospital and Polyclinic, Poland. All patients underwent surgical resection followed by radiation and chemotherapy with alkylating agents. The MGMT promoter methylation was evaluated in all patients, and 43% were found to be methylated. In 26 and 15 cases, gross total resection and subtotal resection were conducted, respectively. Patients with a methylated MGMT promoter had a median survival of 504 days, while those without methylation had a median survival of 329 days. The group that was examined had a median age of 53. In a patient group younger than 53 years, those with methylation had significantly longer overall survival (639 days), compared to 433.5 days for patients without methylation. The most prolonged survival (551 days) was in patients with MGMT promoter methylation after gross total resection. The value of MGMT promoter methylation as a predictive biomarker is widely acknowledged. However, its prognostic significance remains unclear. Our findings proved that MGMT promoter methylation is also an essential positive prognostic biomarker.
Collapse
|
25
|
Quantitative Analysis of the MGMT Methylation Status of Glioblastomas in Light of the 2021 WHO Classification. Cancers (Basel) 2022; 14:cancers14133149. [PMID: 35804921 PMCID: PMC9264886 DOI: 10.3390/cancers14133149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Glioblastomas with methylation of the promoter region of the O(6)-methylguanine-DNA methyltransferase (MGMT) gene exhibit increased sensitivity to alkylating chemotherapy. Quantitative assessment of the MGMT promoter methylation status might provide additional prognostic information. The aim of our study was to determine a quantitative methylation threshold for better survival among patients with glioblastomas. Methods: We included consecutive patients ≥18 years treated at our department between 11/2010 and 08/2018 for a glioblastoma, IDH wildtype, undergoing quantitative MGMT promoter methylation analysis. The primary endpoint was overall survival. Results: A total of 321 patients were included. Median overall survival was 12.6 months. Kaplan−Meier and adjusted Cox regression analysis showed better survival for the groups with 16−30%, 31−60%, and 61−100% methylation. In contrast, survival in the group with 1−15% methylation was similar to those with unmethylated promoter regions. A secondary analysis confirmed this threshold. Conclusions: Better survival is observed in patients with glioblastomas with ≥16% methylation of the MGMT promoter region than with <16% methylation. Survival with tumors with 1−15% methylation is similar to with unmethylated tumors. Above 16% methylation, we found no additional benefit with increasing methylation.
Collapse
|
26
|
Klingenschmid J, Krigers A, Kerschbaumer J, Thomé C, Pinggera D, Freyschlag CF. Surgical Management of Malignant Glioma in the Elderly. Front Oncol 2022; 12:900382. [PMID: 35692808 PMCID: PMC9181439 DOI: 10.3389/fonc.2022.900382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background The median age for diagnosis of glioblastoma is 64 years and the incidence rises with increasing age to a peak at 75-84 years. As the total number of high-grade glioma patients is expected to increase with an aging population, neuro-oncological surgery faces new treatment challenges, especially regarding aggressiveness of the surgical approach and extent of resection. In the elderly, aspects like frailty and functional recovery time have to be taken into account before performing surgery. Material & Methods Patients undergoing surgery for malignant glioma (WHO grade III and IV) at our institution between 2015 and 2020 were compiled in a centralized tumor database and analyzed retrospectively. Karnofsky Performance Scale (KPS) and Clinical Frailty Scale (CFS) were used to determine functional performance pre- and postoperatively. Overall survival (OS) was compared between age groups of 65-69 years, 70-74 years, 75-79 years, 80-84 years and >85 years in view of extent of resection (EOR). Furthermore, we performed a literature evaluation focusing on surgical treatment of newly diagnosed malignant glioma in the elderly. Results We analyzed 121 patients aged 65 years and above (range 65 to 88, mean 74 years). Mean overall survival (OS) was 10.35 months (SD = 11.38). Of all patients, only a minority (22.3%) received tumor biopsy instead of gross total resection (GTR, 61.2%) or subtotal resection (STR, 16.5%). Postoperatively, 52.9% of patients were treated according to the Stupp protocol. OS differed significantly between extent of resection (EOR) groups (4.0 months after biopsy vs. 8.3 after STR vs. 13.8 after GTR, p < 0.05 and p < 0.001 correspondingly). No significant difference was observed regarding EOR across different age groups. Conclusion GTR should be the treatment of choice also in elderly patients with malignant glioma as functional outcome and survival after surgery are remarkably better compared to less aggressive treatment. Elderly patients who received GTR of high-grade gliomas survived significantly longer compared to patients who underwent biopsy and STR. Age seems to have little influence on overall survival in selected surgically extensive treated patients, but high preoperative functional performance is mandatory.
Collapse
|
27
|
Caccese M, Simonelli M, Villani V, Rizzato S, Ius T, Pasqualetti F, Russo M, Rudà R, Amoroso R, Bellu L, Bertorelle R, Cavallin F, Dipasquale A, Carosi M, Pizzolitto S, Cesselli D, Persico P, Casini B, Fassan M, Zagonel V, Lombardi G. Definition of the Prognostic Role of MGMT Promoter Methylation Value by Pyrosequencing in Newly Diagnosed IDH Wild-Type Glioblastoma Patients Treated with Radiochemotherapy: A Large Multicenter Study. Cancers (Basel) 2022; 14:cancers14102425. [PMID: 35626029 PMCID: PMC9139569 DOI: 10.3390/cancers14102425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Background. O6-methylguanine (O6-MeG)-DNA methyltransferase (MGMT) methylation status is a predictive factor for alkylating treatment efficacy in glioblastoma patients, but its prognostic role is still unclear. We performed a large, multicenter study to evaluate the association between MGMT methylation value and survival. Methods. We evaluated glioblastoma patients with an assessment of MGMT methylation status by pyrosequencing from nine Italian centers. The inclusion criteria were histological diagnosis of IDH wild-type glioblastoma, Eastern Cooperative Oncology Group Performance Status (ECOG-PS) ≤2, and radio-chemotherapy treatment with temozolomide. The relationship between OS and MGMT was investigated with a time-dependent Receiver Operating Characteristics (ROC) curve and Cox regression models. Results. In total, 591 newly diagnosed glioblastoma patients were analyzed. The median OS was 16.2 months. The ROC analysis suggested a cut-off of 15% for MGMT methylation. The 2-year Overall Survival (OS) was 18.3% and 51.8% for MGMT methylation <15% and ≥15% (p < 0.0001). In the multivariable analysis, MGMT methylation <15% was associated with impaired survival (p < 0.00001). However, we also found a non-linear association between MGMT methylation and OS (p = 0.002): median OS was 14.8 months for MGMT in 0−4%, 18.9 months for MGMT in 4−40%, and 29.9 months for MGMT in 40−100%. Conclusions. Our findings suggested a non-linear relationship between OS and MGMT promoter methylation, which implies a varying magnitude of prognostic effect across values of MGMT promoter methylation by pyrosequencing in newly diagnosed IDH wild-type glioblastoma patients treated with chemoradiotherapy.
Collapse
Affiliation(s)
- Mario Caccese
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.Z.); (G.L.)
- Correspondence: ; Tel.: +39-(0)4-9821-5888
| | - Matteo Simonelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy; (M.S.); (A.D.); (P.P.)
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Veronica Villani
- Neuro-Oncology Unit, Regina Elena National Cancer Institute, 00161 Rome, Italy;
| | - Simona Rizzato
- Department of Oncology, Central Friuli University Health Authority, 33100 Udine, Italy;
| | - Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy;
| | - Francesco Pasqualetti
- Radiation Oncology Unit, Pisa University Hospital, 56121 Pisa, Italy;
- Department of Oncology, University of Oxford, Oxford OX1 4BH, UK
| | - Marco Russo
- Neurology Unit, Neuromotor Department, Azienda USL-IRCCS Reggio Emilia, 42121 Emilia, Italy;
| | - Roberta Rudà
- Department of Neuro-Oncology, University of Turin and City of Health and Science Hospital, 10094 Torino, Italy;
- Neurology Unit, Hospital of Castelfranco Veneto, 31033 Castelfranco Veneto, Italy
| | - Rosina Amoroso
- Neurosurgery Unit, Department of Surgery, Hospital of Livorno, Azienda Asl Toscana Nord Ovest, 57100 Livorno, Italy;
| | - Luisa Bellu
- Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy;
| | - Roberta Bertorelle
- Immunology and Molecular Oncology Unit, Department of Oncology, Veneto Institute of Oncology IOV IRCCS, 35128 Padua, Italy;
| | | | - Angelo Dipasquale
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy; (M.S.); (A.D.); (P.P.)
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Mariantonia Carosi
- Pathology Unit, Regina Elena National Cancer Institute, 00161 Rome, Italy; (M.C.); (B.C.)
| | - Stefano Pizzolitto
- Department of Surgical Pathology, Central Friuli University Health Authority, 33100 Udine, Italy;
| | - Daniela Cesselli
- Department of Laboratory Medicine, Institute of Pathology, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy;
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Pasquale Persico
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy; (M.S.); (A.D.); (P.P.)
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Beatrice Casini
- Pathology Unit, Regina Elena National Cancer Institute, 00161 Rome, Italy; (M.C.); (B.C.)
| | - Matteo Fassan
- Department of Oncology, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padua, Italy;
- Cytopathology Unit, Department of Medicine (DIMED), Surgical Pathology & AMP, University of Padua, 35128 Padua, Italy
| | - Vittorina Zagonel
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.Z.); (G.L.)
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.Z.); (G.L.)
| |
Collapse
|
28
|
Brat DJ, Aldape K, Bridge JA, Canoll P, Colman H, Hameed MR, Harris BT, Hattab EM, Huse JT, Jenkins RB, Lopez-Terrada DH, McDonald WC, Rodriguez FJ, Souter LH, Colasacco C, Thomas NE, Yount MH, van den Bent MJ, Perry A. Molecular Biomarker Testing for the Diagnosis of Diffuse Gliomas. Arch Pathol Lab Med 2022; 146:547-574. [PMID: 35175291 PMCID: PMC9311267 DOI: 10.5858/arpa.2021-0295-cp] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— The diagnosis and clinical management of patients with diffuse gliomas (DGs) have evolved rapidly over the past decade with the emergence of molecular biomarkers that are used to classify, stratify risk, and predict treatment response for optimal clinical care. OBJECTIVE.— To develop evidence-based recommendations for informing molecular biomarker testing for pediatric and adult patients with DGs and provide guidance for appropriate laboratory test and biomarker selection for optimal diagnosis, risk stratification, and prediction. DESIGN.— The College of American Pathologists convened an expert panel to perform a systematic review of the literature and develop recommendations. A systematic review of literature was conducted to address the overarching question, "What ancillary tests are needed to classify DGs and sufficiently inform the clinical management of patients?" Recommendations were derived from quality of evidence, open comment feedback, and expert panel consensus. RESULTS.— Thirteen recommendations and 3 good practice statements were established to guide pathologists and treating physicians on the most appropriate methods and molecular biomarkers to include in laboratory testing to inform clinical management of patients with DGs. CONCLUSIONS.— Evidence-based incorporation of laboratory results from molecular biomarker testing into integrated diagnoses of DGs provides reproducible and clinically meaningful information for patient management.
Collapse
Affiliation(s)
- Daniel J Brat
- From the Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (Brat)
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland (Aldape)
| | - Julia A Bridge
- The Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska (Bridge)
- Cytogenetics, ProPath, Dallas, Texas (Bridge)
| | - Peter Canoll
- The Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York (Canoll)
| | - Howard Colman
- The Department of Neurosurgery and Huntsman Cancer Institute, University of Utah, Salt Lake City (Colman)
| | - Meera R Hameed
- The Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York (Hameed)
| | - Brent T Harris
- The Department of Neurology and Pathology, MedStar Georgetown University Hospital, Washington, DC (Harris)
| | - Eyas M Hattab
- The Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky (Hattab)
| | - Jason T Huse
- The Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston (Huse)
| | - Robert B Jenkins
- The Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota (Jenkins)
| | - Dolores H Lopez-Terrada
- The Departments of Pathology and Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas (Lopez-Terrada)
| | - William C McDonald
- The Department of Pathology, Abbott Northwestern Hospital, Minneapolis, Minnesota (McDonald)
| | - Fausto J Rodriguez
- The Department of Pathology, The Johns Hopkins Hospital, Baltimore, Maryland (Rodriguez)
| | | | - Carol Colasacco
- Surveys, College of American Pathologists, Northfield, Illinois (Colasacco, Thomas)
| | - Nicole E Thomas
- Surveys, College of American Pathologists, Northfield, Illinois (Colasacco, Thomas)
| | | | - Martin J van den Bent
- The Brain Tumor Center at Erasmus MC Cancer Institute University Medical Center Rotterdam, Rotterdam, the Netherlands (van den Bent)
| | - Arie Perry
- The Departments of Pathology and Neurological Surgery, University of California San Francisco School of Medicine, San Francisco (Perry)
| |
Collapse
|
29
|
Radiomics Profiling Identifies the Incremental Value of MRI Features beyond Key Molecular Biomarkers for the Risk Stratification of High-Grade Gliomas. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:8952357. [PMID: 35386727 PMCID: PMC8967578 DOI: 10.1155/2022/8952357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/17/2022] [Indexed: 12/21/2022]
Abstract
Objective To identify the incremental value of magnetic resonance imaging (MRI) features beyond key molecular biomarkers for the risk stratification of high-grade gliomas (HGGs). Methods A total of 241 patients with preoperative magnetic resonance (MR) images and clinical and genetic data were retrospectively collected from our institution and The Cancer Genome Atlas/The Cancer Imaging Archive (TCGA/TCIA) dataset. Radiomic features (n = 1702) were extracted from both postcontrast T1-weighted (CE-T1) and T2-weighted fluid attenuation inversion recovery (T2FLAIR) MR images. The least absolute shrinkage and selection operator (LASSO) method was used to select effective features. A multivariate Cox proportional risk regression model was established to explore the prognostic value of clinical features, molecular biomarkers, and radiomic features. Kaplan–Meier survival analysis and the log-rank test were used to evaluate the prognostic model, and a stratified analysis was conducted to demonstrate the incremental value of the radiomics signature. A nomogram was developed to predict the 1-year, 2-year, and 3-year overall survival (OS) probabilities of the patients with HGGs. Results The radiomics signature provided significant prognostic value for the risk stratification of patients with HGGs. The combined model integrating the radiomics signature with clinical data (age) and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status had the best prognostic value, with C-index values of 0.752 and 0.792 in the training set and external validation set, respectively. Stratified Kaplan–Meier survival analysis showed that the radiomics signature could identify the risk subgroups in different clinical and molecular subgroups. Conclusion This radiomics signature can be used for the risk stratification of patients with HGGs and has incremental value beyond key molecular biomarkers, providing a preoperative basis for individualized diagnosis and treatment decision-making.
Collapse
|
30
|
Kanit N, Uysal Yoca O, Ince D, Olgun N, Ozer E. Gene-Specific DNA Methylation Profiles in Pediatric Medulloblastomas. Pediatr Dev Pathol 2022; 25:82-90. [PMID: 34554028 DOI: 10.1177/10935266211036680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Medulloblastoma is the most common pediatric central nervous tumor of high malignancy that has been classified into both histological subtypes and molecular subgroups by the 2016 World Health Organization classification. However, there is a still need to understand the genomic characteristics and predict the clinical course. The aim of the study is to investigate the significance of the methylation profiles in molecular subclassification and precision medicine of the disease. METHODS The study enrolled 47 pediatric medulloblastoma patients. DNA methylation levels of KLF4, SPINT2, RASSF1A, EZH2, ZIC2, and PTCH1 genes were analyzed using methylation-specific pyrosequencing. The significance of the statistical relationship between methylation profiles and clinicopathological parameters including molecular subgroups and histological subtypes, the status of metastasis, and event-free survival were analyzed. RESULTS DNA methylation analysis demonstrated that KLF4, PTCH1, and ZIC2 hypermethylation were associated with the SHH-activated subgroup, whereas both SPINT2 and RASSF1A hypermethylation were associated with metastatic disease. EZH2 gene was not methylated in any of the samples. CONCLUSION We think that customized DNA methylation profiling may be a useful tool in the molecular subclassification of pediatric medulloblastoma and a potential technical approach in precision medicine.
Collapse
Affiliation(s)
- Naz Kanit
- Department of Molecular Medicine, Dokuz Eylul University Institute of Health Sciences, Izmir, Turkey
| | - Ozge Uysal Yoca
- Department of Medical Biology and Genetics, Dokuz Eylul University Institute of Health Sciences, Izmir, Turkey
| | - Dilek Ince
- Department of Clinical Oncology, Dokuz Eylul University Institute of Oncology, Izmir, Turkey
| | - Nur Olgun
- Department of Clinical Oncology, Dokuz Eylul University Institute of Oncology, Izmir, Turkey
| | - Erdener Ozer
- Department of Molecular Medicine, Dokuz Eylul University Institute of Health Sciences, Izmir, Turkey
| |
Collapse
|
31
|
Picca A, Guyon D, Santonocito OS, Baldini C, Idbaih A, Carpentier A, Naccarato AG, Caccese M, Lombardi G, Di Stefano AL. Innovating Strategies and Tailored Approaches in Neuro-Oncology. Cancers (Basel) 2022; 14:1124. [PMID: 35267432 PMCID: PMC8909701 DOI: 10.3390/cancers14051124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 01/25/2023] Open
Abstract
Diffuse gliomas, the most frequent and aggressive primary central nervous system neoplasms, currently lack effective curative treatments, particularly for cases lacking the favorable prognostic marker IDH mutation. Nonetheless, advances in molecular biology allowed to identify several druggable alterations in a subset of IDH wild-type gliomas, such as NTRK and FGFR-TACC fusions, and BRAF hotspot mutations. Multi-tyrosine kinase inhibitors, such as regorafenib, also showed efficacy in the setting of recurrent glioblastoma. IDH inhibitors are currently in the advanced phase of clinical evaluation for patients with IDH-mutant gliomas. Several immunotherapeutic approaches, such as tumor vaccines or checkpoint inhibitors, failed to improve patients' outcomes. Even so, they may be still beneficial in a subset of them. New methods, such as using pulsed ultrasound to disrupt the blood-brain barrier, gene therapy, and oncolytic virotherapy, are well tolerated and may be included in the therapeutic armamentarium soon.
Collapse
Affiliation(s)
- Alberto Picca
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, AP-HP, Hôpital Universitaire La Pitié Salpêtrière, DMU Neurosciences, 75013 Paris, France; (A.P.); (A.I.)
| | - David Guyon
- Department of Medical Oncology, Gustave Roussy University Hospital, 94800 Villejuif, France;
| | - Orazio Santo Santonocito
- Division of Neurosurgery, Spedali Riuniti di Livorno—USL Toscana Nord-Ovest, 57124 Livorno, Italy;
| | - Capucine Baldini
- Drug Development Department (DITEP), Gustave Roussy University Hospital, 94800 Villejuif, France;
| | - Ahmed Idbaih
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, AP-HP, Hôpital Universitaire La Pitié Salpêtrière, DMU Neurosciences, 75013 Paris, France; (A.P.); (A.I.)
| | - Alexandre Carpentier
- Service de Neurochirurgie, Hôpital Universitaire La Pitié Salpêtrière, 75013 Paris, France;
| | - Antonio Giuseppe Naccarato
- Department of Translational Research and New Technologies in Medicine and Surgery, Division of Pathology, University of Pisa, 56100 Pisa, Italy;
- Anatomia Patologica 1, Department of Laboratory Medicine, Pisa University Hospital, 56126 Pisa, Italy
| | - Mario Caccese
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (M.C.); (G.L.)
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (M.C.); (G.L.)
| | - Anna Luisa Di Stefano
- Division of Neurosurgery, Spedali Riuniti di Livorno—USL Toscana Nord-Ovest, 57124 Livorno, Italy;
- Department of Neurology, Foch Hospital, 92150 Suresnes, France
| |
Collapse
|
32
|
Tierling S, Jürgens-Wemheuer WM, Leismann A, Becker-Kettern J, Scherer M, Wrede A, Breuskin D, Urbschat S, Sippl C, Oertel J, Schulz-Schaeffer WJ, Walter J. Bisulfite profiling of the MGMT promoter and comparison with routine testing in glioblastoma diagnostics. Clin Epigenetics 2022; 14:26. [PMID: 35180887 PMCID: PMC8857788 DOI: 10.1186/s13148-022-01244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
Abstract
Background Promoter methylation of the DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) is an acknowledged predictive epigenetic marker in glioblastoma multiforme and anaplastic astrocytoma. Patients with methylated CpGs in the MGMT promoter benefit from treatment with alkylating agents, such as temozolomide, and show an improved overall survival and progression-free interval. A precise determination of MGMT promoter methylation is of importance for diagnostic decisions. We experienced that different methods show partially divergent results in a daily routine. For an integrated neuropathological diagnosis of malignant gliomas, we therefore currently apply a combination of methylation-specific PCR assays and pyrosequencing. Results To better rationalize the variation across assays, we compared these standard techniques and assays to deep bisulfite sequencing results in a cohort of 80 malignant astrocytomas. Our deep analysis covers 49 CpG sites of the expanded MGMT promoter, including exon 1, parts of intron 1 and a region upstream of the transcription start site (TSS). We observed that deep sequencing data are in general in agreement with CpG-specific pyrosequencing, while the most widely used MSP assays published by Esteller et al. (N Engl J Med 343(19):1350–1354, 2000. 10.1056/NEJM200011093431901) and Felsberg et al. (Clin Cancer Res 15(21):6683–6693, 2009. 10.1158/1078-0432.CCR-08-2801) resulted in partially discordant results in 22 tumors (27.5%). Local deep bisulfite sequencing (LDBS) revealed that CpGs located in exon 1 are suited best to discriminate methylated from unmethylated samples. Based on LDBS data, we propose an optimized MSP primer pair with 83% and 85% concordance to pyrosequencing and LDBS data. A hitherto neglected region upstream of the TSS, with an overall higher methylation compared to exon 1 and intron 1 of MGMT, is also able to discriminate the methylation status. Conclusion Our integrated analysis allows to evaluate and redefine co-methylation domains within the MGMT promoter and to rationalize the practical impact on assays used in daily routine diagnostics. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01244-4.
Collapse
Affiliation(s)
- Sascha Tierling
- Fak.NT Life Sciences, Department of Genetics/Epigenetics, Saarland University, Campus, Building A2 4, 66041, Saarbrücken, Germany.
| | | | - Alea Leismann
- Fak.NT Life Sciences, Department of Genetics/Epigenetics, Saarland University, Campus, Building A2 4, 66041, Saarbrücken, Germany
| | - Julia Becker-Kettern
- Institute of Neuropathology, Medical Faculty of the Saarland University, Homburg, Germany
| | - Michael Scherer
- Fak.NT Life Sciences, Department of Genetics/Epigenetics, Saarland University, Campus, Building A2 4, 66041, Saarbrücken, Germany.,Department of Bioinformatics and Genomics, Centre for Genomic Regulation, Barcelona, Spain
| | - Arne Wrede
- Institute of Neuropathology, Medical Faculty of the Saarland University, Homburg, Germany
| | - David Breuskin
- Institute for Neurosurgery, Medical Faculty of the Saarland University, Homburg, Germany
| | - Steffi Urbschat
- Institute for Neurosurgery, Medical Faculty of the Saarland University, Homburg, Germany
| | - Christoph Sippl
- Institute for Neurosurgery, Medical Faculty of the Saarland University, Homburg, Germany
| | - Joachim Oertel
- Institute for Neurosurgery, Medical Faculty of the Saarland University, Homburg, Germany
| | | | - Jörn Walter
- Fak.NT Life Sciences, Department of Genetics/Epigenetics, Saarland University, Campus, Building A2 4, 66041, Saarbrücken, Germany
| |
Collapse
|
33
|
Abstract
Purpose of Review Elderly patients with newly diagnosed glioblastoma (eGBM) carry a worse prognosis compared with their younger counterparts. eGBM garners special attention due to the unique challenges, including increased treatment-associated toxicity, less relative benefit from aggressive therapy, medical comorbidities, and immunosuppression. The pivotal GBM trials excluded patients > 70 years old and the optimal treatment approach remains unsettled for eGBM. In this review, we analyze the historical evidence-based data for treating eGBM and discuss the future direction for managing this vulnerable population. Recent Findings Treatment for eGBM continues to evolve. Therapy choice is guided by performance status and presence of O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation. For eGBM with good performance status, combinatorial hypofractionated radiation therapy (hRT) and temozolomide should be recommended. For those with poor performance status, further stratification based on MGMT promoter methylation test result is recommended. Single-agent temozolomide is a viable treatment option for MGMT methylated tumors (mMGMT); in particular, those classified with receptor tyrosine kinase II methylation. hRT alone can be considered in MGMT unmethylated (uMGMT) eGBM patients. As precision oncology continues to advance, effective targeted and immunotherapy may emerge as new treatment options for eGBM. Summary Management of elderly patients with newly diagnosed GBM carries a unique set of challenges. Progress has been made in defining the optimal therapeutic approach for these patients, but many questions remain to be answered.
Collapse
Affiliation(s)
- Carlen A. Yuen
- Division of Neuro-Oncology, Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian Hospital, 710 W 168th St, 9th Floor, New York, NY 10032 USA
| | - Marissa Barbaro
- Division of Neuro-Oncology, Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian Hospital, 710 W 168th St, 9th Floor, New York, NY 10032 USA
- Present Address: Perlmutter Cancer Center at NYU Langone Hematology Oncology Associates – Mineola, NYU Long Island School of Medicine, NYU Langone Health, Mineola, NY USA
| | - Aya Haggiagi
- Division of Neuro-Oncology, Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian Hospital, 710 W 168th St, 9th Floor, New York, NY 10032 USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian Hospital, New York, NY USA
| |
Collapse
|
34
|
Wee CW. Radiotherapy for Newly Diagnosed Glioblastoma in the Elderly: What Is the Standard? Brain Tumor Res Treat 2022; 10:12-21. [PMID: 35118843 PMCID: PMC8819463 DOI: 10.14791/btrt.2022.10.e34] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 11/24/2022] Open
Abstract
Nearly half of the patients with newly diagnosed glioblastomas are aged ≥65 years. Unfortunately, these elderly patients with glioblastoma (GBM-e) demonstrate detrimental survival. However, the optimal treatment for GBM-e after surgery remains controversial. Conventionally fractionated radiotherapy (CFRT) of 60 Gy, hypofractionated radiotherapy (HFRT), temozolomide (TMZ), or a combination of these treatments with or without tumor treating fields can be considered. Although evidence has indicated a non-inferiority of HFRT compared to CFRT in GBM-e treated with radiotherapy (RT) alone throughout the past, the optimal RT scheme (CFRT vs. HFRT), when combined with TMZ, has never been investigated in a prospective randomized fashion for GBM-e patients suitable for radiochemotherapy. Several other issues make the treatment of GBM-e even more challenging. In this review, current evidence regarding RT in GBM-e, as well as issues that need to be addressed, is discussed.
Collapse
Affiliation(s)
- Chan Woo Wee
- Department of Radiation Oncology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea.,Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
35
|
Effectiveness of different treatment strategies in elderly patients with glioblastoma: an evidence map of randomised controlled trials. Crit Rev Oncol Hematol 2022; 173:103645. [DOI: 10.1016/j.critrevonc.2022.103645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/30/2022] [Accepted: 02/23/2022] [Indexed: 01/02/2023] Open
|
36
|
Wang M, Chen S, Ao D. Targeting DNA repair pathway in cancer: Mechanisms and clinical application. MedComm (Beijing) 2021; 2:654-691. [PMID: 34977872 PMCID: PMC8706759 DOI: 10.1002/mco2.103] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
Over the last decades, the growing understanding on DNA damage response (DDR) pathways has broadened the therapeutic landscape in oncology. It is becoming increasingly clear that the genomic instability of cells resulted from deficient DNA damage response contributes to the occurrence of cancer. One the other hand, these defects could also be exploited as a therapeutic opportunity, which is preferentially more deleterious in tumor cells than in normal cells. An expanding repertoire of DDR-targeting agents has rapidly expanded to inhibitors of multiple members involved in DDR pathways, including PARP, ATM, ATR, CHK1, WEE1, and DNA-PK. In this review, we sought to summarize the complex network of DNA repair machinery in cancer cells and discuss the underlying mechanism for the application of DDR inhibitors in cancer. With the past preclinical evidence and ongoing clinical trials, we also provide an overview of the history and current landscape of DDR inhibitors in cancer treatment, with special focus on the combination of DDR-targeted therapies with other cancer treatment strategies.
Collapse
Affiliation(s)
- Manni Wang
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Siyuan Chen
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Danyi Ao
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
37
|
Śledzińska P, Bebyn MG, Furtak J, Kowalewski J, Lewandowska MA. Prognostic and Predictive Biomarkers in Gliomas. Int J Mol Sci 2021; 22:ijms221910373. [PMID: 34638714 PMCID: PMC8508830 DOI: 10.3390/ijms221910373] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022] Open
Abstract
Gliomas are the most common central nervous system tumors. New technologies, including genetic research and advanced statistical methods, revolutionize the therapeutic approach to the patient and reveal new points of treatment options. Moreover, the 2021 World Health Organization Classification of Tumors of the Central Nervous System has fundamentally changed the classification of gliomas and incorporated many molecular biomarkers. Given the rapid progress in neuro-oncology, here we compile the latest research on prognostic and predictive biomarkers in gliomas. In adult patients, IDH mutations are positive prognostic markers and have the greatest prognostic significance. However, CDKN2A deletion, in IDH-mutant astrocytomas, is a marker of the highest malignancy grade. Moreover, the presence of TERT promoter mutations, EGFR alterations, or a combination of chromosome 7 gain and 10 loss upgrade IDH-wildtype astrocytoma to glioblastoma. In pediatric patients, H3F3A alterations are the most important markers which predict the worse outcome. MGMT promoter methylation has the greatest clinical significance in predicting responses to temozolomide (TMZ). Conversely, mismatch repair defects cause hypermutation phenotype predicting poor response to TMZ. Finally, we discussed liquid biopsies, which are promising diagnostic, prognostic, and predictive techniques, but further work is needed to implement these novel technologies in clinical practice.
Collapse
Affiliation(s)
- Paulina Śledzińska
- Department of Thoracic Surgery and Tumors, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-067 Torun, Poland
- The F. Lukaszczyk Oncology Center, Molecular Oncology and Genetics Department, Innovative Medical Forum, 85-796 Bydgoszcz, Poland
| | - Marek G Bebyn
- The F. Lukaszczyk Oncology Center, Molecular Oncology and Genetics Department, Innovative Medical Forum, 85-796 Bydgoszcz, Poland
- Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Jacek Furtak
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland
- Franciszek Lukaszczyk Oncology Center, Department of Neurooncology and Radiosurgery, 85-796 Bydgoszcz, Poland
| | - Janusz Kowalewski
- Department of Thoracic Surgery and Tumors, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-067 Torun, Poland
| | - Marzena A Lewandowska
- Department of Thoracic Surgery and Tumors, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-067 Torun, Poland
- The F. Lukaszczyk Oncology Center, Molecular Oncology and Genetics Department, Innovative Medical Forum, 85-796 Bydgoszcz, Poland
| |
Collapse
|
38
|
Lu J, Li X, Li H. Perfusion parameters derived from MRI for preoperative prediction of IDH mutation and MGMT promoter methylation status in glioblastomas. Magn Reson Imaging 2021; 83:189-195. [PMID: 34506909 DOI: 10.1016/j.mri.2021.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/14/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE To investigate the feasibility for preoperative prediction of IDH mutation and MGMT promoter methylation status in glioblastomas(GBMs) by intravoxel incoherent motion(IVIM) and dynamic susceptibility contrast(DSC). METHODS Preoperative IVIM and DSC images of 71 patients(IDH mutation:45, IDH wildtype: 26; MGMT methylation: 31, MGMT unmethylation:40) with glioblastomas were analyzed retrospectively. Perfusion parameters including microcirculation perfusion coefficient(D*), perfusion fraction(f), cerebral blood volume(CBV) and cerebral blood flow(CBF) were measured. Corrected perfusion parameters containing corrected perfusion coefficient(ADCperf) and simplified perfusion fraction(SPF) were from the simplified IVIM with 3 b values. Correlations among parameters were analyzed by Spearman correlation. All parameters were compared with Mann-Whitney U test. Univariate and multivariate logistic regression models were constructed. The receiver operating characteristic(ROC) curve was analyzed. RESULTS The IVIM parameters showed merely moderate correlations with CBV and showed no correlation with CBF. IDH mutation GBMs showed lower D*, ADCperf, SPF, CBV and higher f than IDH wildtype GBMs(all p < 0.05). D* was the independent predictor for IDH mutation with the highest AUC of 0.912(95%CI: 0.821-0.966). The D*, ADCperf, SPF and CBV of MGMT promoter methylation GBMs were lower than unmethylation GBMs while f was higher(all p < 0.05). Multivariate model showed the highest prediction efficacy for MGMT promoter methylation with an AUC of 0.915(95%CI: 0.824-0.968). The CBF was not useful in distinguishing IDH mutation and MGMT promoter methylation status(p = 0.055, 0.215). CONCLUSION IDH mutation and MGMT promoter methylation status in GBMs can be assessed effectively by IVIM and DSC. Besides, D* was the independent predictor of IDH mutation status.
Collapse
Affiliation(s)
- Jun Lu
- Department of Radiology, The Affiliated Tumor Hospital of Zhengzhou University & Henan Cancer Hospital, China
| | - Xiang Li
- Department of Radiology, The Affiliated Tumor Hospital of Zhengzhou University & Henan Cancer Hospital, China
| | - Hailiang Li
- Department of Radiology, The Affiliated Tumor Hospital of Zhengzhou University & Henan Cancer Hospital, China.
| |
Collapse
|
39
|
Prognostic role of Ki-67 in glioblastomas excluding contribution from non-neoplastic cells. Sci Rep 2021; 11:17918. [PMID: 34504133 PMCID: PMC8429554 DOI: 10.1038/s41598-021-95958-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/14/2021] [Indexed: 01/01/2023] Open
Abstract
Survival of glioblastoma patients varies and prognostic markers are important in the clinical setting. With digital pathology and improved immunohistochemical multiplexing becoming a part of daily diagnostics, we investigated the prognostic value of the Ki-67 labelling index (LI) in glioblastomas more precisely than previously by excluding proliferation in non-tumor cells from the analysis. We investigated the Ki-67 LI in a well-annotated population-based glioblastoma patient cohort (178 IDH-wildtype, 3 IDH-mutated). Ki-67 was identified in full tumor sections with automated digital image analysis and the contribution from non-tumor cells was excluded using quantitative double-immunohistochemistry. For comparison of the Ki-67 LI between WHO grades (II-IV), 9 IDH-mutated diffuse astrocytomas and 9 IDH-mutated anaplastic astrocytomas were stained. Median Ki-67 LI increased with increasing WHO grade (median 2.7%, 6.4% and 27.5%). There was no difference in median Ki-67 LI between IDH-mutated and IDH-wildtype glioblastomas (p = 0.9) and Ki-67 LI was not associated with survival in glioblastomas in neither univariate (p = 0.9) nor multivariate analysis including MGMT promoter methylation status and excluding IDH-mutated glioblastomas (p = 0.2). Ki-67 may be of value in the differential diagnostic setting, but it must not be over-interpreted in the clinico-pathological context.
Collapse
|
40
|
Ahmed M, Bayoumi B, Abdallah S, Elserafy M. MGMT Immunohistochemical Expression in Colorectal Carcinoma and its Correlation with Tumor Progression. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.5879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Introduction: There is an urgent need to identify predictive features and markers for colorectal carcinoma (CRC) progression and treatment. This study aimed to assess O6-methylguanine DNA methyltransferase (MGMT) expression in CRC and correlate with the clinico-pathological aspects of the tumor, also to evaluate the relationship between different histopathologic parameters and tumor progression.
Material and Methods: The study was carried on 70 colectomy using formalin fixed paraffin embedded tumor tissue. Immunohistochemistry was used to detect MGMT expression, and clinico-pathologic aspects as well as Tumor budding, type of desmoplastic reaction, inflammatory lymphocytic milieu, pattern of invasive front and necrosis were assessed Then correlated with MGMT expression and tumor progression, using parametric and nonparametric statistical methods.
Results: MGMT Loss of expression was detected in 42.9% of CRC cases. MGMT expression status was significantly correlated with tumor stage and metastatic status (p<0.05), while it was not correlated with other clinic-pathologic features, (p>0.05). Desmoplastic reaction (DR), tumor budding, stromal tumor infiltrating lymphocytes (TIL-S) and necrosis were correlated with tumor stage (p<0.05). DR correlated with tumor budding (p<0.05). Both types of TIL and Crohn’s-like lymphoid reaction (CLR) showed a mutual correlation (p<0.05).
Conclusion: MGMT high expression and histopathologic parameters as DR, tumor budding, inflammatory lymphocytic milieu and necrosis could be correlated with CRC progression.
Collapse
|
41
|
Wang Z, Wang Y, Yang T, Xing H, Wang Y, Gao L, Guo X, Xing B, Wang Y, Ma W. Machine learning revealed stemness features and a novel stemness-based classification with appealing implications in discriminating the prognosis, immunotherapy and temozolomide responses of 906 glioblastoma patients. Brief Bioinform 2021; 22:6220175. [PMID: 33839757 PMCID: PMC8425448 DOI: 10.1093/bib/bbab032] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant and lethal intracranial tumor, with extremely limited treatment options. Immunotherapy has been widely studied in GBM, but none can significantly prolong the overall survival (OS) of patients without selection. Considering that GBM cancer stem cells (CSCs) play a non-negligible role in tumorigenesis and chemoradiotherapy resistance, we proposed a novel stemness-based classification of GBM and screened out certain population more responsive to immunotherapy. The one-class logistic regression algorithm was used to calculate the stemness index (mRNAsi) of 518 GBM patients from The Cancer Genome Atlas (TCGA) database based on transcriptomics of GBM and pluripotent stem cells. Based on their stemness signature, GBM patients were divided into two subtypes via consensus clustering, and patients in Stemness Subtype I presented significantly better OS but poorer progression-free survival than Stemness Subtype II. Genomic variations revealed patients in Stemness Subtype I had higher somatic mutation loads and copy number alteration burdens. Additionally, two stemness subtypes had distinct tumor immune microenvironment patterns. Tumor Immune Dysfunction and Exclusion and subclass mapping analysis further demonstrated patients in Stemness Subtype I were more likely to respond to immunotherapy, especially anti-PD1 treatment. The pRRophetic algorithm also indicated patients in Stemness Subtype I were more resistant to temozolomide therapy. Finally, multiple machine learning algorithms were used to develop a 7-gene Stemness Subtype Predictor, which were further validated in two external independent GBM cohorts. This novel stemness-based classification could provide a promising prognostic predictor for GBM and may guide physicians in selecting potential responders for preferential use of immunotherapy.
Collapse
Affiliation(s)
- Zihao Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yaning Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tianrui Yang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hao Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuekun Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lu Gao
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaopeng Guo
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Bing Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
42
|
McAleenan A, Kelly C, Spiga F, Kernohan A, Cheng HY, Dawson S, Schmidt L, Robinson T, Brandner S, Faulkner CL, Wragg C, Jefferies S, Howell A, Vale L, Higgins JPT, Kurian KM. Prognostic value of test(s) for O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation for predicting overall survival in people with glioblastoma treated with temozolomide. Cochrane Database Syst Rev 2021; 3:CD013316. [PMID: 33710615 PMCID: PMC8078495 DOI: 10.1002/14651858.cd013316.pub2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Glioblastoma is an aggressive form of brain cancer. Approximately five in 100 people with glioblastoma survive for five years past diagnosis. Glioblastomas that have a particular modification to their DNA (called methylation) in a particular region (the O6-methylguanine-DNA methyltransferase (MGMT) promoter) respond better to treatment with chemotherapy using a drug called temozolomide. OBJECTIVES To determine which method for assessing MGMT methylation status best predicts overall survival in people diagnosed with glioblastoma who are treated with temozolomide. SEARCH METHODS We searched MEDLINE, Embase, BIOSIS, Web of Science Conference Proceedings Citation Index to December 2018, and examined reference lists. For economic evaluation studies, we additionally searched NHS Economic Evaluation Database (EED) up to December 2014. SELECTION CRITERIA Eligible studies were longitudinal (cohort) studies of adults with diagnosed glioblastoma treated with temozolomide with/without radiotherapy/surgery. Studies had to have related MGMT status in tumour tissue (assessed by one or more method) with overall survival and presented results as hazard ratios or with sufficient information (e.g. Kaplan-Meier curves) for us to estimate hazard ratios. We focused mainly on studies comparing two or more methods, and listed brief details of articles that examined a single method of measuring MGMT promoter methylation. We also sought economic evaluations conducted alongside trials, modelling studies and cost analysis. DATA COLLECTION AND ANALYSIS Two review authors independently undertook all steps of the identification and data extraction process for multiple-method studies. We assessed risk of bias and applicability using our own modified and extended version of the QUality In Prognosis Studies (QUIPS) tool. We compared different techniques, exact promoter regions (5'-cytosine-phosphate-guanine-3' (CpG) sites) and thresholds for interpretation within studies by examining hazard ratios. We performed meta-analyses for comparisons of the three most commonly examined methods (immunohistochemistry (IHC), methylation-specific polymerase chain reaction (MSP) and pyrosequencing (PSQ)), with ratios of hazard ratios (RHR), using an imputed value of the correlation between results based on the same individuals. MAIN RESULTS We included 32 independent cohorts involving 3474 people that compared two or more methods. We found evidence that MSP (CpG sites 76 to 80 and 84 to 87) is more prognostic than IHC for MGMT protein at varying thresholds (RHR 1.31, 95% confidence interval (CI) 1.01 to 1.71). We also found evidence that PSQ is more prognostic than IHC for MGMT protein at various thresholds (RHR 1.36, 95% CI 1.01 to 1.84). The data suggest that PSQ (mainly at CpG sites 74 to 78, using various thresholds) is slightly more prognostic than MSP at sites 76 to 80 and 84 to 87 (RHR 1.14, 95% CI 0.87 to 1.48). Many variants of PSQ have been compared, although we did not see any strong and consistent messages from the results. Targeting multiple CpG sites is likely to be more prognostic than targeting just one. In addition, we identified and summarised 190 articles describing a single method for measuring MGMT promoter methylation status. AUTHORS' CONCLUSIONS PSQ and MSP appear more prognostic for overall survival than IHC. Strong evidence is not available to draw conclusions with confidence about the best CpG sites or thresholds for quantitative methods. MSP has been studied mainly for CpG sites 76 to 80 and 84 to 87 and PSQ at CpG sites ranging from 72 to 95. A threshold of 9% for CpG sites 74 to 78 performed better than higher thresholds of 28% or 29% in two of three good-quality studies making such comparisons.
Collapse
Affiliation(s)
- Alexandra McAleenan
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Claire Kelly
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Francesca Spiga
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ashleigh Kernohan
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Hung-Yuan Cheng
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sarah Dawson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Applied Research Collaboration West (ARC West) , University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Lena Schmidt
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Tomos Robinson
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Claire L Faulkner
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol, UK
| | - Christopher Wragg
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol, UK
| | - Sarah Jefferies
- Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| | - Amy Howell
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Luke Vale
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Julian P T Higgins
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Applied Research Collaboration West (ARC West) , University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Kathreena M Kurian
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Bristol Medical School: Brain Tumour Research Centre, Public Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
43
|
Telomerase reverse transcriptase promoter mutation- and O 6-methylguanine DNA methyltransferase promoter methylation-mediated sensitivity to temozolomide in isocitrate dehydrogenase-wild-type glioblastoma: is there a link? Eur J Cancer 2021; 147:84-94. [PMID: 33631540 DOI: 10.1016/j.ejca.2021.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 01/12/2023]
Abstract
AIM OF THE STUDY Benefit from temozolomide (TMZ) chemotherapy in the treatment of isocitrate dehydrogenase (IDH)-wild-type glioblastoma is essentially limited to patients with O6-methylguanine DNA methyltransferase (MGMT) promoter-methylated tumours. Recent studies suggested that telomerase reverse transcriptase (TERT) promoter hotspot mutations may have an impact on the prognostic role of the MGMT status in patients with glioblastoma. METHODS MGMT promoter methylation and TERT promoter mutation status were retrospectively assessed in a prospective cohort of patients with IDH-wild-type glioblastoma of the German Glioma Network (GGN) (n = 298) and an independent retrospective cohort from Düsseldorf, Germany, and Zurich, Switzerland (n = 302). RESULTS In the GGN cohort, but not in the Düsseldorf/Zurich cohort, TERT promoter mutation was moderately associated with inferior outcomes in patients with MGMT promoter-unmethylated tumours (hazard ratio 1.74; 95% confidence interval: 1.07-2.82; p = 0.026). TERT promoter mutations were not associated with better outcomes in patients with MGMT promoter-methylated tumours in either cohort. The two different TERT promoter hotspot mutations (C228T and C250T) were not linked to distinct outcomes. CONCLUSIONS Analysis of two independent cohorts of patients with glioblastoma did not confirm previous data, suggesting that TERT promoter mutations confer an enhanced benefit from TMZ in patients with MGMT promoter-methylated glioblastoma. Thus, diagnostic testing for TERT promoter mutations may not be required for prediction of TMZ sensitivity in patients with IDH-wild-type glioblastoma.
Collapse
|
44
|
Tumor cell plasticity, heterogeneity, and resistance in crucial microenvironmental niches in glioma. Nat Commun 2021; 12:1014. [PMID: 33579922 PMCID: PMC7881116 DOI: 10.1038/s41467-021-21117-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/08/2021] [Indexed: 12/15/2022] Open
Abstract
Both the perivascular niche (PVN) and the integration into multicellular networks by tumor microtubes (TMs) have been associated with progression and resistance to therapies in glioblastoma, but their specific contribution remained unknown. By long-term tracking of tumor cell fate and dynamics in the live mouse brain, differential therapeutic responses in both niches are determined. Both the PVN, a preferential location of long-term quiescent glioma cells, and network integration facilitate resistance against cytotoxic effects of radiotherapy and chemotherapy—independently of each other, but with additive effects. Perivascular glioblastoma cells are particularly able to actively repair damage to tumor regions. Population of the PVN and resistance in it depend on proficient NOTCH1 expression. In turn, NOTCH1 downregulation induces resistant multicellular networks by TM extension. Our findings identify NOTCH1 as a central switch between the PVN and network niche in glioma, and demonstrate robust cross-compensation when only one niche is targeted. Whether the perivascular niche (PVN) and the integration into multicellular networks by tumor microtubes (TMs) have a different role in glioblastoma progression and resistance to therapies is currently unclear. Here, the authors, by long-term tracking of individual glioma, demonstrate that both niches can partially compensate for each other and that glioma cells localized in both niches are resistant to radio- and chemotherapy.
Collapse
|
45
|
Kong Z, Zhang Y, Liu D, Liu P, Shi Y, Wang Y, Zhao D, Cheng X, Wang Y, Ma W. Role of traditional CHO PET parameters in distinguishing IDH, TERT and MGMT alterations in primary diffuse gliomas. Ann Nucl Med 2021; 35:493-503. [PMID: 33532992 DOI: 10.1007/s12149-021-01589-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/20/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Isocitrate dehydrogenase (IDH) mutation, telomerase reverse transcriptase (TERT) promoter mutation and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status are diagnostic, prognostic, predictive and therapeutic biomarkers for primary diffuse gliomas, and this study aimed to explore the relationship between choline (CHO) positron emission tomography (PET) parameters and these molecular alterations. METHODS Twenty-eight patients who were histopathologically diagnosed with primary diffuse glioma and underwent presurgical CHO PET/CT were retrospectively analyzed, and IDH, TERT and MGMT alterations were examined. The volume of interest (VOI) was semiautomatically defined based on standardized uptake value (SUV) thresholds, and 5 traditional CHO parameters, namely, SUVmax, SUVmean, metabolic tumor volume (MTV), total lesion CHO uptake (TLC) and tumor-to-normal contralateral cortex activity ratio (T/N ratio), were calculated. Wilcoxon rank-sum tests and receiver operating characteristic (ROC) curves were applied to evaluate the differences and performances of the CHO parameters, and their capability to stratify patient prognosis was also evaluated. RESULTS All 5 parameters were significantly higher in IDH-wildtype gliomas than in IDH-mutant gliomas (p = 0.0001-0.037), and SUVmax, SUVmean, TLC and the T/N ratio exhibited good performances in distinguishing the IDH status (areas under the ROC curve (AUCs) 0.856-0.918, accuracies 0.857-0.893) as well as stratifying patient prognosis. Although the differences and performances of the traditional parameters in distinguishing diverse TERT and MGMT statuses were moderate in the whole population, the T/N ratio and TLC displayed certain predictive value in discriminating the TERT status in the IDH-mutant and IDH-wildtype subgroups (p = 0.028-0.048, AUCs 0.857-0.860, accuracies 0.800-0.917, respectively). CONCLUSIONS Traditional CHO PET parameters are capable of distinguishing IDH but not TERT or MGMT alterations in the whole population. In accordance with the clinical understanding of TERT promoter mutations, the T/N ratio and TLC can also discriminate the TERT status in IDH subgroups.
Collapse
Affiliation(s)
- Ziren Kong
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China.,Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China
| | - Yucheng Zhang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Haidian District, Beijing, China
| | - Delin Liu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China
| | - Penghao Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China
| | - Yixin Shi
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China
| | - Yaning Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China
| | - Dachun Zhao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China
| | - Xin Cheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China.
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China.
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China.
| |
Collapse
|
46
|
Dohm A, Diaz R, Nanda RH. The Role of Radiation Therapy in the Older Patient. Curr Oncol Rep 2021; 23:11. [PMID: 33387104 DOI: 10.1007/s11912-020-01000-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW Older patients represent a unique subgroup of the cancer patient population for which the role of radiation therapy (RT) requires special consideration. This review will discuss many of these considerations as well as various radiation treatment techniques in the context of a variety of disease sites. RECENT FINDINGS Several recent studies give insight into the management of older cancer patients considering their age, performance status, comorbid conditions, quality of life, genetics, cost, and individual goals. RT plays an evolving and pivotal role in providing optimal care for this population. Recent advances in RT technique allow for more precise treatment delivery and reduced toxicity. Studies evaluating the use of radiation therapy in breast, brain, lung, prostate, rectal, pancreatic, esophageal, and oligometastatic cancer are summarized and discussed in the context of treating the older patient population. Individual age, performance and functional status, comorbid conditions, and patients' objectives and goals should all be considered when presenting treatment options for older patients and age alone should not disqualify patients from curative intent treatments. When possible, hypofractionated courses should be utilized as outcomes are often equivalent and toxicities are reduced. In many cases, RT may be preferable to other treatment options due to decreased toxicity profile and acceptable disease control.
Collapse
Affiliation(s)
- Ammoren Dohm
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Dr., Tampa, FL, 33612, USA
| | - Roberto Diaz
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Dr., Tampa, FL, 33612, USA
| | - Ronica H Nanda
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Dr., Tampa, FL, 33612, USA.
| |
Collapse
|
47
|
Poon MTC, Keni S, Vimalan V, Ip C, Smith C, Erridge S, Weir CJ, Brennan PM. Extent of MGMT promoter methylation modifies the effect of temozolomide on overall survival in patients with glioblastoma: a regional cohort study. Neurooncol Adv 2021; 3:vdab171. [PMID: 34988453 PMCID: PMC8704383 DOI: 10.1093/noajnl/vdab171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND MGMT methylation in glioblastoma predicts response to temozolomide but dichotomizing methylation status may mask the true prognostic value of quantitative MGMT methylation. This study evaluated whether extent of MGMT methylation interacts with the effect of temozolomide on overall survival. METHODS We included consecutive glioblastoma patients aged ≥16 years diagnosed (April 2012-May 2020) at a neuro-oncology center. All patients had quantitative MGMT methylation measured using pyrosequencing. Those with MGMT methylated tumors were stratified into high and low methylation groups based on a cut-off using Youden index on 2-year survival. Our accelerated failure time survival models included extent of MGMT methylation, age, postoperative Karnofsky performance score, extent of resection, temozolomide regimen, and radiotherapy. RESULTS There were 414 patients. Optimal cut-off point using Youden index was 25.9% MGMT methylation. The number of patients in the unmethylated, low and high methylation groups was 223 (53.9%), 81 (19.6%), and 110 (26.6%), respectively. In the adjusted model, high (hazard ratio [HR] 0.60, 95% confidence intervals [CI] 0.46-0.79, P = 0.005) and low (HR 0.67, 95% CI 0.50-0.89, P < 0.001) methylation groups had better survival compared to unmethylated group. There was no evidence for interaction between MGMT methylation and completed temozolomide regimen (interaction term for low methylation P = 0.097; high methylation P = 0.071). This suggests no strong effect of MGMT status on survival in patients completing temozolomide regimen. In patients not completing the temozolomide regimen, higher MGMT methylation predicted better survival (interaction terms P < 0.001). CONCLUSIONS Quantitative MGMT methylation may provide additional prognostic value. This is important when assessing clinical and research therapies.
Collapse
Affiliation(s)
- Michael T C Poon
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, UK
- Department of Clinical Neuroscience, Royal Infirmary of Edinburgh, NHS Lothian, UK
| | - Shivank Keni
- Edinburgh Medical School, University of Edinburgh, UK
| | - Vineeth Vimalan
- Department of Clinical Neuroscience, Royal Infirmary of Edinburgh, NHS Lothian, UK
| | - Chak Ip
- Royal Infirmary of Edinburgh, NHS Lothian, UK
| | - Colin Smith
- Centre for Comparative Pathology, University of Edinburgh, UK
| | - Sara Erridge
- Clinical Oncology, Western General Hospital, NHS Lothian, UK
| | - Christopher J Weir
- Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, UK
| | - Paul M Brennan
- Department of Clinical Neuroscience, Royal Infirmary of Edinburgh, NHS Lothian, UK
- Cancer Research UK Brain Tumour Centre of Excellence, CRUK Edinburgh Centre, University of Edinburgh, UK
- Translational Neurosurgery, Centre for Clinical Brain Sciences, University of Edinburgh, UK
| |
Collapse
|
48
|
Witte KE, Slotta C, Lütkemeyer M, Kitke A, Coras R, Simon M, Kaltschmidt C, Kaltschmidt B. PLEKHG5 regulates autophagy, survival and MGMT expression in U251-MG glioblastoma cells. Sci Rep 2020; 10:21858. [PMID: 33318498 PMCID: PMC7736842 DOI: 10.1038/s41598-020-77958-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
A signalling pathway involving PLEKHG5 (guanine exchange factor) for the Ras superfamily member RAB26 to transcription factor NF-κB was discovered in autophagy. PLEKHG5 was reported in glioblastoma multiforme (GBM) and correlates with patient survival. Thus, the generation of a cellular model for understanding PLEKHG5 signalling is the study purpose. We generated a CRISPR/Cas9-mediated knockout of PLEKHG5 in U251-MG glioblastoma cells and analysed resulting changes. Next, we used a mRFP-GFP-LC3+ reporter for visualisation of autophagic defects and rescued the phenotype of PLEKHG5 wildtype via transduction of a constitutively active RAB26QL-plasmid. Effects of overexpressing RAB26 were investigated and correlated with the O6-methylguanine-DNA methyltransferase (MGMT) and cellular survival. PLEKHG5 knockout showed changes in morphology, loss of filopodia and higher population doubling times. Accumulation of autolysosomes was resulted by decreased LAMP-1 in PLEKHG5-deficient cells. Rescue of PLEKHG5-/- restored the downregulation of RhoA activity, showed faster response to tumour necrosis factor and better cellular fitness. MGMT expression was activated after RAB26 overexpression compared to non-transduced cells. Survival of PLEKHG5 knockout was rescued together with sensitivity to temozolomide by RAB26QL. This study provides new insights in the PLEKHG5/RAB26 signalling within U251-MG cells, which suggests potential therapeutic strategies in other glioma cells and further in primary GBM.
Collapse
Affiliation(s)
- Kaya Elisa Witte
- Department of Cell Biology, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany.
- Molecular Neurobiology, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany.
- Research Association of BioMedicine Bielefeld, FBMB, Maraweg 21, 33617, Bielefeld, Germany.
| | - Carsten Slotta
- Department of Cell Biology, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
- Molecular Neurobiology, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Melanie Lütkemeyer
- Department of Cell Biology, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Angelika Kitke
- Department of Cell Biology, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Matthias Simon
- Department of Neurosurgery, Protestant Hospital of Bethel Foundation, Burgsteig 13, 33617, Bielefeld, Germany
- Research Association of BioMedicine Bielefeld, FBMB, Maraweg 21, 33617, Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
- Research Association of BioMedicine Bielefeld, FBMB, Maraweg 21, 33617, Bielefeld, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany.
- Molecular Neurobiology, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany.
- Research Association of BioMedicine Bielefeld, FBMB, Maraweg 21, 33617, Bielefeld, Germany.
| |
Collapse
|
49
|
Di Cintio F, Dal Bo M, Baboci L, De Mattia E, Polano M, Toffoli G. The Molecular and Microenvironmental Landscape of Glioblastomas: Implications for the Novel Treatment Choices. Front Neurosci 2020; 14:603647. [PMID: 33324155 PMCID: PMC7724040 DOI: 10.3389/fnins.2020.603647] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/03/2020] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and aggressive primary central nervous system tumor. Surgery followed by radiotherapy and chemotherapy with alkylating agents constitutes standard first-line treatment of GBM. Complete resection of the GBM tumors is generally not possible given its high invasive features. Although this combination therapy can prolong survival, the prognosis is still poor due to several factors including chemoresistance. In recent years, a comprehensive characterization of the GBM-associated molecular signature has been performed. This has allowed the possibility to introduce a more personalized therapeutic approach for GBM, in which novel targeted therapies, including those employing tyrosine kinase inhibitors (TKIs), could be employed. The GBM tumor microenvironment (TME) exerts a key role in GBM tumor progression, in particular by providing an immunosuppressive state with low numbers of tumor-infiltrating lymphocytes (TILs) and other immune effector cell types that contributes to tumor proliferation and growth. The use of immune checkpoint inhibitors (ICIs) has been successfully introduced in numerous advanced cancers as well as promising results have been shown for the use of these antibodies in untreated brain metastases from melanoma and from non-small cell lung carcinoma (NSCLC). Consequently, the use of PD-1/PD-L1 inhibitors has also been proposed in several clinical trials for the treatment of GBM. In the present review, we will outline the main GBM molecular and TME aspects providing also the grounds for novel targeted therapies and immunotherapies using ICIs for GBM.
Collapse
Affiliation(s)
- Federica Di Cintio
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Lorena Baboci
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Elena De Mattia
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Maurizio Polano
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| |
Collapse
|
50
|
Tzaridis T, Schäfer N, Weller J, Steinbach JP, Schlegel U, Seidel S, Sabel M, Hau P, Seidel C, Krex D, Goldbrunner R, Tonn JC, Grauer O, Kebir S, Schneider M, Schaub C, Vatter H, Coch C, Glas M, Fimmers R, Pietsch T, Reifenberger G, Herrlinger U, Felsberg J. MGMT promoter methylation analysis for allocating combined CCNU/TMZ chemotherapy: Lessons learned from the CeTeG/NOA-09 trial. Int J Cancer 2020; 148:1695-1707. [PMID: 33113214 DOI: 10.1002/ijc.33363] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/26/2020] [Accepted: 10/12/2020] [Indexed: 11/08/2022]
Abstract
The CeTeG/NOA-09 trial showed a survival benefit for combined CCNU/TMZ therapy in MGMT-promoter-methylated glioblastoma patients (quantitative methylation-specific PCR [qMSP] ratio > 2). Here, we report on the prognostic value of the MGMT promoter methylation ratio determined by qMSP and evaluate the concordance of MGMT methylation results obtained by qMSP, pyrosequencing (PSQ) or DNA methylation arrays (MGMT-STP27). A potential association of qMSP ratio with survival was analyzed in the CeTeG/NOA-09 trial population (n = 129; log-rank tests, Cox regression analyses). The concordance of MGMT methylation assays (qMSP, PSQ and MGMT-STP27) was evaluated in 76 screened patients. Patients with tumors of qMSP ratio > 4 showed superior survival compared to those with ratios 2-4 (P = .0251, log-rank test). In multivariate analysis, the qMSP ratio was not prognostic across the study cohort (hazard ratio [HR] = 0.88; 95% CI: 0.72-1.08). With different cutoffs for qMSP ratio (4, 9, 12 or 25), the CCNU/TMZ benefit tended to be larger in subgroups with lower ratios (eg, for cutoff 9: HR 0.32 for lower subgroup, 0.73 for higher subgroup). The concordance rates with qMSP were 94.4% (PSQ) and 90.2% (MGMT-STP27). Discordant results were restricted to tumors with qMSP ratios ≤4 and PSQ mean methylation rate ≤25%. Despite a shorter survival in MGMT-promoter-methylated patients with lower methylation according to qMSP, these patients had a benefit from combined CCNU/TMZ therapy, which even tended to be stronger than in patients with higher methylation rates. With acceptable concordance rates, decisions on CCNU/TMZ therapy may also be based on PSQ or MGMT-STP27.
Collapse
Affiliation(s)
- Theophilos Tzaridis
- Division of Clinical Neurooncology, Department of Neurology and Center of Integrated Oncology (CIO), University of Bonn, Bonn, Germany.,Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Niklas Schäfer
- Division of Clinical Neurooncology, Department of Neurology and Center of Integrated Oncology (CIO), University of Bonn, Bonn, Germany
| | - Johannes Weller
- Division of Clinical Neurooncology, Department of Neurology and Center of Integrated Oncology (CIO), University of Bonn, Bonn, Germany
| | - Joachim-Peter Steinbach
- Dr. Senckenberg Institute of Neurooncology, University of Frankfurt, Frankfurt am Main, Germany
| | - Uwe Schlegel
- Department of Neurology, University Hospital Knappschaftskrankenhaus, Ruhr-Universität Bochum, Bochum, Germany
| | - Sabine Seidel
- Department of Neurology, University Hospital Knappschaftskrankenhaus, Ruhr-Universität Bochum, Bochum, Germany
| | - Michael Sabel
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Hau
- Department of Neurology and Wilhelm Sander NeuroOncology Unit, University Hospital Regensburg, Regensburg, Germany
| | - Clemens Seidel
- Department of Radiation Oncology, University of Leipzig, Leipzig, Germany
| | - Dietmar Krex
- Department of Neurosurgery, University of Dresden, Dresden, Germany
| | | | - Jörg-Christian Tonn
- Department of Neurosurgery, Ludwig Maximillian University of Munich and German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Oliver Grauer
- Department of Neurology with Institute for Translational Neurology, University of Münster, Münster, Germany
| | - Sied Kebir
- Division of Clinical Neurooncology, Department of Neurology and Center of Integrated Oncology (CIO), University of Bonn, Bonn, Germany.,Division of Clinical Neurooncology, Department of Neurology and West German Cancer Center (WTZ), German Cancer Consortium, Partner Site Essen, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | - Christina Schaub
- Division of Clinical Neurooncology, Department of Neurology and Center of Integrated Oncology (CIO), University of Bonn, Bonn, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University of Bonn, Bonn, Germany
| | - Christoph Coch
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany.,Study Center Bonn, University of Bonn, Bonn, Germany
| | - Martin Glas
- Division of Clinical Neurooncology, Department of Neurology and Center of Integrated Oncology (CIO), University of Bonn, Bonn, Germany.,Division of Clinical Neurooncology, Department of Neurology and West German Cancer Center (WTZ), German Cancer Consortium, Partner Site Essen, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Rolf Fimmers
- Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - Torsten Pietsch
- Institute of Neuropathology and DGNN Brain Tumor Reference Center, University of Bonn, Bonn, Germany
| | - Guido Reifenberger
- Institute of Neuropathology and DGNN Brain Tumor Reference Center, Medical Faculty, Heinrich Heine University and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Ulrich Herrlinger
- Division of Clinical Neurooncology, Department of Neurology and Center of Integrated Oncology (CIO), University of Bonn, Bonn, Germany
| | - Jörg Felsberg
- Institute of Neuropathology and DGNN Brain Tumor Reference Center, Medical Faculty, Heinrich Heine University and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| |
Collapse
|