1
|
Zhou M, Tang Y, Xu W, Hao X, Li Y, Huang S, Xiang D, Wu J. Bacteria-based immunotherapy for cancer: a systematic review of preclinical studies. Front Immunol 2023; 14:1140463. [PMID: 37600773 PMCID: PMC10436994 DOI: 10.3389/fimmu.2023.1140463] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/30/2023] [Indexed: 08/22/2023] Open
Abstract
Immunotherapy has been emerging as a powerful strategy for cancer management. Recently, accumulating evidence has demonstrated that bacteria-based immunotherapy including naive bacteria, bacterial components, and bacterial derivatives, can modulate immune response via various cellular and molecular pathways. The key mechanisms of bacterial antitumor immunity include inducing immune cells to kill tumor cells directly or reverse the immunosuppressive microenvironment. Currently, bacterial antigens synthesized as vaccine candidates by bioengineering technology are novel antitumor immunotherapy. Especially the combination therapy of bacterial vaccine with conventional therapies may further achieve enhanced therapeutic benefits against cancers. However, the clinical translation of bacteria-based immunotherapy is limited for biosafety concerns and non-uniform production standards. In this review, we aim to summarize immunotherapy strategies based on advanced bacterial therapeutics and discuss their potential for cancer management, we will also propose approaches for optimizing bacteria-based immunotherapy for facilitating clinical translation.
Collapse
Affiliation(s)
- Min Zhou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yucheng Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenjie Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xinyan Hao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yongjiang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Si Huang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Daxiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| |
Collapse
|
2
|
Becerra-Báez EI, Meza-Toledo SE, Muñoz-López P, Flores-Martínez LF, Fraga-Pérez K, Magaño-Bocanegra KJ, Juárez-Hernández U, Mateos-Chávez AA, Luria-Pérez R. Recombinant Attenuated Salmonella enterica as a Delivery System of Heterologous Molecules in Cancer Therapy. Cancers (Basel) 2022; 14:cancers14174224. [PMID: 36077761 PMCID: PMC9454573 DOI: 10.3390/cancers14174224] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/09/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Cancer is among the main causes of death of millions of individuals worldwide. Although survival has improved with conventional treatments, the appearance of resistant cancer cells leads to patient relapses. It is, therefore, necessary to find new antitumor therapies that can completely eradicate transformed cells. Bacteria-based tumor therapy represents a promising alternative treatment, particularly the use of live-attenuated Salmonella enterica, with its potential use as a delivery system of antitumor heterologous molecules such as tumor-associated antigens, cytotoxic molecules, immunomodulatory molecules, pro-apoptotic proteins, nucleic acids, and nanoparticles. In this review, we present the state of the art of current preclinical and clinical research on the use of Salmonella enterica as a potential therapeutic ally in the war against cancer. Abstract Over a century ago, bacterial extracts were found to be useful in cancer therapy, but this treatment modality was obviated for decades. Currently, in spite of the development and advances in chemotherapies and radiotherapy, failure of these conventional treatments still represents a major issue in the complete eradication of tumor cells and has led to renewed approaches with bacteria-based tumor therapy as an alternative treatment. In this context, live-attenuated bacteria, particularly Salmonella enterica, have demonstrated tumor selectivity, intrinsic oncolytic activity, and the ability to induce innate or specific antitumor immune responses. Moreover, Salmonella enterica also has strong potential as a delivery system of tumor-associated antigens, cytotoxic molecules, immunomodulatory molecules, pro-apoptotic proteins, and nucleic acids into eukaryotic cells, in a process known as bactofection and antitumor nanoparticles. In this review, we present the state of the art of current preclinical and clinical research on the use of Salmonella enterica as a potential therapeutic ally in the war against cancer.
Collapse
Affiliation(s)
- Elayne Irene Becerra-Báez
- Unit of Investigative Research on Hemato-Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Sergio Enrique Meza-Toledo
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Paola Muñoz-López
- Unit of Investigative Research on Hemato-Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Luis Fernando Flores-Martínez
- Unit of Investigative Research on Hemato-Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Karla Fraga-Pérez
- Unit of Investigative Research on Hemato-Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
| | - Kevin Jorge Magaño-Bocanegra
- Unit of Investigative Research on Hemato-Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico
| | - Uriel Juárez-Hernández
- Unit of Investigative Research on Hemato-Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico
| | - Armando Alfredo Mateos-Chávez
- Unit of Investigative Research on Hemato-Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
| | - Rosendo Luria-Pérez
- Unit of Investigative Research on Hemato-Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
- Correspondence: ; Tel.: +52-55-52289917 (ext. 4401)
| |
Collapse
|
3
|
Javed I, Cui X, Wang X, Mortimer M, Andrikopoulos N, Li Y, Davis TP, Zhao Y, Ke PC, Chen C. Implications of the Human Gut-Brain and Gut-Cancer Axes for Future Nanomedicine. ACS NANO 2020; 14:14391-14416. [PMID: 33138351 DOI: 10.1021/acsnano.0c07258] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent clinical and pathological evidence have implicated the gut microbiota as a nexus for modulating the homeostasis of the human body, impacting conditions from cancer and dementia to obesity and social behavior. The connections between microbiota and human diseases offer numerous opportunities in medicine, most of which have limited or no therapeutic solutions available. In light of this paradigm-setting trend in science, this review aims to provide a comprehensive and timely summary of the mechanistic pathways governing the gut microbiota and their implications for nanomedicines targeting cancer and neurodegenerative diseases. Specifically, we discuss in parallel the beneficial and pathogenic relationship of the gut microbiota along the gut-brain and gut-cancer axes, elaborate on the impact of dysbiosis and the gastrointestinal corona on the efficacy of nanomedicines, and highlight a molecular mimicry that manipulates the universal cross-β backbone of bacterial amyloid to accelerate neurological disorders. This review further offers a forward-looking section on the rational design of cancer and dementia nanomedicines exploiting the gut-brain and gut-cancer axes.
Collapse
Affiliation(s)
- Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xiaoyu Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Nikolaos Andrikopoulos
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Yuhuan Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai 200032, China
| | - Thomas P Davis
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai 200032, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong 510700, China
| |
Collapse
|
4
|
Oral delivery of bacteria: Basic principles and biomedical applications. J Control Release 2020; 327:801-833. [DOI: 10.1016/j.jconrel.2020.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/05/2020] [Indexed: 12/18/2022]
|
5
|
Liu L, Wu J, Gao J, Lu X. Bacteria-Derived Nanoparticles: Multifunctional Containers for Diagnostic and Therapeutic Applications. Adv Healthc Mater 2020; 9:e2000893. [PMID: 32945152 DOI: 10.1002/adhm.202000893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/04/2020] [Indexed: 12/12/2022]
Abstract
In recent decades, investigations on bacteria-derived materials have progressed from being a proof of concept to a means for improving traditional biomaterials. Owing to their unique characteristics, such as gene manipulation, rapid proliferation, and specific targeting, bacteria-derived materials have provided remarkable flexibility in applied biomedical functionalization. In this review, bacteria-derived nanoparticles are focused on as a promising biomaterial, introducing several bacterial species with great potential and useful strategies for fabrication. Through well-designed choices, bacteria-derived nanoparticles can be exploited to obtain functional bacteria-mimicking materials for a variety of applications, including cargo delivery, imaging, therapy, and immune modulation. Finally, the prospects and challenges of bacteria-derived nanoparticles are discussed. Particularly, safety concerns regarding the use of bacteria and their immunogenicity remain major obstacles to the clinical application of bacteria-derived nanoparticles and these concerns are immediate priorities for the research community.
Collapse
Affiliation(s)
- Lin Liu
- Department of Pharmacy Zhejiang University School of Medicine First Affiliated Hospital Hangzhou 310003 P. R. China
- Institute of Pharmaceutics College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 P. R. China
| | - Jiahe Wu
- Institute of Pharmaceutics College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 P. R. China
| | - Jianqing Gao
- Institute of Pharmaceutics College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 P. R. China
| | - Xiaoyang Lu
- Department of Pharmacy Zhejiang University School of Medicine First Affiliated Hospital Hangzhou 310003 P. R. China
| |
Collapse
|
6
|
Pangilinan CR, Lee CH. Salmonella-Based Targeted Cancer Therapy: Updates on A Promising and Innovative Tumor Immunotherapeutic Strategy. Biomedicines 2019; 7:biomedicines7020036. [PMID: 31052558 PMCID: PMC6630963 DOI: 10.3390/biomedicines7020036] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/27/2022] Open
Abstract
Presently, cancer is one of the leading causes of death in the world, primarily due to tumor heterogeneity associated with high-grade malignancy. Tumor heterogeneity poses a tremendous challenge, especially with the emergence of resistance not only to chemo- and radiation- therapies, but also to immunotherapy using monoclonal antibodies. The use of Salmonella, as a highly selective and penetrative antitumor agent, has shown convincing results, thus meriting further investigation. In this review, the mechanisms used by Salmonella in combating cancer are carefully explained. In essence, Salmonella overcomes the suppressive nature of the tumor microenvironment and coaxes the activation of tumor-specific immune cells to induce cell death by apoptosis and autophagy. Furthermore, Salmonella treatment suppresses tumor aggressive behavior via inhibition of angiogenesis and delay of metastatic activity. Thus, harnessing the natural potential of Salmonella in eliminating tumors will provide an avenue for the development of a promising micro-based therapeutic agent that could be further enhanced to address a wide range of tumor types.
Collapse
Affiliation(s)
| | - Che-Hsin Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
7
|
Wang WK, Chiang WC, Lai CH, Lee CH. Salmonella-Mediated Cytolethal Distending Toxin Transfer Inhibits Tumor Growth. Hum Gene Ther 2018; 29:1327-1335. [PMID: 29869526 DOI: 10.1089/hum.2018.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Salmonella enterica serovar Choleraesuis (S.C.) has potential as an antitumor agent because of its tumor-targeting characteristics. S.C. can also be used for specific delivery of therapeutic agents and continuous release during replication. Previously, we successfully used S.C. as a vector to transfer a therapeutic gene and oncolytic virus, which suggested that modified S.C. is suitable for incorporating other antitumor agents into a single system. Cytolethal distending toxin B (CdtB) produced by Campylobacter jejuni can induce tumor cell apoptosis. Here we coated CdtB with poly(allylamine hydrochloride) (PAH) to yield PAH-CdtB. Treatment of cells with PAH-coated CdtB induced apoptosis, demonstrating that the compound retained antitumor activity. Furthermore, S.C. coated with PAH-CdtB (CdtB-S.C.) maintained tumor-targeting activity and had an enhanced antitumor effect. Measurement of the cytotoxic effect of CdtB-S.C. in vitro in a tumor cell line showed increased apoptosis whereas treatment of tumor-bearing mice with CdtB-S.C. reduced tumor growth and prolonged survival. Taken together, our results provide evidence that Salmonella carrying CdtB could have application for the treatment of tumors.
Collapse
Affiliation(s)
- Wei-Kuang Wang
- 1 Department of Environmental Engineering and Science, Feng Chia University , Taichung, Taiwan
| | - Wei-Cheng Chiang
- 1 Department of Environmental Engineering and Science, Feng Chia University , Taichung, Taiwan
| | - Chih-Ho Lai
- 2 Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan, Taiwan
| | - Che-Hsin Lee
- 3 Department of Biological Sciences, National Sun Yat-sen University , Kaohsiung, Taiwan
| |
Collapse
|
8
|
Lee CH, Nishikawa T, Kaneda Y. Salmonella mediated the hemagglutinating virus of Japan-envelope transfer suppresses tumor growth. Oncotarget 2018; 8:35048-35060. [PMID: 28456782 PMCID: PMC5471033 DOI: 10.18632/oncotarget.17037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/30/2017] [Indexed: 12/28/2022] Open
Abstract
Salmonella can target to tumor microenvironments after systemic treatment. The hemagglutinating virus of Japan-envelope (HVJ-E) induced apoptosis in tumor cells without toxicity in normal cells. Current HVJ-E therapeutic strategies, aimed at using HVJ-E for intratumor treatment, have shown great promise in animal models but have achieved only limited systemic treatment. The purpose of this study was to investigate the modulation of the anti-tumor efficiency of HVJ-E by coating the particles with poly (allylamine hydrochloride) (PAH), designated as P-HVJ-E. Treatment with P-HVJ-E resulted in decreased hemagglutinating activity and maintained tumor cell-selective apoptosis and anti-tumor immunity. The use of Salmonella as a coating for P-HVJ-E (PHS) enhanced the antitumor activity and maintained the tumor-targeting activity. Treatment with PHS resulted in delayed tumor growth in tumor-bearing mice. Furthermore, a Western blot assay of the tumors revealed that HVJ-E targeted to the tumor after systemic treatment with PHS. These results indicate that Salmonella coating viral particles may provide a new approach for tumor therapy.
Collapse
Affiliation(s)
- Che-Hsin Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Tomoyuki Nishikawa
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasufumi Kaneda
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
9
|
Abstract
One of the primary limitations of cancer gene therapy is lack of selectivity of the therapeutic gene to tumor cells. Current efforts are focused on discovering and developing tumor-targeting vectors that selectively target only cancer cells but spare normal cells to improve the therapeutic index. The use of preferentially tumor-targeting bacteria as vectors is one of the innovative approaches for the treatment of cancer. This is based on the observation that some obligate or facultative-anaerobic bacteria are capable of multiplying selectively in tumors and inhibiting their growth. In this study, we exploited attenuated Salmonella as a tumoricidal agent and a vector to deliver genes for tumor-targeted gene therapy. Attenuated Salmonella, carrying a eukaryotic expression plasmid encoding an anti-angiogenic gene, was used to evaluate its' ability for tumor targeting and gene delivery in murine tumor models. We also investigated the use of a polymer to modify or shield Salmonella from the pre-existing immune response in the host in order to improve gene delivery to the tumor. These results suggest that tumor-targeted gene therapy using Salmonella carrying a therapeutic gene, which exerts tumoricidal and anti-angiogenic activities, represents a promising strategy for the treatment of tumors.
Collapse
Affiliation(s)
- Che-Hsin Lee
- Department of Microbiology, School of Medicine, China Medical University, Taichung, Taiwan. .,Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
10
|
Abadeer NS, Fülöp G, Chen S, Käll M, Murphy CJ. Interactions of Bacterial Lipopolysaccharides with Gold Nanorod Surfaces Investigated by Refractometric Sensing. ACS APPLIED MATERIALS & INTERFACES 2015; 7:24915-24925. [PMID: 26488238 DOI: 10.1021/acsami.5b08440] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The interface between nanoparticles and bacterial surfaces is of great interest for applications in nanomedicine and food safety. Here, we demonstrate that interactions between gold nanorods and bacterial surface molecules are governed by the nanoparticle surface coating. Polymer-coated gold nanorod substrates are exposed to lipopolysaccharides extracted from Pseudomonas aeruginosa, Salmonella enterica and Escherichia coli, and attachment is monitored using localized surface plasmon resonance refractometric sensing. The number of lipopolysaccharide molecules attached per nanorod is calculated from the shift in the plasmon maximum, which results from the change in refractive index after analyte binding. Colloidal gold nanorods in water are also incubated with lipopolysaccharides to demonstrate the effect of lipopolysaccharide concentration on plasmon shift, ζ-potential, and association constant. Both gold nanorod surface charge and surface chemistry affect gold nanorod-lipopolysaccharide interactions. In general, anionic lipopolysaccharides was found to attach more effectively to cationic gold nanorods than to neutral or anionic gold nanorods. Some variation in lipopolysaccharide attachment is also observed between the three strains studied, demonstrating the potential complexity of bacteria-nanoparticle interactions.
Collapse
Affiliation(s)
- Nardine S Abadeer
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Gergő Fülöp
- Department of Applied Physics, Chalmers University of Technology , 412 96 Göteborg, Sweden
| | - Si Chen
- Department of Applied Physics, Chalmers University of Technology , 412 96 Göteborg, Sweden
| | - Mikael Käll
- Department of Applied Physics, Chalmers University of Technology , 412 96 Göteborg, Sweden
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
Cheng YJ, Chang MY, Chang WW, Wang WK, Liu CF, Lin ST, Lee CH. Resveratrol Enhances Chemosensitivity in Mouse Melanoma Model Through Connexin 43 Upregulation. ENVIRONMENTAL TOXICOLOGY 2015; 30:877-886. [PMID: 24449132 DOI: 10.1002/tox.21952] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 12/30/2013] [Accepted: 01/08/2014] [Indexed: 06/03/2023]
Abstract
Although current studies indicate that resveratrol exhibits potential antitumor activities, the precise mechanisms of its beneficial effects combined with chemotherapy are not fully understood. This work is warranted to elucidate the underlying mechanism of antitumor effects by the combination therapy of resveratrol and cisplatin. The presence of functional gap junctions is highly relevant for the success of chemotherapy. Gap junctions mediate cell communication by allowing the passage of molecules from one cell to another. Connexin (Cx) 43 is ubiquitous and reduced in a variety of tumor cells. Cx43 may influence the response of tumor cells to treatments by facilitating the passage of antitumor drugs or death signals between neighboring tumor cells. Following resveratrol treatment, dose-dependent upregulation of Cx43 expressions was observed. In addition, gap junction intercellular communication was increased. To study the mechanism underlying these resveratrol-induced Cx43 expressions, we found that resveratrol induced a significant increase in mitogen-activated protein kinases (MAPK) signaling pathways. The MAPK inhibitors significantly reduced the expression of Cx43 protein after resveratrol treatment. Specific knockdown of Cx43 resulted in a reduction of cell death after resveratrol and cisplatin treatment. Our results suggest that treatment of resveratrol in tumor leads to increase Cx43 gap junction communication and enhances the combination of resveratrol and cisplatin therapeutic effects. © 2014 Wiley Periodicals, Inc. Environ Toxicol 30: 877-886, 2015.
Collapse
Affiliation(s)
- Yu-Jung Cheng
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
| | - Meng-Ya Chang
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Medical Research, Buddhist Tzu-Chi General Hospital, Hualien, Taiwan
| | - Wen-Wei Chang
- Department of Biomedical Sciences, College of Medical Science and Technology, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wei-Kuang Wang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung, Taiwan
| | - Chi-Fan Liu
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung, Taiwan
| | - Song-Tao Lin
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung, Taiwan
| | - Che-Hsin Lee
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Microbiology, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
12
|
Hu Q, Wu M, Fang C, Cheng C, Zhao M, Fang W, Chu PK, Ping Y, Tang G. Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy. NANO LETTERS 2015; 15:2732-9. [PMID: 25806599 DOI: 10.1021/acs.nanolett.5b00570] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Live attenuated bacteria are of increasing importance in biotechnology and medicine in the emerging field of cancer immunotherapy. Oral DNA vaccination mediated by live attenuated bacteria often suffers from low infection efficiency due to various biological barriers during the infection process. To this end, we herein report, for the first time, a new strategy to engineer cationic nanoparticle-coated bacterial vectors that can efficiently deliver oral DNA vaccine for efficacious cancer immunotherapy. By coating live attenuated bacteria with synthetic nanoparticles self-assembled from cationic polymers and plasmid DNA, the protective nanoparticle coating layer is able to facilitate bacteria to effectively escape phagosomes, significantly enhance the acid tolerance of bacteria in stomach and intestines, and greatly promote dissemination of bacteria into blood circulation after oral administration. Most importantly, oral delivery of DNA vaccines encoding autologous vascular endothelial growth factor receptor 2 (VEGFR2) by this hybrid vector showed remarkable T cell activation and cytokine production. Successful inhibition of tumor growth was also achieved by efficient oral delivery of VEGFR2 with nanoparticle-coated bacterial vectors due to angiogenesis suppression in the tumor vasculature and tumor necrosis. This proof-of-concept work demonstrates that coating live bacterial cells with synthetic nanoparticles represents a promising strategy to engineer efficient and versatile DNA vaccines for the era of immunotherapy.
Collapse
MESH Headings
- Administration, Oral
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/chemistry
- Cell Line, Tumor
- Coated Materials, Biocompatible/chemical synthesis
- Humans
- Immunotherapy, Active/methods
- Nanocapsules/administration & dosage
- Nanocapsules/chemistry
- Nanocapsules/ultrastructure
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/microbiology
- Neoplasms, Experimental/pathology
- Salmonella/physiology
- Transformation, Bacterial
- Treatment Outcome
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/chemistry
Collapse
Affiliation(s)
- Qinglian Hu
- †Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Min Wu
- †Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Chun Fang
- ‡College of Animal Science, Zhejiang University, Hangzhou 310028, China
| | - Changyong Cheng
- ‡College of Animal Science, Zhejiang University, Hangzhou 310028, China
| | - Mengmeng Zhao
- †Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Weihuan Fang
- ‡College of Animal Science, Zhejiang University, Hangzhou 310028, China
| | - Paul K Chu
- §Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yuan Ping
- ∥School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Guping Tang
- †Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310028, China
| |
Collapse
|
13
|
Chang WW, Lee CH. Salmonella as an innovative therapeutic antitumor agent. Int J Mol Sci 2014; 15:14546-54. [PMID: 25196596 PMCID: PMC4159867 DOI: 10.3390/ijms150814546] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 07/28/2014] [Accepted: 08/18/2014] [Indexed: 12/12/2022] Open
Abstract
Lack of specificity of the therapeutic agent is a primary limitation in the treatment of a tumor. The use of preferentially replicating bacteria as therapeutic agents is an innovative approach to tumor treatment. This is based on the observation that certain obligate or facultative anaerobic bacteria are capable of multiplying selectively in tumors and inhibiting their growth. Bacteria have been employed as antitumor agents that are capable of preferentially amplifying within tumors and inhibiting their growth. Moreover, bacteria-derived factors have an immune-stimulation effect. Therefore, bacteria are able to transfer therapeutic genes into the tumor cells using their infective ability. Herein, we introduce the application of bacteria for tumor therapy and focus on Salmonella, which have been widely used for tumor therapy. Salmonella have mainly been applied as gene-delivery vectors, antitumor immune activators and tumor cell death inducers. This study will not only evaluate the therapeutic efficacy of Salmonella for the treatment of tumor but will also elucidate the mechanisms underlying the antitumor activities mediated by Salmonella, which involve host immune responses and cellular molecular responses.
Collapse
Affiliation(s)
- Wen-Wei Chang
- Department of Biomedical Sciences, College of Medical Science and Technology, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Che-Hsin Lee
- Department of Microbiology, School of Medicine, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
14
|
Connexin 43 Gene Therapy Delivered by Polymer-Modified Salmonella in Murine Tumor Models. Polymers (Basel) 2014. [DOI: 10.3390/polym6041119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
15
|
Chang WW, Liu JJ, Liu CF, Liu WS, Lim YP, Cheng YJ, Lee CH. An extract of Rhodobacter sphaeroides reduces cisplatin-induced nephrotoxicity in mice. Toxins (Basel) 2013; 5:2353-65. [PMID: 24335753 PMCID: PMC3873690 DOI: 10.3390/toxins5122353] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/18/2013] [Accepted: 11/25/2013] [Indexed: 01/29/2023] Open
Abstract
Cisplatin is used as a treatment for various types of solid tumors. Renal injury severely limits the use of cisplatin. Renal cell apoptosis, oxidative stress, and inflammation contribute to cisplatin-induced nephrotoxicity. Previously, we found that an extract of Rhodobacter sphaeroides (Lycogen™) inhibited proinflammatory cytokines and the production of nitric oxide in activated macrophages in a dextran sodium sulfate (DSS)-induced colitis model. Here, we evaluated the effect of Lycogen™, a potent anti-inflammatory agent, in mice with cisplatin-induced renal injury. We found that attenuated renal injury correlated with decreased apoptosis due to a reduction in caspase-3 expression in renal cells. Oral administration of Lycogen™ significantly reduced the expression of tumor necrosis factor-α and interleukin-1β in mice with renal injury. Lycogen™ reduces renal dysfunction in mice with cisplatin-induced renal injury. The protective effects of the treatment included blockage of the cisplatin-induced elevation in serum urea nitrogen and creatinine. Meanwhile, Lycogen™ attenuated body weight loss and significantly prolonged the survival of mice with renal injury. We propose that Lycogen™ exerts anti-inflammatory activities that represent a promising strategy for the treatment of cisplatin-induced renal injury.
Collapse
Affiliation(s)
- Wen-Wei Chang
- Department of Biomedical Sciences, College of Medical Science and Technology, Chung Shan Medical University, Taichung 402, Taiwan; E-Mail:
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Jau-Jin Liu
- Department of Microbiology, School of Medicine, China Medical University, Taichung 404, Taiwan; E-Mails: (J.-J.L.); (C.-F.L.)
| | - Chi-Fan Liu
- Department of Microbiology, School of Medicine, China Medical University, Taichung 404, Taiwan; E-Mails: (J.-J.L.); (C.-F.L.)
| | - Wen-Sheng Liu
- Asia-Pacific Biotech Developing, Inc. Kaohsiung 806, Taiwan; E-Mail:
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yun-Ping Lim
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan; E-Mail:
| | - Yu-Jung Cheng
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung 404, Taiwan; E-Mail:
| | - Che-Hsin Lee
- Department of Microbiology, School of Medicine, China Medical University, Taichung 404, Taiwan; E-Mails: (J.-J.L.); (C.-F.L.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-4-2205-3366-2173; Fax: +886-4-2205-3764
| |
Collapse
|
16
|
Liu WS, Kuan YD, Chiu KH, Wang WK, Chang FH, Liu CH, Lee CH. The extract of Rhodobacter sphaeroides inhibits melanogenesis through the MEK/ERK signaling pathway. Mar Drugs 2013; 11:1899-908. [PMID: 23736765 PMCID: PMC3721212 DOI: 10.3390/md11061899] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/26/2013] [Accepted: 05/21/2013] [Indexed: 11/16/2022] Open
Abstract
Reducing hyperpigmentation has been a big issue for years. Even though pigmentation is a normal mechanism protecting skin from UV-causing DNA damage and oxidative stress, it is still an aesthetic problem for many people. Bacteria can produce some compounds in response to their environment. These compounds are widely used in cosmetic and pharmaceutical applications. Some probiotics have immunomodulatory activities and modulate the symptoms of several diseases. Previously, we found that the extracts of Rhodobacter sphaeroides (Lycogen™) inhibited nitric oxide production and inducible nitric-oxide synthase expression in activated macrophages. In this study, we sought to investigate an anti-melanogenic signaling pathway in α-melanocyte stimulating hormone (α-MSH)-treated B16F10 melanoma cells and zebrafish. Treatment with Lycogen™ inhibited the cellular melanin contents and expression of melanogenesis-related protein, including microphthalmia-associated transcription factor (MITF) and tyrosinase in B16F10 cells. Moreover, Lycogen™ reduced phosphorylation of MEK/ERK without affecting phosphorylation of p38. Meanwhile, Lycogen™ decreased zebrafish melanin expression in a dose-dependent manner. These findings establish Lycogen™ as a new target in melanogenesis and suggest a mechanism of action through the ERK signaling pathway. Our results suggested that Lycogen™ may have potential cosmetic usage in the future.
Collapse
Affiliation(s)
- Wen-Sheng Liu
- Asia-Pacific Biotech Developing, Inc., Kaohsiung 806, Taiwan
| | | | | | | | | | | | | |
Collapse
|
17
|
Chang WW, Lai CH, Chen MC, Liu CF, Kuan YD, Lin ST, Lee CH. Salmonella enhance chemosensitivity in tumor through connexin 43 upregulation. Int J Cancer 2013; 133:1926-35. [PMID: 23558669 DOI: 10.1002/ijc.28155] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/21/2013] [Indexed: 01/30/2023]
Abstract
The use of preferentially replicating bacteria as oncolytic agents is one of the innovative approaches for the treatment of cancer. The capability of Salmonella to disperse within tumors and hence to delay tumor growth was augmented when combined with chemotherapy. This work is warranted to elucidate the underlying mechanism of antitumor effects by the combination therapy of Salmonella and cisplatin. The presence of functional gap junctions is highly relevant for the success of chemotherapy. Following Salmonella treatment, dose- and time-dependent upregulation of connexin 43 (Cx43) expressions were observed. Moreover, Salmonella significantly enhanced gap intercellular communication (GJIC), as revealed by the fluorescent dye scrape loading assay. To study the pathway underlying these Salmonella-induced effects, we found that Salmonella induced a significant increase in mitogen-activated protein kinases (MAPK) signaling pathways. The Salmonella-induced upregulation of Cx43 was prevented by treatment of cells with the phosphorylated p38 inhibitor, but not phosphorylated extracellular signal-regulated kinase (pERK) inhibitor or phosphorylated c-jun N terminal kinase (pJNK) inhibitor. Specific knockdown of Cx43 had an inhibitory effect on GJIC and resulted in a reduction of cell death after Salmonella and cisplatin treatment. Our results suggest that accumulation of Salmonella in tumor sites leads to increase Cx43 gap junction communication and enhances the combination of Salmonella and cisplatin therapeutic effects.
Collapse
Affiliation(s)
- Wen-Wei Chang
- Department of Biomedical Sciences, College of Medical Science and Technology, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|