1
|
Alam S, Giri PK. Novel players in the development of chemoresistance in ovarian cancer: ovarian cancer stem cells, non-coding RNA and nuclear receptors. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:6. [PMID: 38434767 PMCID: PMC10905178 DOI: 10.20517/cdr.2023.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/03/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Ovarian cancer (OC) ranks as the fifth leading factor for female mortality globally, with a substantial burden of new cases and mortality recorded annually. Survival rates vary significantly based on the stage of diagnosis, with advanced stages posing significant challenges to treatment. OC is primarily categorized as epithelial, constituting approximately 90% of cases, and correct staging is essential for tailored treatment. The debulking followed by chemotherapy is the prevailing treatment, involving platinum-based drugs in combination with taxanes. However, the efficacy of chemotherapy is hindered by the development of chemoresistance, both acquired during treatment (acquired chemoresistance) and intrinsic to the patient (intrinsic chemoresistance). The emergence of chemoresistance leads to increased mortality rates, with many advanced patients experiencing disease relapse shortly after initial treatment. This review delves into the multifactorial nature of chemoresistance in OC, addressing mechanisms involving transport systems, apoptosis, DNA repair, and ovarian cancer stem cells (OCSCs). While previous research has identified genes associated with these mechanisms, the regulatory roles of non-coding RNA (ncRNA) and nuclear receptors in modulating gene expression to confer chemoresistance have remained poorly understood and underexplored. This comprehensive review aims to shed light on the genes linked to different chemoresistance mechanisms in OC and their intricate regulation by ncRNA and nuclear receptors. Specifically, we examine how these molecular players influence the chemoresistance mechanism. By exploring the interplay between these factors and gene expression regulation, this review seeks to provide a comprehensive mechanism driving chemoresistance in OC.
Collapse
Affiliation(s)
| | - Pankaj Kumar Giri
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| |
Collapse
|
2
|
Liu Q, Peng Q, Zhang B, Tan Y. X-ray cross-complementing family: the bridge linking DNA damage repair and cancer. J Transl Med 2023; 21:602. [PMID: 37679817 PMCID: PMC10483876 DOI: 10.1186/s12967-023-04447-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Genomic instability is a common hallmark of human tumours. As a carrier of genetic information, DNA is constantly threatened by various damaging factors that, if not repaired in time, can affect the transmission of genetic information and lead to cellular carcinogenesis. In response to these threats, cells have evolved a range of DNA damage response mechanisms, including DNA damage repair, to maintain genomic stability. The X-ray repair cross-complementary gene family (XRCC) comprises an important class of DNA damage repair genes that encode proteins that play important roles in DNA single-strand breakage and DNA base damage repair. The dysfunction of the XRCC gene family is associated with the development of various tumours. In the context of tumours, mutations in XRCC and its aberrant expression, result in abnormal DNA damage repair, thus contributing to the malignant progression of tumour cells. In this review, we summarise the significant roles played by XRCC in diverse tumour types. In addition, we discuss the correlation between the XRCC family members and tumour therapeutic sensitivity.
Collapse
Affiliation(s)
- Qiang Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, 410078, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, Hunan, China
| | - Qiu Peng
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Bin Zhang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Yueqiu Tan
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, 410078, Hunan, China.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, Hunan, China.
| |
Collapse
|
3
|
Geng Z, Gao W, Cheng W, Wu A. Primary Intracranial Ewing Sarcoma Invading the Superior Sagittal Sinus with EWSR1-FLI1 Gene Fusion and EWSR1 Gene Mutation: A Case Report and Literature Review. World Neurosurg 2023; 175:1-10. [PMID: 36990350 DOI: 10.1016/j.wneu.2023.03.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Primary intracranial Ewing sarcoma (ES) is an extremely rare intracranial malignant tumor, mostly occurring in children and adolescents. Because of its rarity, the magnetic resonance imaging (MRI) features and treatment strategies of primary intracranial ES are still unclear. METHODS The purpose of this study was therefore to report a case of primary intracranial ES, whose molecular features included both EWSR1-FLI1 (EWS RNA binding protein 1- Friend leukemia integration 1) gene fusion and EWSR1 gene mutation. It is worth noting that this is the first reported case of ES invading the superior sagittal sinus and mostly causing occlusion. At the same time, there were polymorphisms of four drug metabolism-related enzymes in the tumor. Subsequently, we conducted a literature review to characterize the clinical features, imaging findings, pathological features, treatments, and prognoses of primary intracranial ESs. RESULTS A 21-year-old female was admitted to the hospital with headache with nausea and vomiting for 2 weeks. An MRI showed a 3.8 × 4.0 cm large heterogeneous mass in the bilateral parietal lobe with peritumoral edema. The tumor invaded the superior sagittal sinus and mostly caused occlusion of the middle segment of the superior sagittal sinus. The mass was successfully removed using a neuromicroscope. Postoperative pathology indicated a primary intracranial ES. High throughput sequencing (next generation sequencing) showed that there was EWSR1-FLI1 gene fusion and EWSR1 gene mutation in the tumor, with polymorphisms of four drug metabolism-related enzymes and low tumor mutational burden. Subsequently, the patient received intensity modulated radiation therapy. The patient has signed an informed consent form. CONCLUSIONS The diagnosis of primary intracranial ES depended on histopathology, immunohistochemistry staining, and genetic testing. At present, total tumor resection combined with radiotherapy and chemotherapy is the most effective treatment. We report the first case of primary intracranial ES invading the superior sagittal sinus and causing middle segment occlusion, accompanied by EWSR1-FLI1 gene fusion and EWSR1 gene mutation.
Collapse
Affiliation(s)
- Ziang Geng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Gao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wen Cheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Anhua Wu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
4
|
The DNA damage response in advanced ovarian cancer: functional analysis combined with machine learning identifies signatures that correlate with chemotherapy sensitivity and patient outcome. Br J Cancer 2023; 128:1765-1776. [PMID: 36810910 PMCID: PMC10133248 DOI: 10.1038/s41416-023-02168-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Ovarian cancers are hallmarked by chromosomal instability. New therapies deliver improved patient outcomes in relevant phenotypes, however therapy resistance and poor long-term survival signal requirements for better patient preselection. An impaired DNA damage response (DDR) is a major chemosensitivity determinant. Comprising five pathways, DDR redundancy is complex and rarely studied alongside chemoresistance influence from mitochondrial dysfunction. We developed functional assays to monitor DDR and mitochondrial states and trialled this suite on patient explants. METHODS We profiled DDR and mitochondrial signatures in cultures from 16 primary-setting ovarian cancer patients receiving platinum chemotherapy. Explant signature relationships to patient progression-free (PFS) and overall survival (OS) were assessed by multiple statistical and machine-learning methods. RESULTS DR dysregulation was wide-ranging. Defective HR (HRD) and NHEJ were near-mutually exclusive. HRD patients (44%) had increased SSB abrogation. HR competence was associated with perturbed mitochondria (78% vs 57% HRD) while every relapse patient harboured dysfunctional mitochondria. DDR signatures classified explant platinum cytotoxicity and mitochondrial dysregulation. Importantly, explant signatures classified patient PFS and OS. CONCLUSIONS Whilst individual pathway scores are mechanistically insufficient to describe resistance, holistic DDR and mitochondrial states accurately predict patient survival. Our assay suite demonstrates promise for translational chemosensitivity prediction.
Collapse
|
5
|
Mechanisms of Drug Resistance in Ovarian Cancer and Associated Gene Targets. Cancers (Basel) 2022; 14:cancers14246246. [PMID: 36551731 PMCID: PMC9777152 DOI: 10.3390/cancers14246246] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
In the United States, over 100,000 women are diagnosed with a gynecologic malignancy every year, with ovarian cancer being the most lethal. One of the hallmark characteristics of ovarian cancer is the development of resistance to chemotherapeutics. While the exact mechanisms of chemoresistance are poorly understood, it is known that changes at the cellular and molecular level make chemoresistance challenging to treat. Improved therapeutic options are needed to target these changes at the molecular level. Using a precision medicine approach, such as gene therapy, genes can be specifically exploited to resensitize tumors to therapeutics. This review highlights traditional and novel gene targets that can be used to develop new and improved targeted therapies, from drug efflux proteins to ovarian cancer stem cells. The review also addresses the clinical relevance and landscape of the discussed gene targets.
Collapse
|
6
|
Wang G, Heij LR, Liu D, Dahl E, LANG SA, Ulmer TF, LUEDDE T, Neumann UP, Bednarsch J. The Role of Single-Nucleotide Polymorphisms in Cholangiocarcinoma: A Systematic Review. Cancers (Basel) 2022; 14:cancers14235969. [PMID: 36497451 PMCID: PMC9739277 DOI: 10.3390/cancers14235969] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Single-nucleotide polymorphisms (SNPs) play an essential role in various malignancies, but their role in cholangiocarcinoma (CCA) remains to be elucidated. Therefore, the purpose of this systematic review was to evaluate the association between SNPs and CCA, focusing on tumorigenesis and prognosis. A systematic literature search was carried out using PubMed, Embase, Web of Science and the Cochrane database for the association between SNPs and CCA, including literature published between January 2000 and April 2022. This systematic review compiles 43 SNPs in 32 genes associated with CCA risk, metastatic progression and overall prognosis based on 34 studies. Susceptibility to CCA was associated with SNPs in genes related to inflammation (PTGS2/COX2, IL6, IFNG/IFN-γ, TNF/TNF-α), DNA repair (ERCC1, MTHFR, MUTYH, XRCC1, OGG1), detoxification (NAT1, NAT2 and ABCC2), enzymes (SERPINA1, GSTO1, APOBEC3A, APOBEC3B), RNA (HOTAIR) and membrane-based proteins (EGFR, GAB1, KLRK1/NKG2D). Overall oncological prognosis was also related to SNPs in eight genes (GNB3, NFE2L2/NRF2, GALNT14, EGFR, XRCC1, EZH2, GNAS, CXCR1). Our findings indicate that multiple SNPs play different roles at various stages of CCA and might serve as biomarkers guiding treatment and allowing oncological risk assessment. Considering the differences in SNP detection methods, patient ethnicity and corresponding environmental factors, more large-scale multicentric investigations are needed to fully determine the potential of SNP analysis for CCA susceptibility prediction and prognostication.
Collapse
Affiliation(s)
- Guanwu Wang
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Lara Rosaline Heij
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany
- Institute of Pathology, University Hospital RWTH Aachen, 52074 Aachen, Germany
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6211 LK Maastricht, The Netherlands
- Department of Pathology, Erasmus Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Dong Liu
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Edgar Dahl
- Institute of Pathology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Sven Arke LANG
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Tom Florian Ulmer
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Tom LUEDDE
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Ulf Peter Neumann
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany
- Department of Surgery, Maastricht University Medical Center (MUMC), 6229 HX Maastricht, The Netherlands
| | - Jan Bednarsch
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany
- Correspondence:
| |
Collapse
|
7
|
Seborova K, Hlavac V, Holy P, Bjørklund SS, Fleischer T, Rob L, Hruda M, Bouda J, Mrhalova M, Allah MMKAO, Vodicka P, Fiala O, Soucek P, Kristensen VN, Vodickova L, Vaclavikova R. Complex molecular profile of DNA repair genes in epithelial ovarian carcinoma patients with different sensitivity to platinum-based therapy. Front Oncol 2022; 12:1016958. [DOI: 10.3389/fonc.2022.1016958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
Epithelial ovarian carcinoma (EOC) is known for high mortality due to diagnosis at advanced stages and frequent therapy resistance. Previous findings suggested that the DNA repair system is involved in the therapeutic response of cancer patients and DNA repair genes are promising targets for novel therapies. This study aimed to address complex inter-relations among gene expression levels, methylation profiles, and somatic mutations in DNA repair genes and EOC prognosis and therapy resistance status. We found significant associations of DUT expression with the presence of peritoneal metastases in EOC patients. The high-grade serous EOC subtype was enriched with TP53 mutations compared to other subtypes. Furthermore, somatic mutations in XPC and PRKDC were significantly associated with worse overall survival of EOC patients, and higher FAAP20 expression in platinum-resistant than platinum-sensitive patients was observed. We found higher methylation of RAD50 in platinum-resistant than in platinum-sensitive patients. Somatic mutations in BRCA1 and RAD9A were significantly associated with higher RBBP8 methylation in platinum-sensitive compared to platinum-resistant EOC patients. In conclusion, we discovered associations of several candidate genes from the DNA repair pathway with the prognosis and platinum resistance status of EOC patients, which deserve further validation as potential predictive biomarkers.
Collapse
|
8
|
Alblihy A, Ali R, Algethami M, Shoqafi A, Toss MS, Brownlie J, Tatum NJ, Hickson I, Moran PO, Grabowska A, Jeyapalan JN, Mongan NP, Rakha EA, Madhusudan S. Targeting Mre11 overcomes platinum resistance and induces synthetic lethality in XRCC1 deficient epithelial ovarian cancers. NPJ Precis Oncol 2022; 6:51. [PMID: 35853939 PMCID: PMC9296550 DOI: 10.1038/s41698-022-00298-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 07/04/2022] [Indexed: 11/11/2022] Open
Abstract
Platinum resistance is a clinical challenge in ovarian cancer. Platinating agents induce DNA damage which activate Mre11 nuclease directed DNA damage signalling and response (DDR). Upregulation of DDR may promote chemotherapy resistance. Here we have comprehensively evaluated Mre11 in epithelial ovarian cancers. In clinical cohort that received platinum- based chemotherapy (n = 331), Mre11 protein overexpression was associated with aggressive phenotype and poor progression free survival (PFS) (p = 0.002). In the ovarian cancer genome atlas (TCGA) cohort (n = 498), Mre11 gene amplification was observed in a subset of serous tumours (5%) which correlated highly with Mre11 mRNA levels (p < 0.0001). Altered Mre11 levels was linked with genome wide alterations that can influence platinum sensitivity. At the transcriptomic level (n = 1259), Mre11 overexpression was associated with poor PFS (p = 0.003). ROC analysis showed an area under the curve (AUC) of 0.642 for response to platinum-based chemotherapy. Pre-clinically, Mre11 depletion by gene knock down or blockade by small molecule inhibitor (Mirin) reversed platinum resistance in ovarian cancer cells and in 3D spheroid models. Importantly, Mre11 inhibition was synthetically lethal in platinum sensitive XRCC1 deficient ovarian cancer cells and 3D-spheroids. Selective cytotoxicity was associated with DNA double strand break (DSB) accumulation, S-phase cell cycle arrest and increased apoptosis. We conclude that pharmaceutical development of Mre11 inhibitors is a viable clinical strategy for platinum sensitization and synthetic lethality in ovarian cancer.
Collapse
Affiliation(s)
- Adel Alblihy
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Medical Center, King Fahad Security College (KFSC), Riyadh, 11461, Saudi Arabia
| | - Reem Ali
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Mashael Algethami
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Ahmed Shoqafi
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Michael S Toss
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Department of Pathology, Nottingham University Hospitals, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Juliette Brownlie
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Natalie J Tatum
- Cancer Research UK Newcastle Drug Discovery Unit, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ian Hickson
- Cancer Research UK Newcastle Drug Discovery Unit, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Paloma Ordonez Moran
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Anna Grabowska
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Jennie N Jeyapalan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Nigel P Mongan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, 10065, NY, USA
| | - Emad A Rakha
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Department of Pathology, Nottingham University Hospitals, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK.
- Department of Oncology, Nottingham University Hospitals, Nottingham, NG51PB, UK.
| |
Collapse
|
9
|
Wright GM, Gassman NR. Glucose Increases STAT3 Activation, Promoting Sustained XRCC1 Expression and Increasing DNA Repair. Int J Mol Sci 2022; 23:ijms23084314. [PMID: 35457130 PMCID: PMC9029887 DOI: 10.3390/ijms23084314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/28/2022] [Accepted: 04/10/2022] [Indexed: 02/05/2023] Open
Abstract
Dysregulation of DNA repair is a hallmark of cancer, though few cancer-specific mechanisms that drive the overexpression of DNA repair proteins are known. We previously identified STAT3 as a novel transcriptional regulator of X-ray cross-complementing group 1 (XRCC1), an essential scaffold protein in base excision repair in triple-negative breast cancers. We also identified an inducible response to IL-6 and epidermal growth factor stimulation in the non-tumorigenic embryonic kidney cell line HEK293T. As IL-6 and EGF signaling are growth and inflammatory-inducible responses, we examined if glucose challenge can increase STAT3 activation, promoting adaptive changes in XRCC1 expression in different cell types. Acute high glucose exposure promoted XRCC1 expression through STAT3 activation, increasing the repair of methyl methanesulfonate-induced DNA damage in HEK293T cells and the osteosarcoma cell line U2OS. Sustained exposure to high glucose promoted the overexpression of XRCC1, which can be reversed upon glucose restriction and down-regulation of STAT3 activation. Thus, we have identified a novel link between XRCC1 expression and STAT3 activation following exogenous exposures, which could play a critical role in dictating a cancer cell’s response to DNA-damaging agents.
Collapse
Affiliation(s)
- Griffin M. Wright
- College of Medicine Depart of Physiology & Cell Biology, University of South Alabama, Mobile, AL 36688, USA;
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36607, USA
| | - Natalie R. Gassman
- Department of Pharmacology and Toxicology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence:
| |
Collapse
|
10
|
Wang H, Jiang Y, Liang Y, Wei L, Zhang W, Li L. Observation of the cervical microbiome in the progression of cervical intraepithelial neoplasia. BMC Cancer 2022; 22:362. [PMID: 35379200 PMCID: PMC8981842 DOI: 10.1186/s12885-022-09452-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Cervical microbial community in the cervical intraepithelial neoplasia and cervical cancer patients was analysed to study its composition, diversity and signalling pathways by high-throughput 16S rDNA sequencing,and the candidate genes associated with occurrence and progression of cervical intraepithelial neoplasia were screened out and the model was established to predict the evolution of cervical intraepithelial neoplasia malignant transformation from the cervical microbial genes aspect. METHODS Cervical tissues of normal, cervical intraepithelial neoplasia and cervical cancer patients without receiving any treatment were collected. The correlation between candidate genes and cervical intraepithelial neoplasia progression was initially determined by analyzing the microbial flora. Real-time fluorescence quantitative PCR was used to detect the expression of candidate genes in different cervical tissues, ROC curve and logistic regression was used to analyse and predict the risk factors related to the occurrence and progression of cervical intraepithelial neoplasia. Finally, the early warning model of cervical intraepithelial neoplasia occurrence and progression is established. RESULTS Cervical tissues from normal, cervical intraepithelial neoplasia and cervical cancer patients were collected for microbial community high-throughput 16S rDNA sequencing. The analysis revealed five different pathways related to cervical intraepithelial neoplasia. 10 candidate genes were selected by further bioinformatics analysis and preliminary screening. Real time PCR, ROC curve and Logistic regression analysis showed that human papillomavirus infection, TCT severity, ABCG2, TDG, PCNA were independent risk factors for cervical intraepithelial neoplasia. We used these indicators to establish a random forest model. Seven models were built through different combinations. The model 4 (ABCG2 + PCNA + TDG) was the best early warning model for the occurrence and progression of CIN. CONCLUSIONS A total of 5 differential pathways and 10 candidate genes related to occurrence and progression of cervical intraepithelial neoplasia were found in cervical microbial community. This study firstly identified the genes from cervical microbial community that play an important role in the occurrence and progression of cervical intraepithelial neoplasia. At the same time, the early warning model including ABCG2 + PCNA+TDG genes provided a new idea and target for clinical prediction and blocking the evolution of cervical intraepithelial neoplasia malignant transformation from the aspect of cervical microbiological related genes.
Collapse
Affiliation(s)
- He Wang
- Department of gynecologic oncology, Guangxi Medical University Cancer Hospital, 71 He Di Road, Nanning, 530021, Guangxi, China
| | - Yanming Jiang
- Department of Obstetrics and Gynecology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yuejuan Liang
- Department of Obstetrics and Gynecology, Liuzhou People's Hospital, Liuzhou, China
| | - Lingjia Wei
- Department of Obstetrics and Gynecology, Guangxi Medical University, Nanning, China
| | - Wei Zhang
- Department of gynecologic oncology, Guangxi Medical University Cancer Hospital, 71 He Di Road, Nanning, 530021, Guangxi, China
| | - Li Li
- Department of gynecologic oncology, Guangxi Medical University Cancer Hospital, 71 He Di Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
11
|
Abbas M, Kushwaha VS, Srivastava K, Banerjee M. Understanding Role of DNA Repair and Cytochrome p-450 Gene Polymorphisms in Cervical Cancer Patient Treated With Concomitant Chemoradiation. Br J Biomed Sci 2022; 79:10120. [PMID: 35996502 PMCID: PMC8915685 DOI: 10.3389/bjbs.2021.10120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022]
Abstract
Background: Evidences suggest that single nucleotide polymorphisms (SNPs) can be considered as potential biomarkers for disease progression and therapeutic response in cervical cancer. The present study investigated the association of CYP1A1 T>C (rs4646903), CYP1A1 A>G (rs1048943), CYP2E1 T>A (rs6413432), RAD51 G>C (rs1801320), XRCC1 G>A (rs25487), XRCC2 G>A (rs3218536) and XRCC3 C>T (rs861539) polymorphisms with treatment outcome of cisplatin based chemoradiation (CRT). Methods: Total 227 cervical cancer cases, treated with the same chemoradiotherapy regimen were selected for the study. Genotyping analysis was performed by PCR-restriction fragment length polymorphisms (PCR-RFLP). Treatment response was evaluated by Response Evaluation Criteria in Solid Tumors (RECIST). Association of all clinical data (responses, recurrence and survival of patients) and single nucleotide polymorphisms (SNPs) was analysed by using SPSS (version 21.0). Results: Patients with TA/AA genotype of CYP2E1 T>A polymorphism showed significantly poor response while those with GC/CC genotype of RAD51 G>C showed better response (p = 0.008, p = 0.014 respectively). Death was significantly higher in patients with GG genotypes of RAD51 G>C and XRCC1 G>A (p = 0.006, p = 0.002 respectively). Women with GC+CC genotype of RAD51 G>C and AG+GG of XRCC1 showed better survival and also reduced risk of death (HR = 0.489, p = 0.008; HR = 0.484, p = 0.003 respectively). Conclusion: Results suggested that CYP2E1 T>A (rs6413432), RAD51 G>C (rs1801320), and XRCC1 G>A (rs25487) polymorphisms may be used as predictive markers for clinical outcomes in cervical cancer patients undergoing cisplatin based concomitant chemoradiotherapy.
Collapse
Affiliation(s)
- Mohammad Abbas
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
- Department of Personalized and Molecular Medicine, Era University, Lucknow, India
| | | | - Kirti Srivastava
- Department of Radiotherapy, King George’s Medical University, Lucknow, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
- *Correspondence: Monisha Banerjee, ,
| |
Collapse
|
12
|
Zhang QX, Yang Y, Yang H, Guo Q, Guo JL, Liu HS, Zhang J, Li D. The roles of risk model based on the 3-XRCC genes in lung adenocarcinoma progression. Transl Cancer Res 2022; 10:4413-4431. [PMID: 35116299 PMCID: PMC8798971 DOI: 10.21037/tcr-21-1431] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/26/2021] [Indexed: 02/05/2023]
Abstract
Background The abnormal expression of deoxyribonucleic acid (DNA) repair genes might be the cause of tumor development and resistance of malignant cells to chemotherapeutic drugs. A risk model based on the X-ray repair of cross-complementary (XRCC) genes was constructed to improve the diagnosis and treatment of lung adenocarcinoma (LUAD) patients. Methods The expression levels, diagnostic values, and prognostic values of XRCC genes were identified, and the roles and regulatory mechanisms of the risk model based on the XRCC4/5/6 in LUAD progression was explored via The Cancer Genome Atlas (TCGA) and Oncomine databases. Results XRCC1/2/3/4/5/6, XRCC7 (PRKDC), and XRCC9 (FANCG) were overexpressed, and had diagnostic value for LUAD. The XRCC genes were involved in DNA repair, and participated in the regulation of non-homologous end-joining, homologous recombination, etc. The overall survival (OS), tumor (T) stage, and survival status of patients were significantly different between the Cluster1 and Cluster2 groups. XRCC4/5/6 were independent risk factors affecting the prognosis of LUAD patients. The risk score was related to the prognosis, sex, clinical stage, T, lymph node (N), and metastasis (M) stage, as well as the survival status of LUAD patients. The clinical stage and risk score were independent risk factors for poor prognosis in LUAD patients. The risk model was involved in RNA degradation, cell cycle, basal transcription factors, DNA replication etc. The risk scores were significantly correlated with the expression levels of TGFBR1, CD160, TNFSF4, TNFRSF14, IL6R, CXCL16, TNFRSF25, TAPBP, CCL16, and CCL14. Conclusions The risk model based on the XRCC4/5/6 genes could predict the progression of LUAD patients.
Collapse
Affiliation(s)
- Qun-Xian Zhang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Ye Yang
- Department of Psychiatry, Traditional Chinese Medicine Hospital of Shiyan, Shiyan, China
| | - Heng Yang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Postgraduate Training Basement of Jinzhou Medical University, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Qiang Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jia-Long Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Postgraduate Training Basement of Jinzhou Medical University, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Hua-Song Liu
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jun Zhang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Dan Li
- Department of Oncology, Huanggang Central Hospital, Huanggang, China
| |
Collapse
|
13
|
Stefanou DT, Souliotis VL, Zakopoulou R, Liontos M, Bamias A. DNA Damage Repair: Predictor of Platinum Efficacy in Ovarian Cancer? Biomedicines 2021; 10:82. [PMID: 35052761 PMCID: PMC8773153 DOI: 10.3390/biomedicines10010082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Ovarian cancer (OC) is the seventh most common type of cancer in women worldwide. Treatment for OC usually involves a combination of surgery and chemotherapy with carboplatin and paclitaxel. Platinum-based agents exert their cytotoxic action through development of DNA damage, including the formation of intra- and inter-strand cross-links, as well as single-nucleotide damage of guanine. Although these agents are highly efficient, intrinsic and acquired resistance during treatment are relatively common and remain a major challenge for platinum-based therapy. There is strong evidence to show that the functionality of various DNA repair pathways significantly impacts tumor response to treatment. Various DNA repair molecular components were found deregulated in ovarian cancer, including molecules involved in homologous recombination repair (HRR), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end-joining (NHEJ), and base excision repair (BER), which can be possibly exploited as novel therapeutic targets and sensitive/effective biomarkers. This review attempts to summarize published data on this subject and thus help in the design of new mechanistic studies to better understand the involvement of the DNA repair in the platinum drugs resistance, as well as to suggest new therapeutic perspectives and potential targets.
Collapse
Affiliation(s)
- Dimitra T. Stefanou
- First Department of Medicine, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece;
| | - Vassilis L. Souliotis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece;
| | - Roubini Zakopoulou
- 2nd Propaedeutic Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Michalis Liontos
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Aristotelis Bamias
- 2nd Propaedeutic Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| |
Collapse
|
14
|
Ali R, Alabdullah M, Algethami M, Alblihy A, Miligy I, Shoqafi A, Mesquita KA, Abdel-Fatah T, Chan SYT, Chiang PW, Mongan NP, Rakha EA, Tomkinson AE, Madhusudan S. Ligase 1 is a predictor of platinum resistance and its blockade is synthetically lethal in XRCC1 deficient epithelial ovarian cancers. Theranostics 2021; 11:8350-8361. [PMID: 34373746 PMCID: PMC8344016 DOI: 10.7150/thno.51456] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
Rationale: The human ligases (LIG1, LIG3 and LIG4) are essential for the maintenance of genomic integrity by catalysing the formation of phosphodiester bonds between adjacent 5'-phosphoryl and 3'-hydroxyl termini at single and double strand breaks in duplex DNA molecules generated either directly by DNA damage or during replication, recombination, and DNA repair. Whether LIG1, LIG3 and LIG4 can influence ovarian cancer pathogenesis and therapeutics is largely unknown. Methods: We investigated LIG1, LIG3 and LIG4 expression in clinical cohorts of epithelial ovarian cancers [protein level (n=525) and transcriptional level (n=1075)] and correlated to clinicopathological features and survival outcomes. Pre-clinically, platinum sensitivity was investigated in LIG1 depleted ovarian cancer cells. A small molecule inhibitor of LIG1 (L82) was tested for synthetic lethality application in XRCC1, BRCA2 or ATM deficient cancer cells. Results: LIG1 and LIG3 overexpression linked with aggressive phenotypes, platinum resistance and poor progression free survival (PFS). In contrast, LIG4 deficiency was associated with platinum resistance and worse PFS. In a multivariate analysis, LIG1 was independently associated with adverse outcome. In ovarian cancer cell lines, LIG1 depletion increased platinum cytotoxicity. L82 monotherapy was synthetically lethal in XRCC1 deficient ovarian cancer cells and 3D-spheroids. Increased cytotoxicity was linked with accumulation of DNA double strand breaks (DSBs), S-phase cell cycle arrest and increased apoptotic cells. L82 was also selectively toxic in BRCA2 deficient or ATM deficient cancer cells and 3D-spheroids. Conclusions: We provide evidence that LIG1 is an attractive target for personalization of ovarian cancer therapy.
Collapse
Affiliation(s)
- Reem Ali
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Muslim Alabdullah
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG51PB, UK
| | - Mashael Algethami
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Adel Alblihy
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
- Medical Center, King Fahad Security College (KFSC), Riyadh 11461, Saudi Arabia
| | - Islam Miligy
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG51PB, UK
| | - Ahmed Shoqafi
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Katia A. Mesquita
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Tarek Abdel-Fatah
- Department of Oncology, Nottingham University Hospitals, City Hospital Campus, Nottingham NG5 1PB, UK
| | - Stephen YT Chan
- Department of Oncology, Nottingham University Hospitals, City Hospital Campus, Nottingham NG5 1PB, UK
| | - Pei Wen Chiang
- Department of Obstetrics & Gynaecology, Queens Medical Centre, Nottingham University Hospitals, Nottingham NG7 2UH, UK
| | - Nigel P Mongan
- Faculty of Medicine and Health Sciences, Centre for Cancer Sciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Emad A Rakha
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG51PB, UK
| | - Alan E Tomkinson
- Department of Internal Medicine, Division of Molecular Medicine, Health Sciences Center, The University of New Mexico, Albuquerque, NM 87102, USA
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
- Department of Oncology, Nottingham University Hospitals, City Hospital Campus, Nottingham NG5 1PB, UK
| |
Collapse
|
15
|
Wright G, Sonavane M, Gassman NR. Activated STAT3 Is a Novel Regulator of the XRCC1 Promoter and Selectively Increases XRCC1 Protein Levels in Triple Negative Breast Cancer. Int J Mol Sci 2021; 22:ijms22115475. [PMID: 34067421 PMCID: PMC8196947 DOI: 10.3390/ijms22115475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Base Excision Repair (BER) addresses base lesions and abasic sites induced by exogenous and endogenous stressors. X-ray cross complementing group 1 (XRCC1) functions as a scaffold protein in BER and single-strand break repair (SSBR), facilitating and coordinating repair through its interaction with a host of critical repair proteins. Alterations of XRCC1 protein and gene expression levels are observed in many cancers, including colorectal, ovarian, and breast cancer. While increases in the expression level of XRCC1 are reported, the transcription factors responsible for this up-regulation are not known. In this study, we identify the signal transducer and activator of transcription 3 (STAT3) as a novel regulator of XRCC1 through chromatin immunoprecipitation. Activation of STAT3 through phosphorylation at Y705 by cytokine (IL-6) signaling increases the expression of XRCC1 and the occupancy of STAT3 within the XRCC1 promoter. In triple negative breast cancer, the constitutive activation of STAT3 upregulates XRCC1 gene and protein expression levels. Increased expression of XRCC1 is associated with aggressiveness and resistance to DNA damaging chemotherapeutics. Thus, we propose that activated STAT3 regulates XRCC1 under stress and growth conditions, but constitutive activation in cancers results in dysregulation of XRCC1 and subsequently BER and SSBR.
Collapse
Affiliation(s)
- Griffin Wright
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, 307 N University Blvd, Mobile, AL 36688, USA; (G.W.); (M.S.)
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604-1405, USA
| | - Manoj Sonavane
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, 307 N University Blvd, Mobile, AL 36688, USA; (G.W.); (M.S.)
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604-1405, USA
| | - Natalie R. Gassman
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, 307 N University Blvd, Mobile, AL 36688, USA; (G.W.); (M.S.)
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604-1405, USA
- Correspondence:
| |
Collapse
|
16
|
FEN1 Blockade for Platinum Chemo-Sensitization and Synthetic Lethality in Epithelial Ovarian Cancers. Cancers (Basel) 2021; 13:cancers13081866. [PMID: 33919707 PMCID: PMC8070745 DOI: 10.3390/cancers13081866] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/18/2021] [Accepted: 04/05/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Overall survival outcomes, despite platinum-based chemotherapy, for patients with advanced ovarian cancer remains poor. Increased DNA repair capacity is a key route to platinum resistance in ovarian cancer. In the current study, we show that FEN1, a key player in DNA repair, is overexpressed in ovarian cancer and associated with poor survival. Pre-clinically FEN1 blockade not only increased platinum sensitivity but was also synthetically lethal in BRCA2 and POLβ deficient ovarian cancer cells. Together the data provides evidence that FEN1 is a promising anti-cancer target in ovarian cancer. Abstract FEN1 plays critical roles in long patch base excision repair (LP-BER), Okazaki fragment maturation, and rescue of stalled replication forks. In a clinical cohort, FEN1 overexpression is associated with aggressive phenotype and poor progression-free survival after platinum chemotherapy. Pre-clinically, FEN1 is induced upon cisplatin treatment, and nuclear translocation of FEN1 is dependent on physical interaction with importin β. FEN1 depletion, gene inactivation, or inhibition re-sensitizes platinum-resistant ovarian cancer cells to cisplatin. BRCA2 deficient cells exhibited synthetic lethality upon treatment with a FEN1 inhibitor. FEN1 inhibitor-resistant PEO1R cells were generated, and these reactivated BRCA2 and overexpressed the key repair proteins, POLβ and XRCC1. FEN1i treatment was selectively toxic to POLβ deficient but not XRCC1 deficient ovarian cancer cells. High throughput screening of 391,275 compounds identified several FEN1 inhibitor hits that are suitable for further drug development. We conclude that FEN1 is a valid target for ovarian cancer therapy.
Collapse
|
17
|
Felix FA, da Silva LP, Lopes MLDDS, Sobral APV, Freitas RDA, de Souza LB, Barboza CAG. DNA base excision repair and nucleotide excision repair proteins in malignant salivary gland tumors. Arch Oral Biol 2020; 121:104987. [PMID: 33202356 DOI: 10.1016/j.archoralbio.2020.104987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To analyze the immunohistochemical expression of the base excision repair (BER) proteins apurinic/apyrimidinic endonuclease 1 (APE1) and X-ray repair cross-complementing protein 1 (XRCC1) and nucleotide excision repair (NER) protein xeroderma pigmentosum group F (XPF) in malignant salivary gland tumors (MSGTs). DESIGN Sixty-two cases of MSGTs were selected, including 14 acinic cell carcinomas (AcCC), 15 polymorphous adenocarcinomas (PAC), 16 adenoid cystic carcinomas (ACC), and 17 mucoepidermoid carcinomas (MEC). The specimens were submitted to quantitative immunohistochemical analysis. RESULTS All MSGTs exhibited nuclear or nucleo-cytoplasmic immunostaining of APE1, XRCC1 and XPF, with a high percentage of positive cells (median = 78.31, 70.48 and 75.46, respectively). XRCC1 expression was higher in PAC compared to MEC (p = 0.032). Nuclear APE1 immunostaining was significantly higher than nucleo-cytoplasmic expression in the selected MSGTs (p < 0.0001). APE1 expression was significantly associated with T1-T2 tumors in ACC (p = 0.006). Increased expression of XPF was associated with age older than 60 years in MEC (p = 0.015) and with ACC involving the minor salivary gland (p = 0.012), while a lower expression was found in AcCC and ACC patients treated by surgery combined with adjuvant therapy (p = 0.036 and p = 0.020, respectively). Low expression of XRCC1 in the nucleus (p = 0.028) and concomitant expression of this protein in the nucleus/cytoplasm were associated with a lower overall 5-year survival rate (p = 0.017). CONCLUSIONS This study showed that BER and NER proteins evaluated are highly expressed in the MSGTs studied, indicating mechanisms of genotoxic control in these tumors. In addition, the dysregulation of XRCC1 expression was a prognostic predictor in MSGTs analyzed.
Collapse
Affiliation(s)
- Fernanda Aragão Felix
- Postgraduate Program in Dental Science, Department of Dentistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | | | | | - Roseana de Almeida Freitas
- Postgraduate Program in Dental Science, Department of Dentistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Lélia Batista de Souza
- Postgraduate Program in Dental Science, Department of Dentistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Carlos Augusto Galvão Barboza
- Postgraduate Program in Dental Science, Department of Dentistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
18
|
Establishment of Acquired Cisplatin Resistance in Ovarian Cancer Cell Lines Characterized by Enriched Metastatic Properties with Increased Twist Expression. Int J Mol Sci 2020; 21:ijms21207613. [PMID: 33076245 PMCID: PMC7589258 DOI: 10.3390/ijms21207613] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal of the gynecologic cancers, and platinum-based treatment is a part of the standard first-line chemotherapy regimen. However, rapid development of acquired cisplatin resistance remains the main cause of treatment failure, and the underlying mechanism of resistance in OC treatment remains poorly understood. Faced with this problem, our aim in this study was to generate cisplatin-resistant (CisR) OC cell models in vitro and investigate the role of epithelial–mesenchymal transition (EMT) transcription factor Twist on acquired cisplatin resistance in OC cell models. To achieve this aim, OC cell lines OV-90 and SKOV-3 were exposed to cisplatin using pulse dosing and stepwise dose escalation methods for a duration of eight months, and a total of four CisR sublines were generated, two for each cell line. The acquired cisplatin resistance was confirmed by determination of 50% inhibitory concentration (IC50) and clonogenic survival assay. Furthermore, the CisR cells were studied to assess their respective characteristics of metastasis, EMT phenotype, DNA repair and endoplasmic reticulum stress-mediated cell death. We found the IC50 of CisR cells to cisplatin was 3–5 times higher than parental cells. The expression of Twist and metastatic ability of CisR cells were significantly greater than those of sensitive cells. The CisR cells displayed an EMT phenotype with decreased epithelial cell marker E-cadherin and increased mesenchymal proteins N-cadherin and vimentin. We observed that CisR cells showed significantly higher expression of DNA repair proteins, X-ray repair cross-complementing protein 1 (XRCC1) and poly (ADP-ribose) polymerases 1 (PARP1), with significantly reduced endoplasmic reticulum (ER) stress-mediated cell death. Moreover, Twist knockdown reduced metastatic ability of CisR cells by suppressing EMT, DNA repair and inducing ER stress-induced cell death. In conclusion, we highlighted the utilization of an acquired cisplatin resistance model to identify the potential role of Twist as a therapeutic target to reverse acquired cisplatin resistance in OC.
Collapse
|
19
|
DNA Repair and Ovarian Carcinogenesis: Impact on Risk, Prognosis and Therapy Outcome. Cancers (Basel) 2020; 12:cancers12071713. [PMID: 32605254 PMCID: PMC7408288 DOI: 10.3390/cancers12071713] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
There is ample evidence for the essential involvement of DNA repair and DNA damage response in the onset of solid malignancies, including ovarian cancer. Indeed, high-penetrance germline mutations in DNA repair genes are important players in familial cancers: BRCA1, BRCA2 mutations or mismatch repair, and polymerase deficiency in colorectal, breast, and ovarian cancers. Recently, some molecular hallmarks (e.g., TP53, KRAS, BRAF, RAD51C/D or PTEN mutations) of ovarian carcinomas were identified. The manuscript overviews the role of DNA repair machinery in ovarian cancer, its risk, prognosis, and therapy outcome. We have attempted to expose molecular hallmarks of ovarian cancer with a focus on DNA repair system and scrutinized genetic, epigenetic, functional, and protein alterations in individual DNA repair pathways (homologous recombination, non-homologous end-joining, DNA mismatch repair, base- and nucleotide-excision repair, and direct repair). We suggest that lack of knowledge particularly in non-homologous end joining repair pathway and the interplay between DNA repair pathways needs to be confronted. The most important genes of the DNA repair system are emphasized and their targeting in ovarian cancer will deserve further attention. The function of those genes, as well as the functional status of the entire DNA repair pathways, should be investigated in detail in the near future.
Collapse
|
20
|
Wu Z, Miao X, Zhang Y, Li D, Zou Q, Yuan Y, Liu R, Yang Z. XRCC1 Is a Promising Predictive Biomarker and Facilitates Chemo-Resistance in Gallbladder Cancer. Front Mol Biosci 2020; 7:70. [PMID: 32426369 PMCID: PMC7212355 DOI: 10.3389/fmolb.2020.00070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/30/2020] [Indexed: 12/25/2022] Open
Abstract
Gallbladder cancer is a relatively uncommon human malignant tumor with an extremely poor prognosis. Currently, no biomarkers can accurately diagnose gallbladder cancer and predict patients' prognosis. XRCC1 is involved in tumorigenesis, progression, and chemo-resistance of several human cancers, but the role of XRCC1 in gallbladder cancer is never reported. In this study, we investigated the expression of XRCC1 and its clinicopathological and prognostic significance in gallbladder cancer, and explored the biological role of XRCC1 in gallbladder cancer cells. We found that XRCC1 was significantly up-regulated in gallbladder cancer in protein and mRNA levels. Positive XRCC1 expression was correlated with aggressive clinicopathological features and was an independent poor prognostic factor in gallbladder cancer. The ROC curves suggested that XRCC1 expression had potential clinicopathological diagnostic value in gallbladder cancer. In vitro, XRCC1 was overexpression in CD133+GBC-SD cells compared to GBC-SD cells. In functional experiment, XRCC1 knockdown had a non-significant impact on proliferation, migration, invasion, and apoptosis of CD133+GBC-SD cells. But, XRCC1 knockdown could significantly improve the sensitivity of CD133+GBC-SD cells to 5-Fluorouracil via promoting cell necrosis and apoptosis. Thus, this study indicates that XRCC1 may be a promising predictive biomarker of gallbladder cancer and a potential therapeutic target for gallbladder cancer.
Collapse
Affiliation(s)
- Zhengchun Wu
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research, Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiongying Miao
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research, Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuanfang Zhang
- Immunodiagnostic Reagents Engineering Research Center of Hunan Province, School of medicine, Hunan Normal University, Changsha, China
| | - Daiqiang Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiong Zou
- Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Yuan
- Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Rushi Liu
- Immunodiagnostic Reagents Engineering Research Center of Hunan Province, School of medicine, Hunan Normal University, Changsha, China
| | - Zhulin Yang
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research, Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
Evaluation of X-Ray Repair Cross-Complementing Family Members as Potential Biomarkers for Predicting Progression and Prognosis in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5751939. [PMID: 32258128 PMCID: PMC7103035 DOI: 10.1155/2020/5751939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/24/2020] [Indexed: 12/28/2022]
Abstract
The X-ray repair cross-complementing (XRCC) gene family has been revealed to participate in the carcinogenesis and development of numerous cancers. However, the expression profiles and prognostic values of XRCCs (XRCC1-6) in hepatocellular carcinoma (HCC) have not been explored up to now. The transcriptional levels of XRCCs in primary HCC tissues were analyzed by UALCAN and GEPIA. The relationship between XRCCs expression and HCC clinical characteristics was evaluated using UALCAN. Moreover, the prognostic values of XRCCs expression and mutations in HCC patients were investigated via the GEPIA and cBioPortal, respectively. Last but not least, the functions and pathways of XRCCs in HCC were also predicted by cBioPortal and DVAID. The transcriptional levels of all XRCCs in HCC tissues were notably elevated compared with normal liver tissues. Meanwhile, upregulated XRCCs expression was positively associated with clinical stages and tumor grades of HCC patients. Survival analysis using the GEPIA database revealed that high transcription levels of XRCC2/3/4/5/6 were associated with lower overall survival (OS) and high transcription levels of XRCC1/2/3/6 were correlated with poor disease-free survival (DFS) in HCC patients. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) demonstrated the possible mechanisms of XRCCs and their associated genes participating in the oncogenesis of HCC. Our findings systematically elucidate the expression profiles and distinct prognostic values of XRCCs in HCC, which might provide promising therapeutic targets and novel prognostic biomarkers for HCC patients.
Collapse
|
22
|
Santos HBDP, Morais EFD, Cavalcante RB, Nogueira RLM, Nonaka CFW, Souza LBD, Freitas RDA. Immunoexpression of DNA base excision repair and nucleotide excision repair proteins in ameloblastomas, syndromic and non-syndromic odontogenic keratocysts and dentigerous cysts. Arch Oral Biol 2019; 110:104627. [PMID: 31862643 DOI: 10.1016/j.archoralbio.2019.104627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To evaluate the immunoexpression of DNA base excision repair (BER) [apurinic/apyrimidinic endonuclease 1 (APE-1), X-ray repair cross complementing 1 (XRCC-1)] and nucleotide excision repair (NER) [xeroderma pigmentosum complementation group (XPF)] proteins in benign epithelial odontogenic lesions with different biological behaviors. DESIGN Thirty solid ameloblastomas, 30 non-syndromic odontogenic keratocysts (NSOKCs), 29 syndromic odontogenic keratocysts (SKOCs), 30 dentigerous cysts (DCs) and 20 dental follicles (DFs) were evaluated quantitatively for APE-1, XRCC-1 and XPF through immunohistochemistry. RESULTS Nuclear expression of APE-1 was significantly higher in NSOKCs, SOKCs, and ameloblastomas in comparison to DCs (p < 0.001). Nuclear expression of XRCC-1 was higher in NSOKCs and SOKCs than in DCs (p < 0.05). At the nuclear level, XPF expression was higher in NSOKCs and SOKCs than in DCs and ameloblastomas (p < 0.05). A statistically significant higher expression of APE-1 (nuclear), XRCC-1 (nuclear), and XPF (nuclear and cytoplasmic) was found in all odontogenic lesion samples as compared to DFs (p < 0.05). For all lesions, there was a positive correlation between nuclear expression of APE-1 and XRCC-1 or XPF (p < 0.05). CONCLUSIONS Our results suggest a potential involvement of APE-1, XRCC-1 and XPF proteins in the pathogenesis of benign epithelial odontogenic lesions, especially in those with more aggressive biological behavior, such as ameloblastomas, NSOKCs, and SOKCs. We also showed that the expression of APE-1 was positively correlated with the nuclear expression of XRCC-1 and XPF, which may suggest an interaction between the BER and NER pathways in all odontogenic lesions studied herein.
Collapse
|
23
|
Ali R, Alabdullah M, Alblihy A, Miligy I, Mesquita KA, Chan SY, Moseley P, Rakha EA, Madhusudan S. PARP1 blockade is synthetically lethal in XRCC1 deficient sporadic epithelial ovarian cancers. Cancer Lett 2019; 469:124-133. [PMID: 31669203 DOI: 10.1016/j.canlet.2019.10.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/02/2019] [Accepted: 10/21/2019] [Indexed: 01/07/2023]
Abstract
PARP1 inhibitor (Niraparib, Olaparib, Rucaparib) maintenance therapy improves progression-free survival in platinum sensitive sporadic epithelial ovarian cancers. However, biomarkers of response to PARPi therapy is yet to be clearly defined. XRCC1, a scaffolding protein, interacts with PARP1 during BER and SSBR. In a large clinical cohort of 525 sporadic ovarian cancers, high XRCC1 or high PARP1 protein levels was not only associated with aggressive phenotypes but was also significantly linked with poor progression-free survival (p = 0.048 & p = 0.001 respectively) and poor ovarian cancer-specific survival (p = 0.020 & p = 0.008 respectively). Pre-clinically, Olaparib and Talazoparib therapy were selectively toxic in XRCC1 deficient or knock-out platinum sensitive ovarian cancer cells in 2D and 3D models. Increased sensitivity was associated with DNA double-strand break accumulation, cell cycle arrest and apoptotic cell accumulation. We conclude that XRCC1 deficiency predicts sensitivity to PARP inhibitor therapy. PARP1 targeting is a promising new approach in XRCC1 deficient ovarian cancers.
Collapse
Affiliation(s)
- Reem Ali
- Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, NG5 1PB, UK
| | - Muslim Alabdullah
- Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, NG5 1PB, UK; Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG51PB, UK
| | - Adel Alblihy
- Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, NG5 1PB, UK
| | - Islam Miligy
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG51PB, UK
| | - Katia A Mesquita
- Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, NG5 1PB, UK
| | - Stephen Yt Chan
- Department of Oncology, Nottingham University Hospitals, City Hospital Campus, Nottingham NG5 1PB, UK
| | - Paul Moseley
- Department of Oncology, Nottingham University Hospitals, City Hospital Campus, Nottingham NG5 1PB, UK
| | - Emad A Rakha
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG51PB, UK
| | - Srinivasan Madhusudan
- Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, NG5 1PB, UK; Department of Oncology, Nottingham University Hospitals, City Hospital Campus, Nottingham NG5 1PB, UK.
| |
Collapse
|
24
|
Mirza-Aghazadeh-Attari M, Ostadian C, Saei AA, Mihanfar A, Darband SG, Sadighparvar S, Kaviani M, Samadi Kafil H, Yousefi B, Majidinia M. DNA damage response and repair in ovarian cancer: Potential targets for therapeutic strategies. DNA Repair (Amst) 2019; 80:59-84. [PMID: 31279973 DOI: 10.1016/j.dnarep.2019.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 06/01/2019] [Accepted: 06/15/2019] [Indexed: 12/24/2022]
Abstract
Ovarian cancer is among the most lethal gynecologic malignancies with a poor survival prognosis. The current therapeutic strategies involve surgery and chemotherapy. Research is now focused on novel agents especially those targeting DNA damage response (DDR) pathways. Understanding the DDR process in ovarian cancer necessitates having a detailed knowledge on a series of signaling mediators at the cellular and molecular levels. The complexity of the DDR process in ovarian cancer and how this process works in metastatic conditions is comprehensively reviewed. For evaluating the efficacy of therapeutic agents targeting DNA damage in ovarian cancer, we will discuss the components of this system including DDR sensors, DDR transducers, DDR mediators, and DDR effectors. The constituent pathways include DNA repair machinery, cell cycle checkpoints, and apoptotic pathways. We also will assess the potential of active mediators involved in the DDR process such as therapeutic and prognostic candidates that may facilitate future studies.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Caspian Ostadian
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Saber Ghazizadeh Darband
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | | | - Bahman Yousefi
- Molecular MedicineResearch Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
25
|
Relationship between expression of XRCC1 and tumor proliferation, migration, invasion, and angiogenesis in glioma. Invest New Drugs 2018; 37:646-657. [PMID: 30328556 DOI: 10.1007/s10637-018-0667-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/14/2018] [Indexed: 12/15/2022]
Abstract
Recently, XRCC1 polymorphisms were reported to be associated with glioma in Chinese population. However, only a few studies reported on the XRCC1 expression, and cancer progression. In this study, we investigated whether XRCC1 plays a role in glioma pathogenesis. Using the tissue microarray technology, we found that XRCC1 expression is significantly decreased in glioma compared with tumor adjacent normal brain tissue (P < 0.01, χ2 test) and reduced XRCC1 staining was associated with WHO stages (P < 0.05, χ2 test). The mRNA and protein levels of XRCC1 were significantly downregulated in human primary glioma tissues (P < 0.001, χ2 test). We also found that XRCC1 was significantly decreased in glioma cell lines compared to normal human astrocytes (P < 0.01, χ2 test). Overexpression of XRCC1 dramatically reduced the proliferation and caused cessation of cell cycle. The reduced cell proliferation is due to G1 phase arrest as cyclin D1 is diminished whereas p16 is upregulated. We further demonstrated that XRCC1 overexpression suppressed the glioma cell migration and invasion abilities by targeting MMP-2. In addition, we also found that overexpression of XRCC1 sharply inhibited angiogenesis, which correlated with down-regulation of VEGF. The data indicate that XRCC1 may be a tumor suppressor involved in the progression of glioma.
Collapse
|
26
|
Wongsirisin P, Limpakan Yamada S, Yodkeeree S, Punfa W, Limtrakul P. Association of DNA Repair and Drug Transporter in Relation to Chemosensitivity in Primary Culture of Thai Gastric Cancer Patients. Biol Pharm Bull 2018; 41:360-367. [PMID: 29491212 DOI: 10.1248/bpb.b17-00688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acquired resistance is a major reason for poor clinical outcomes in cancer chemotherapy patients. The aim of this study was to determine the sensitivity to anticancer drugs and to identify the alterations of DNA repair and drug transporter in a model of primary culture obtained from pre- and post-platinum-based anticancer treatments in nine Thai gastric cancer patients. Ex vivo sensitivity to anti-cancer drugs (cisplatin, oxaliplatin, 5-fluorouracil (5-FU) and irinotecan) was analysed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The expression of the drug transporter (multidrug resistance-associated protein 1 (MRP1), P-glycoprotein (P-gp)) and DNA repair (X-ray cross-complementing gene 1 (XRCC1) and excision repair cross-complementing 1 (ERCC1)) were examined by RT-PCR. The IC50 to cisplatin and oxaliplatin of the cells obtained from gastric cancer patients after clinical drug treatments were administered to five patients (55.5%) revealed a significant increase when compared with prior treatments. The basal expression values of XRCC1, ERCC1 and MRP1 obtained from the treated patients were in correlation with those of IC50. Ex vivo platinum drug treatment of the primary culture obtained from naïve patients over seven days also revealed a significant increase in MRP1 (7/9), XRCC1 (4/9) and ERCC1 (4/9). These observations have also been observed in the KATOIII cell line. Clinical treatment by platinum-based anti-cancer drug can develop acquired drug resistance in Thai gastric cancer patients through upregulation in the expression of drug transporter MRP1 and DNA repair XRCC1 and ERCC1. In cell culture model, cisplatin-resistant gastric cancer cell line KATOIII/diamminedichloroplatinum (KATOIII/DDP) significantly increased the expression level of these genes when compared to its parental cells (KATOIII).
Collapse
Affiliation(s)
| | - Sirikan Limpakan Yamada
- Division of Gastrointestinal Surgery and Endoscopy, Department of Surgery, Faculty of Medicine
| | | | - Wanisa Punfa
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University
| | | |
Collapse
|
27
|
DNA damage repair in ovarian cancer: unlocking the heterogeneity. J Ovarian Res 2018; 11:50. [PMID: 29925418 PMCID: PMC6011341 DOI: 10.1186/s13048-018-0424-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/08/2018] [Indexed: 01/13/2023] Open
Abstract
Treatment for advanced ovarian cancer is rarely curative; three quarters of patients with advanced disease relapse and ultimately die with resistant disease. Improving patient outcomes will require the introduction of new treatments and better patient selection. Abrogations in the DNA damage response (DDR) may allow such stratifications. A defective DNA-damage response (DDR) is a defining hallmark of high grade serous ovarian cancer (HGSOC). Indeed, current evidence indicates that all HGSOCs harbour a defect in at least one major DDR pathway. However, defective DDR is not mediated through a single mechanism but rather results from a variety of (epi)genetic lesions affecting one or more of the five major DNA repair pathways. Understanding the relationship between these pathways and how these are abrogated will be necessary in order to facilitate appropriate selection of both existing and novel agents. Here we review the current understanding of the DDR with regard to ovarian, and particularly high grade serous, cancer, with reference to existing and emerging treatments as appropriate.
Collapse
|
28
|
Gee ME, Faraahi Z, McCormick A, Edmondson RJ. DNA damage repair in ovarian cancer: unlocking the heterogeneity. J Ovarian Res 2018. [PMID: 29925418 DOI: 10.1186/s13048-018-0424-x] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Treatment for advanced ovarian cancer is rarely curative; three quarters of patients with advanced disease relapse and ultimately die with resistant disease. Improving patient outcomes will require the introduction of new treatments and better patient selection. Abrogations in the DNA damage response (DDR) may allow such stratifications.A defective DNA-damage response (DDR) is a defining hallmark of high grade serous ovarian cancer (HGSOC). Indeed, current evidence indicates that all HGSOCs harbour a defect in at least one major DDR pathway. However, defective DDR is not mediated through a single mechanism but rather results from a variety of (epi)genetic lesions affecting one or more of the five major DNA repair pathways. Understanding the relationship between these pathways and how these are abrogated will be necessary in order to facilitate appropriate selection of both existing and novel agents.Here we review the current understanding of the DDR with regard to ovarian, and particularly high grade serous, cancer, with reference to existing and emerging treatments as appropriate.
Collapse
Affiliation(s)
- Mary Ellen Gee
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK.,Department of Obstetrics and Gynaecology, Manchester Academic Health Science Centre, St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Level 5, Research, Oxford Road, Manchester, UK
| | - Zahra Faraahi
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK
| | - Aiste McCormick
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4AD, UK
| | - Richard J Edmondson
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK. .,Department of Obstetrics and Gynaecology, Manchester Academic Health Science Centre, St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Level 5, Research, Oxford Road, Manchester, UK.
| |
Collapse
|
29
|
Gee ME, Faraahi Z, McCormick A, Edmondson RJ. DNA damage repair in ovarian cancer: unlocking the heterogeneity. J Ovarian Res 2018. [PMID: 29925418 DOI: 10.1186/s13048-018-0424-x]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Treatment for advanced ovarian cancer is rarely curative; three quarters of patients with advanced disease relapse and ultimately die with resistant disease. Improving patient outcomes will require the introduction of new treatments and better patient selection. Abrogations in the DNA damage response (DDR) may allow such stratifications.A defective DNA-damage response (DDR) is a defining hallmark of high grade serous ovarian cancer (HGSOC). Indeed, current evidence indicates that all HGSOCs harbour a defect in at least one major DDR pathway. However, defective DDR is not mediated through a single mechanism but rather results from a variety of (epi)genetic lesions affecting one or more of the five major DNA repair pathways. Understanding the relationship between these pathways and how these are abrogated will be necessary in order to facilitate appropriate selection of both existing and novel agents.Here we review the current understanding of the DDR with regard to ovarian, and particularly high grade serous, cancer, with reference to existing and emerging treatments as appropriate.
Collapse
Affiliation(s)
- Mary Ellen Gee
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK.,Department of Obstetrics and Gynaecology, Manchester Academic Health Science Centre, St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Level 5, Research, Oxford Road, Manchester, UK
| | - Zahra Faraahi
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK
| | - Aiste McCormick
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4AD, UK
| | - Richard J Edmondson
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK. .,Department of Obstetrics and Gynaecology, Manchester Academic Health Science Centre, St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Level 5, Research, Oxford Road, Manchester, UK.
| |
Collapse
|
30
|
Guida M, Tommasi S, Strippoli S, Natalicchio MI, De Summa S, Pinto R, Cramarossa A, Albano A, Pisconti S, Aieta M, Ridolfi R, Azzariti A, Guida G, Lorusso V, Colucci G. The search for a melanoma-tailored chemotherapy in the new era of personalized therapy: a phase II study of chemo-modulating temozolomide followed by fotemustine and a cooperative study of GOIM (Gruppo Oncologico Italia Meridionale). BMC Cancer 2018; 18:552. [PMID: 29747595 PMCID: PMC5946485 DOI: 10.1186/s12885-018-4479-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 05/02/2018] [Indexed: 01/05/2023] Open
Abstract
Background It is frequently asked whether chemotherapy can still play a role in metastatic melanoma considering the effectiveness of the available drugs today, including antiCTLA4/antiPD1 immunotherapy and antiBRAF/antiMEK inhibitors. However, only approximately half of patients respond to these drugs, and the majority progress after 6–11 months. Therefore, a need for other therapeutic options is still very much apparent. We report the first large trial of a sequential full dose of fotemustine (FM) preceded by a low dose of temozolomide (TMZ) as a chemo-modulator in order to inactivate the DNA repair action of O(6)-methylguanine DNA-methyltransferase (MGMT). Primary endpoints were overall response and safety. We also evaluated specific biological parameters aiming to tailor these chemotherapies to selected patients. Methods A total of 69 consecutive patients were enrolled. The main features included a median age of 60 years (21–81) and M1c stage, observed in 74% of the patients, with brain metastases in 15% and high LDH levels in 42% of the patients. The following schedule was used: oral TMZ 100 mg/m2 on days 1 and 2 and FM iv 100 mg/m2 on day 2, 4 h after TMZ; A translational study aiming to analyse MGMT methylation status and base-excision repair (BER) gene expression was performed in a subset of 14 patients. Results We reported an overall response rate of 30.3% with 3 complete responses and a disease control rate of 50.5%. The related toxicity rate was low and mainly of haematological types. Although our population had a very poor prognosis, we observed a PFS of 6 months and an OS of 10 months. A non-significant correlation with response was found with the mean expression level of the three genes involved in the BER pathway (APE1, XRCC1 and PARP1), whereas no association was found with MGMT methylation status. Conclusion This schedule could represent a good alternative for patients who are not eligible for immune or targeted therapy or whose previous therapies have failed. Trial registration EUDRACT 2009–016487-36l; date of registration 23 June 2010. Electronic supplementary material The online version of this article (10.1186/s12885-018-4479-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michele Guida
- Medical Oncology Department, National Cancer Research Centre "Giovanni Paolo II", Via O. Flacco, 65, 70124, Bari, Italy.
| | - Stefania Tommasi
- Molecular Genetics Laboratory and Radiology, National Cancer Research Centre "Giovanni Paolo II", Via O. Flacco, 65, 70124, Bari, Italy
| | - Sabino Strippoli
- Medical Oncology Department, National Cancer Research Centre "Giovanni Paolo II", Via O. Flacco, 65, 70124, Bari, Italy
| | - Maria Iole Natalicchio
- Laboratory of Molecular Oncology of Solid Tumors and Pharmacogenomics, Ospedali Riuniti, Viale Pinto, 1, 71122, Foggia, Italy
| | - Simona De Summa
- Molecular Genetics Laboratory and Radiology, National Cancer Research Centre "Giovanni Paolo II", Via O. Flacco, 65, 70124, Bari, Italy
| | - Rosamaria Pinto
- Molecular Genetics Laboratory and Radiology, National Cancer Research Centre "Giovanni Paolo II", Via O. Flacco, 65, 70124, Bari, Italy
| | - Antonio Cramarossa
- Radiology Department, National Cancer Research Centre "Giovanni Paolo II", Bari, Italy
| | - Anna Albano
- Medical Oncology Department, National Cancer Research Centre "Giovanni Paolo II", Via O. Flacco, 65, 70124, Bari, Italy
| | - Salvatore Pisconti
- Medical Oncology Department, San Giuseppe Moscati Hospital, Via per Martina Franca, 74010, Statte, Taranto, Italy
| | - Michele Aieta
- Medical Oncology Department, National Institute of Cancer, Via Padre Pio, 1. 85028 Rionero in Vulture, Potenza, Italy
| | - Ruggiero Ridolfi
- Medical Oncology Department, National Cancer Institute of Romagna (IRST), Via Piero Maroncelli, 40. 47014 Meldola, Forlì, Italy
| | - Amalia Azzariti
- Clinical and Preclinical Pharmacology Laboratory, National Cancer Research Centre "Giovanni Paolo II", Via O. Flacco, 65, 70124, Bari, Italy
| | - Gabriella Guida
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Piazza Giulio Cesare, 1, 70124, Bari, Italy
| | - Vito Lorusso
- Medical Oncology Department, National Cancer Research Centre "Giovanni Paolo II", Via O. Flacco, 65, 70124, Bari, Italy
| | - Giusepe Colucci
- Medical Oncology Department, National Cancer Research Centre "Giovanni Paolo II", Via O. Flacco, 65, 70124, Bari, Italy
| |
Collapse
|
31
|
Qian X, Tan H, Zhang J, Liu K, Yang T, Wang M, Debinskie W, Zhao W, Chan MD, Zhou X. Identification of biomarkers for pseudo and true progression of GBM based on radiogenomics study. Oncotarget 2018; 7:55377-55394. [PMID: 27421136 PMCID: PMC5342424 DOI: 10.18632/oncotarget.10553] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/05/2016] [Indexed: 02/06/2023] Open
Abstract
The diagnosis for pseudoprogression (PsP) and true tumor progression (TTP) of GBM is a challenging task in clinical practices. The purpose of this study is to identify potential genetic biomarkers associated with PsP and TTP based on the clinical records, longitudinal imaging features, and genomics data. We are the first to introduce the radiogenomics approach to identify candidate genes for PsP and TTP of GBM. Specifically, a novel longitudinal sparse regression model was developed to construct the relationship between gene expression and imaging features. The imaging features were extracted from tumors along the longitudinal MRI and provided diagnostic information of PsP and TTP. The 33 candidate genes were selected based on their association with the imaging features, reflecting their relation with the development of PsP and TTP. We then conducted biological relevance analysis for 33 candidate genes to identify the potential biomarkers, i.e., Interferon regulatory factor (IRF9) and X-ray repair cross-complementing gene (XRCC1), which were involved in the cancer suppression and prevention, respectively. The IRF9 and XRCC1 were further independently validated in the TCGA data. Our results provided the first substantial evidence that IRF9 and XRCC1 can serve as the potential biomarkers for the development of PsP and TTP.
Collapse
Affiliation(s)
- Xiaohua Qian
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Hua Tan
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jian Zhang
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Keqin Liu
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Tielin Yang
- School of Life Science, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China
| | - Maode Wang
- The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710061, China
| | - Waldemar Debinskie
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Weilin Zhao
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Michael D Chan
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Xiaobo Zhou
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
32
|
Markkanen E. Not breathing is not an option: How to deal with oxidative DNA damage. DNA Repair (Amst) 2017; 59:82-105. [PMID: 28963982 DOI: 10.1016/j.dnarep.2017.09.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023]
Abstract
Oxidative DNA damage constitutes a major threat to genetic integrity, and has thus been implicated in the pathogenesis of a wide variety of diseases, including cancer and neurodegeneration. 7,8-dihydro-8oxo-deoxyGuanine (8-oxo-G) is one of the best characterised oxidative DNA lesions, and it can give rise to point mutations due to its miscoding potential that instructs most DNA polymerases (Pols) to preferentially insert Adenine (A) opposite 8-oxo-G instead of the correct Cytosine (C). If uncorrected, A:8-oxo-G mispairs can give rise to C:G→A:T transversion mutations. Cells have evolved a variety of pathways to mitigate the mutational potential of 8-oxo-G that include i) mechanisms to avoid incorporation of oxidized nucleotides into DNA through nucleotide pool sanitisation enzymes (by MTH1, MTH2, MTH3 and NUDT5), ii) base excision repair (BER) of 8-oxo-G in DNA (involving MUTYH, OGG1, Pol λ, and other components of the BER machinery), and iii) faithful bypass of 8-oxo-G lesions during replication (using a switch between replicative Pols and Pol λ). In the following, the fate of 8-oxo-G in mammalian cells is reviewed in detail. The differential origins of 8-oxo-G in DNA and its consequences for genetic stability will be covered. This will be followed by a thorough discussion of the different mechanisms in place to cope with 8-oxo-G with an emphasis on Pol λ-mediated correct bypass of 8-oxo-G during MUTYH-initiated BER as well as replication across 8-oxo-G. Furthermore, the multitude of mechanisms in place to regulate key proteins involved in 8-oxo-G repair will be reviewed. Novel functions of 8-oxo-G as an epigenetic-like regulator and insights into the repair of 8-oxo-G within the cellular context will be touched upon. Finally, a discussion will outline the relevance of 8-oxo-G and the proteins involved in dealing with 8-oxo-G to human diseases with a special emphasis on cancer.
Collapse
Affiliation(s)
- Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, Winterthurerstr. 260, 8057 Zürich, Switzerland.
| |
Collapse
|
33
|
Machado LR, Moseley PM, Moss R, Deen S, Nolan C, Spendlove I, Ramage JM, Chan SY, Durrant LG. High mobility group protein B1 is a predictor of poor survival in ovarian cancer. Oncotarget 2017; 8:101215-101223. [PMID: 29254158 PMCID: PMC5731868 DOI: 10.18632/oncotarget.20538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 08/07/2017] [Indexed: 01/16/2023] Open
Abstract
High-mobility group protein B1 (HMGB1) has been implicated in numerous tumour types where expression regulates tumour cell growth and survival. We hypothesised that high HMGB1 expression in ovarian tumours would predict poor patient survival. Using tissue microarrays of primary ovarian cancers combined with a comprehensive database of clinicopathological variables, the expression of HMGB1 was assessed by immunohistochemistry in two independent cohorts (n=194 and n=360) using a monoclonal antibody specific for HMGB1. Kaplan-Meier analysis showed an association of HMGB1 expression with progression free survival in the primary cohort (p=0.023). In the validation cohort, expression was associated with overall survival (p=0.002). Low expression of HMGB1 was protective and in a multivariate model HMGB1 expression was shown to be an independent predictor of poor survival in ovarian cancer (p=0.006). The role of HMGB1 in cancer is complex. As high levels of HMGB1 expression are likely to render ovarian cancer cells resistant to chemotherapy, therapies targeting the HMGB1 axis may be appropriate in the treatment of ovarian cancer patients.
Collapse
Affiliation(s)
- Lee R Machado
- Faculty of Health and Society, University of Northampton, Boughton Green Road, Northampton, NN2 7AL, United Kingdom.,Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK.,Faculty of Science, Technology, Engineering & Mathematics, The Open University, Milton Keynes, MK7 6AA, UK
| | - Paul M Moseley
- Clinical Oncology Department, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Robert Moss
- Academic Department of Clinical Oncology, Division of Cancer and Stem cells, City Hospital Campus, University of Nottingham, Nottingham NG5 1PB, UK
| | - Suha Deen
- Department of Histopathology, Nottingham University Hospitals NHS Trust, Queen's Medical Centre Campus Division of Clinical Pathology Division of Clinical Oncology, School of Molecular Medical Sciences, University of Nottingham, City Hospital Campus, Nottingham NG5 1PB, UK
| | - Christopher Nolan
- Academic Department of Clinical Oncology, Division of Cancer and Stem cells, City Hospital Campus, University of Nottingham, Nottingham NG5 1PB, UK
| | - Ian Spendlove
- Academic Department of Clinical Oncology, Division of Cancer and Stem cells, City Hospital Campus, University of Nottingham, Nottingham NG5 1PB, UK
| | - Judith M Ramage
- Academic Department of Clinical Oncology, Division of Cancer and Stem cells, City Hospital Campus, University of Nottingham, Nottingham NG5 1PB, UK
| | - Stephen Yt Chan
- Clinical Oncology Department, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Lindy G Durrant
- Academic Department of Clinical Oncology, Division of Cancer and Stem cells, City Hospital Campus, University of Nottingham, Nottingham NG5 1PB, UK
| |
Collapse
|
34
|
Tassi RA, Todeschini P, Siegel ER, Calza S, Cappella P, Ardighieri L, Cadei M, Bugatti M, Romani C, Bandiera E, Zanotti L, Tassone L, Guarino D, Santonocito C, Capoluongo ED, Beltrame L, Erba E, Marchini S, D'Incalci M, Donzelli C, Santin AD, Pecorelli S, Sartori E, Bignotti E, Odicino F, Ravaggi A. FOXM1 expression is significantly associated with chemotherapy resistance and adverse prognosis in non-serous epithelial ovarian cancer patients. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:63. [PMID: 28482906 PMCID: PMC5422964 DOI: 10.1186/s13046-017-0536-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/19/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is a spectrum of different diseases, which makes their treatment a challenge. Forkhead box M1 (FOXM1) is an oncogene aberrantly expressed in many solid cancers including serous EOC, but its role in non-serous EOCs remains undefined. We examined FOXM1 expression and its correlation to prognosis across the three major EOC subtypes, and its role in tumorigenesis and chemo-resistance in vitro. METHODS Gene signatures were generated by microarray for 14 clear-cell and 26 endometrioid EOCs, and 15 normal endometrium snap-frozen biopsies. Validation of FOXM1 expression was performed by RT-qPCR and immunohistochemistry in the same samples and additionally in 50 high-grade serous EOCs and in their most adequate normal controls (10 luminal fallopian tube and 20 ovarian surface epithelial brushings). Correlations of FOXM1 expression to clinic-pathological parameters and patients' prognosis were evaluated by Kaplan-Meier and Cox proportional-hazards analyses. OVCAR-3 and two novel deeply characterized EOC cell lines (EOC-CC1 and OSPC2, with clear-cell and serous subtype, respectively) were employed for in vitro studies. Effects of FOXM1 inhibition by transient siRNA transfection were evaluated on cell-proliferation, cell-cycle, colony formation, invasion, and response to conventional first- and second-line anticancer agents, and to the PARP-inhibitor olaparib. Gene signatures of FOXM1-silenced cell lines were generated by microarray and confirmed by RT-qPCR. RESULTS A significant FOXM1 mRNA up-regulation was found in EOCs compared to normal controls. FOXM1 protein overexpression significantly correlated to serous histology (p = 0.001) and advanced FIGO stage (p = 0.004). Multivariate analyses confirmed FOXM1 protein overexpression as an independent indicator of worse disease specific survival in non-serous EOCs, and of shorter time to progression in platinum-resistant cases. FOXM1 downregulation in EOC cell lines inhibited cell growth and clonogenicity, and promoted the cytotoxic effects of platinum compounds, doxorubicin hydrochloride and olaparib. Upon FOXM1 knock-down in EOC-CC1 and OSPC2 cells, microarray and RT-qPCR analyses revealed the deregulation of several common and other unique subtype-specific FOXM1 putative targets involved in cell cycle, metastasis, DNA repair and drug response. CONCLUSIONS FOXM1 is up-regulated in all three major EOCs subtypes, and is a prognostic biomarker and a potential combinatorial therapeutic target in platinum resistant disease, irrespective of tumor histology.
Collapse
Affiliation(s)
- Renata A Tassi
- Department of Obstetrics and Gynecology, "Angelo Nocivelli" Institute of Molecular Medicine, University of Brescia, Brescia, Italy.
| | - Paola Todeschini
- Department of Obstetrics and Gynecology, "Angelo Nocivelli" Institute of Molecular Medicine, University of Brescia, Brescia, Italy
| | - Eric R Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stefano Calza
- Department of Molecular and Translational Medicine, Unit of Biostatistics, University of Brescia, Brescia, Italy
| | | | - Laura Ardighieri
- Department of Molecular and Translational Medicine, Section of Pathology, University-ASST Spedali Civili of Brescia, Brescia, Italy
| | - Moris Cadei
- Department of Molecular and Translational Medicine, Section of Pathology, University-ASST Spedali Civili of Brescia, Brescia, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, Section of Pathology, University-ASST Spedali Civili of Brescia, Brescia, Italy
| | - Chiara Romani
- Department of Obstetrics and Gynecology, "Angelo Nocivelli" Institute of Molecular Medicine, University of Brescia, Brescia, Italy
| | - Elisabetta Bandiera
- Department of Obstetrics and Gynecology, "Angelo Nocivelli" Institute of Molecular Medicine, University of Brescia, Brescia, Italy
| | - Laura Zanotti
- Department of Obstetrics and Gynecology, "Angelo Nocivelli" Institute of Molecular Medicine, University of Brescia, Brescia, Italy
| | - Laura Tassone
- Department of Obstetrics and Gynecology, "Angelo Nocivelli" Institute of Molecular Medicine, University of Brescia, Brescia, Italy
| | - Donatella Guarino
- Laboratory of Clinical Molecular and Personalized Diagnostics, Institute of Biochemistry and Clinical Biochemistry, Catholic University and Foundation Gemelli Hospital, Rome, Italy
| | - Concetta Santonocito
- Laboratory of Clinical Molecular and Personalized Diagnostics, Institute of Biochemistry and Clinical Biochemistry, Catholic University and Foundation Gemelli Hospital, Rome, Italy
| | - Ettore D Capoluongo
- Laboratory of Clinical Molecular and Personalized Diagnostics, Institute of Biochemistry and Clinical Biochemistry, Catholic University and Foundation Gemelli Hospital, Rome, Italy
| | - Luca Beltrame
- Department of Oncology, IRCCS - "Mario Negri" Institute for Pharmacological Research, Milan, Italy
| | - Eugenio Erba
- Department of Oncology, IRCCS - "Mario Negri" Institute for Pharmacological Research, Milan, Italy
| | - Sergio Marchini
- Department of Oncology, IRCCS - "Mario Negri" Institute for Pharmacological Research, Milan, Italy
| | - Maurizio D'Incalci
- Department of Oncology, IRCCS - "Mario Negri" Institute for Pharmacological Research, Milan, Italy
| | - Carla Donzelli
- Department of Molecular and Translational Medicine, Section of Pathology, University-ASST Spedali Civili of Brescia, Brescia, Italy
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Sergio Pecorelli
- Department of Obstetrics and Gynecology, "Angelo Nocivelli" Institute of Molecular Medicine, University of Brescia, Brescia, Italy
| | - Enrico Sartori
- Department of Obstetrics and Gynecology, University of Brescia, Brescia, Italy
| | - Eliana Bignotti
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Franco Odicino
- Department of Obstetrics and Gynecology, University of Brescia, Brescia, Italy
| | - Antonella Ravaggi
- Department of Obstetrics and Gynecology, "Angelo Nocivelli" Institute of Molecular Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
35
|
Zhang Y, Dong S, Xu R, Yang Y, Zheng Z, Wang X, Ren R, Sun R, Li M, Yang H, Huang Y, Zhou F, Zheng A. Prognostic and predictive role of COX-2, XRCC1 and RASSF1 expression in patients with esophageal squamous cell carcinoma receiving radiotherapy. Oncol Lett 2017; 13:2549-2556. [PMID: 28454432 PMCID: PMC5403488 DOI: 10.3892/ol.2017.5780] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 11/07/2016] [Indexed: 01/13/2023] Open
Abstract
Identification of biomarkers for predicting radiosensitivity would be useful for administering individualized radiotherapy (RT) to patients with esophageal cancer. The aim of the present study was to evaluate the association between cyclooxygenase-2 (COX-2), X-ray repair cross complementing group 1 (XRCC1), ras association domain family 1 (RASSF1) protein expression, clinicopathological characteristics, radiosensitivity and survival rate in 76 patients with esophageal squamous cell carcinoma (ESCC) who were treated with RT. Positive expression of COX-2, XRCC1 and RASSF1 was identified by immunohistochemistry in 81.6, 52.6 and 59.2% of ESCC cases, respectively. Negative COX-2 expression was associated with tumor (T) stage, node (N) stage, clinical stage and complete response (P<0.05), but not with gender, age, tumor location, differentiation degree, lesion length, progression-free survival (PFS) or overall survival (OS; P>0.05). XRCC1 expression was not associated with the clinicopathological features of ESCC, response to RT, PFS or OS. Positive RASSF1 expression was associated with the clinical stage, response to RT, PFS and OS (P<0.05), but not with gender, age, tumor location, T stage, N stage, differentiation degree or the lesion length (P>0.05). In the subgroup analysis, RASSF1 positive/XRCC1 negative expression was correlated with a longer median OS and PFS (P<0.05). Multivariate analyses revealed that the tumor response and RASSF1 expression were significant prognostic factors. Therefore, positive RASSF1 expression is associated with ESCC RT sensitivity, and may be a useful independent prognostic factor for ESCC.
Collapse
Affiliation(s)
- Yaowen Zhang
- Department of Radiation Oncology, Anyang Cancer Hospital, Anyang, Henan 455000, P.R. China
| | - Shangwen Dong
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Ruiping Xu
- Department of Radiation Oncology, Anyang Cancer Hospital, Anyang, Henan 455000, P.R. China
| | - Yanping Yang
- Department of Radiation Oncology, Anyang Cancer Hospital, Anyang, Henan 455000, P.R. China
| | - Zhiyong Zheng
- Department of Radiation Oncology, Anyang Cancer Hospital, Anyang, Henan 455000, P.R. China
| | - Xiaojing Wang
- Department of Radiation Oncology, Anyang Cancer Hospital, Anyang, Henan 455000, P.R. China
| | - Runchuan Ren
- Department of Radiation Oncology, Anyang Cancer Hospital, Anyang, Henan 455000, P.R. China
| | - Ronggang Sun
- Department of Radiation Oncology, Anyang Cancer Hospital, Anyang, Henan 455000, P.R. China
| | - Ming Li
- Department of Radiation Oncology, Anyang Cancer Hospital, Anyang, Henan 455000, P.R. China
| | - Haijun Yang
- Department of Radiation Oncology, Anyang Cancer Hospital, Anyang, Henan 455000, P.R. China
| | - Yuting Huang
- Department of Gynecological Oncology, Tianjin Medical Univerisity Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Fuyou Zhou
- Department of Radiation Oncology, Anyang Cancer Hospital, Anyang, Henan 455000, P.R. China
| | - Anping Zheng
- Department of Radiation Oncology, Anyang Cancer Hospital, Anyang, Henan 455000, P.R. China
| |
Collapse
|
36
|
Li F, Wang J, Chen M. Single nucleotide polymorphisms in DNA repair genes and the risk of laryngeal cancer: A meta-analysis. Biomed Pharmacother 2016; 78:92-100. [DOI: 10.1016/j.biopha.2015.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/14/2015] [Indexed: 12/19/2022] Open
|
37
|
Mian M, McNamara MG, Doherty M, Hedley D, Knox JJ, Serra S. Predictive and prognostic values of ERCC1 and XRCC1 in biliary tract cancers. J Clin Pathol 2016; 69:695-701. [DOI: 10.1136/jclinpath-2015-203397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 12/19/2015] [Indexed: 01/04/2023]
|
38
|
Abstract
Scaffold proteins play a central role in DNA repair by recruiting and organizing sets of enzymes required to perform multi-step repair processes. X-ray cross complementing group 1 protein (XRCC1) forms enzyme complexes optimized for single-strand break repair, but participates in other repair pathways as well. Available structural data for XRCC1 interactions is summarized and evaluated in terms of its proposed roles in DNA repair. Mutational approaches related to the abrogation of specific XRCC1 interactions are also discussed. Although substantial progress has been made in elucidating the structural basis for XRCC1 function, the molecular mechanisms of XRCC1 recruitment related to several proposed roles of the XRCC1 DNA repair complex remain undetermined.
Collapse
Affiliation(s)
- Robert E London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
39
|
Abstract
In order to maintain genomic stability, cells have developed sophisticated signalling pathways to enable DNA damage or DNA replication stress to be resolved. Key mediators of this DNA damage response (DDR) are the ATM and ATR kinases, which induce cell cycle arrest and facilitate DNA repair via their downstream targets. Inhibiting the DDR has become an attractive therapeutic concept in cancer therapy, since (i) resistance to genotoxic therapies has been associated with increased DDR signalling, and (ii) many cancers have defects in certain components of the DDR rendering them highly dependent on the remaining DDR pathways for survival. ATM and ATR act as the apical regulators of the response to DNA double strand breaks and replication stress, respectively, with overlapping but non-redundant activities. Highly selective small molecule inhibitors of ATM and ATR are currently in preclinical and clinical development, respectively. Preclinical data have provided a strong rationale for clinical testing of these compounds both in combination with radio- or chemotherapy, and in synthetic lethal approaches to treat tumours with deficiencies in certain DDR components. Whole genome sequencing studies have reported that mutations in DDR genes occur with a high frequency in many common tumour types, suggesting that a synthetic lethal approach with ATM or ATR inhibitors could have widespread utility, providing that appropriate biomarkers are developed.
Collapse
Affiliation(s)
- Anika Maria Weber
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, The Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Anderson Joseph Ryan
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, The Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
40
|
Sharbeen G, McCarroll J, Goldstein D, Phillips PA. Exploiting base excision repair to improve therapeutic approaches for pancreatic cancer. Front Nutr 2015; 2:10. [PMID: 25988138 PMCID: PMC4428371 DOI: 10.3389/fnut.2015.00010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/10/2015] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a highly chemoresistant and metastatic disease with a dismal 5-year survival rate of 6%. More effective therapeutic targets and approaches are urgently needed to tackle this devastating disease. The base excision repair (BER) pathway has been identified as a predictor of therapeutic response, prognostic factor, and therapeutic target in a variety of cancers. This review will discuss our current understanding of BER in PDA and its potential to improve PDA treatment.
Collapse
Affiliation(s)
- George Sharbeen
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, UNSW Australia , Sydney, NSW , Australia
| | - Joshua McCarroll
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia , Sydney, NSW , Australia
| | - David Goldstein
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, UNSW Australia , Sydney, NSW , Australia
| | - Phoebe A Phillips
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, UNSW Australia , Sydney, NSW , Australia
| |
Collapse
|
41
|
Dutta A, Yang C, Sengupta S, Mitra S, Hegde ML. New paradigms in the repair of oxidative damage in human genome: mechanisms ensuring repair of mutagenic base lesions during replication and involvement of accessory proteins. Cell Mol Life Sci 2015; 72:1679-98. [PMID: 25575562 DOI: 10.1007/s00018-014-1820-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 11/30/2022]
Abstract
Oxidized bases in the mammalian genome, which are invariably mutagenic due to their mispairing property, are continuously induced by endogenous reactive oxygen species and more abundantly after oxidative stress. Unlike bulky base adducts induced by UV and other environmental mutagens in the genome that block replicative DNA polymerases, oxidatively damaged bases such as 5-hydroxyuracil, produced by oxidative deamination of cytosine in the template strand, do not block replicative polymerases and thus need to be repaired prior to replication to prevent mutation. Following up our earlier studies, which showed that the Nei endonuclease VIII like 1 (NEIL1) DNA glycosylase, one of the five base excision repair (BER)-initiating enzymes in mammalian cells, has enhanced expression during the S-phase and higher affinity for replication fork-mimicking single-stranded (ss) DNA substrates, we recently provided direct experimental evidence for NEIL1's role in replicating template strand repair. The key requirement for this event, which we named as the 'cow-catcher' mechanism of pre-replicative BER, is NEIL1's non-productive binding (substrate binding without product formation) to the lesion base in ss DNA template to stall DNA synthesis, causing fork regression. Repair of the lesion in reannealed duplex is then carried out by NEIL1 in association with the DNA replication proteins. NEIL1 (and other BER-initiating enzymes) also interact with several accessory and non-canonical proteins including the heterogeneous nuclear ribonucleoprotein U and Y-box-binding protein 1 as well as high mobility group box 1 protein, whose precise roles in BER are still obscure. In this review, we have discussed the recent advances in our understanding of oxidative genome damage repair pathways with particular focus on the pre-replicative template strand repair and the role of scaffold factors like X-ray repairs cross-complementing protein 1 and poly (ADP-ribose) polymerase 1 and other accessory proteins guiding distinct BER sub-pathways.
Collapse
Affiliation(s)
- Arijit Dutta
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | | | | | | | | |
Collapse
|
42
|
Pharmacologic inhibition of ATR and ATM offers clinically important distinctions to enhancing platinum or radiation response in ovarian, endometrial, and cervical cancer cells. Gynecol Oncol 2015; 136:554-61. [PMID: 25560806 DOI: 10.1016/j.ygyno.2014.12.035] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/17/2014] [Accepted: 12/25/2014] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Significant reductions in gynecologic (GYN) cancer mortality and morbidity require treatments that prevent and reverse resistance to chemotherapy and radiation. The objective of this study was to determine if pharmacologic inhibition of key DNA damage response kinases in GYN cancers would enhance cell killing by platinum-based chemotherapy and radiation. METHODS A panel of human ovarian, endometrial and cervical cancer cell lines were treated with platinum drugs or ionizing radiation (IR) along with small molecule pharmacological kinase inhibitors of Ataxia telangiectasia mutated (ATM) and ATM and Rad-3-related (ATR). RESULTS Pharmacologic inhibition of ATR significantly enhanced platinum drug response in all GYN cancer cell lines tested, whereas inhibition of ATM did not enhance the response to platinum drugs. Co-inhibition of ATM and ATR did not enhance platinum kill beyond that observed by inhibition of ATR alone. By contrast, inhibiting either ATR or ATM enhanced the response to IR in all GYN cancer cells, with further enhancement achieved with co-inhibition. CONCLUSIONS These studies highlight actionable mechanisms operative in GYN cancer cells with potential to maximize response of platinum agents and radiation in newly diagnosed as well as recurrent gynecologic cancers.
Collapse
|
43
|
Albarakati N, Abdel-Fatah TMA, Doherty R, Russell R, Agarwal D, Moseley P, Perry C, Arora A, Alsubhi N, Seedhouse C, Rakha EA, Green A, Ball G, Chan S, Caldas C, Ellis IO, Madhusudan S. Targeting BRCA1-BER deficient breast cancer by ATM or DNA-PKcs blockade either alone or in combination with cisplatin for personalized therapy. Mol Oncol 2015; 9:204-17. [PMID: 25205036 PMCID: PMC5528668 DOI: 10.1016/j.molonc.2014.08.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/23/2014] [Accepted: 08/11/2014] [Indexed: 11/17/2022] Open
Abstract
BRCA1, a key factor in homologous recombination (HR) repair may also regulate base excision repair (BER). Targeting BRCA1-BER deficient cells by blockade of ATM and DNA-PKcs could be a promising strategy in breast cancer. We investigated BRCA1, XRCC1 and pol β protein expression in two cohorts (n = 1602 sporadic and n = 50 germ-line BRCA1 mutated) and mRNA expression in two cohorts (n = 1952 and n = 249). Artificial neural network analysis for BRCA1-DNA repair interacting genes was conducted in 249 tumours. Pre-clinically, BRCA1 proficient and deficient cells were DNA repair expression profiled and evaluated for synthetic lethality using ATM and DNA-PKcs inhibitors either alone or in combination with cisplatin. In human tumours, BRCA1 negativity was strongly associated with low XRCC1, and low pol β at mRNA and protein levels (p < 0.0001). In patients with BRCA1 negative tumours, low XRCC1 or low pol β expression was significantly associated with poor survival in univariate and multivariate analysis compared to high XRCC1 or high pol β expressing BRCA1 negative tumours (ps < 0.05). Pre-clinically, BRCA1 negative cancer cells exhibit low mRNA and low protein expression of XRCC1 and pol β. BRCA1-BER deficient cells were sensitive to ATM and DNA-PKcs inhibitor treatment either alone or in combination with cisplatin and synthetic lethality was evidenced by DNA double strand breaks accumulation, cell cycle arrest and apoptosis. We conclude that XRCC1 and pol β expression status in BRCA1 negative tumours may have prognostic significance. BRCA1-BER deficient cells could be targeted by ATM or DNA-PKcs inhibitors for personalized therapy.
Collapse
Affiliation(s)
- Nada Albarakati
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK
| | | | - Rachel Doherty
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Roslin Russell
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Devika Agarwal
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK
| | - Paul Moseley
- Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Christina Perry
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Arvind Arora
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Nouf Alsubhi
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Claire Seedhouse
- Academic Haematology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Emad A Rakha
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Andrew Green
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK
| | - Stephen Chan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Carlos Caldas
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Ian O Ellis
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Srinivasan Madhusudan
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK; Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK.
| |
Collapse
|
44
|
JWA reverses cisplatin resistance via the CK2-XRCC1 pathway in human gastric cancer cells. Cell Death Dis 2014; 5:e1551. [PMID: 25476899 PMCID: PMC4649833 DOI: 10.1038/cddis.2014.517] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 10/08/2014] [Accepted: 10/29/2014] [Indexed: 12/16/2022]
Abstract
Gastric cancer is the third most common malignancy in China, with a median 5-year survival of only 20%. Cisplatin has been used in first-line cancer treatment for several types of cancer including gastric cancer. However, patients are often primary resistant or develop acquired resistance resulting in relapse of the cancer and reduced survival. Recently, we demonstrated that the reduced expression of base excision repair protein XRCC1 and its upstream regulator JWA in gastric cancerous tissues correlated with a significant survival benefit of adjuvant first-line platinum-based chemotherapy as well as XRCC1 playing an important role in the DNA repair of cisplatin-resistant gastric cancer cells. In the present study, we demonstrated the role of JWA in cisplatin-induced DNA lesions and aquired cisplatin resistance in five cell-culture models: gastric epithelial cells GES-1, cisplatin-sensitive gastric cancer cell lines BGC823 and SGC7901, and the cisplatin-resistant gastric cancer cell lines BGC823/DDP and SGC7901/DDP. Our results indicated that JWA is required for DNA repair following cisplatin-induced double-strand breaks (DSBs) via XRCC1 in normal gastric epithelial cells. However, in gastric cancer cells, JWA enhanced cisplatin-induced cell death through regulation of DNA damage-induced apoptosis. The protein expression of JWA was significantly decreased in cisplatin-resistant cells and contributed to cisplatin resistance. Interestingly, as JWA upregulated XRCC1 expression in normal cells, JWA downregulated XRCC1 expression through promoting the degradation of XRCC1 in cisplatin-resistant gastric cancer cells. Furthermore, the negative regulation of JWA to XRCC1 was blocked due to the mutation of 518S/519T/523T residues of XRCC1, and indicating that the CK2 activated 518S/519T/523T phosphorylation is a key point in the regulation of JWA to XRCC1. In conclusion, we report for the first time that JWA regulated cisplatin-induced DNA damage and apoptosis through the CK2—P-XRCC1—XRCC1 pathway, indicating a putative drug target for reversing cisplatin resistance in gastric cancer.
Collapse
|
45
|
Abdel-Fatah TMA, Arora A, Moseley P, Coveney C, Perry C, Johnson K, Kent C, Ball G, Chan S, Madhusudan S. ATM, ATR and DNA-PKcs expressions correlate to adverse clinical outcomes in epithelial ovarian cancers. BBA CLINICAL 2014; 2:10-7. [PMID: 26674120 PMCID: PMC4633921 DOI: 10.1016/j.bbacli.2014.08.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/29/2014] [Accepted: 08/01/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Ataxia-telangiectasia mutated (ATM), ataxia-telangiectasia mutated and rad3 related (ATR) and DNA-dependent protein kinase catalytic sub-unit (DNA-PKcs) play critical roles in DNA damage response (DDR) by linking DNA damage sensing to DDR effectors that regulate cell cycle progression and DNA repair. Our objective was to evaluate if ATM, ATR and DNA-PKcs expressions could predict response to therapy and clinical outcome in epithelial ovarian cancers. METHODS We investigated ATM, ATR, and DNA-PKcs expressions in ovarian epithelial cancers [protein expression (n = 194 patients), mRNA expression (n = 156 patients)] and correlated to clinicopathological outcomes as well as expression of X-ray repair cross-complementing protein 1 (XRCC1), cell division cycle-45 (CDC45), cyclin-dependent kinase 1(CDK1) and Ki-67 in tumours. RESULTS High ATM protein expression was associated with serous cystadenocarcinomas (p = 0.021) and platinum resistance (p = 0.017). High DNA-PKcs protein expression was associated with serous cystadenocarcinomas (p = 0.006) and advanced stage tumours (p = 0.018). High ATM protein (p = 0.001), high ATM mRNA (p = 0.018), high DNA-PKcs protein (p = 0.002), high DNA-PKcs mRNA (p = 0.044) and high ATR protein (p = 0.001) expressions are correlated with poor ovarian cancer specific survival (OCSS). In multivariate Cox model, high DNA-PKcs (p = 0.006) and high ATR (p = 0.043) protein expressions remain independently associated with poor OCSS. CONCLUSIONS ATM, ATR and DNA-PKcs expressions may have prognostic and predictive significances in epithelial ovarian cancer. GENERAL SIGNIFICANCE The data presented here provides evidence that ATM, ATR and DNA-PKcs involved in DDR are not only promising biomarkers but are also rational targets for personalized therapy in ovarian cancer.
Collapse
Affiliation(s)
| | - Arvind Arora
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Paul Moseley
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Clare Coveney
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK
| | - Christina Perry
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK ; Laboratory of Molecular Oncology, Division of Oncology, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Kerstie Johnson
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Christopher Kent
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK
| | - Stephen Chan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Srinivasan Madhusudan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK ; Laboratory of Molecular Oncology, Division of Oncology, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| |
Collapse
|
46
|
Wilson J, Zuniga MC, Yazzie F, Stearns DM. Synergistic cytotoxicity and DNA strand breaks in cells and plasmid DNA exposed to uranyl acetate and ultraviolet radiation. J Appl Toxicol 2014; 35:338-49. [PMID: 24832689 DOI: 10.1002/jat.3015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/03/2014] [Accepted: 03/14/2014] [Indexed: 11/08/2022]
Abstract
Depleted uranium (DU) has a chemical toxicity that is independent of its radioactivity. The purpose of this study was to explore the photoactivation of uranyl ion by ultraviolet (UV) radiation as a chemical mechanism of uranium genotoxicity. The ability of UVB (302 nm) and UVA (368 nm) radiation to photoactivate uranyl ion to produce single strand breaks was measured in pBR322 plasmid DNA, and the presence of adducts and apurinic/apyrimidinic sites that could be converted to single strand breaks by heat and piperidine was analyzed. Results showed that DNA lesions in plasmid DNA exposed to UVB- or UVA-activated DU were only slightly heat reactive, but were piperidine sensitive. The cytotoxicity of UVB-activated uranyl ion was measured in repair-proficient and repair-deficient Chinese hamster ovary cells and human keratinocyte HaCaT cells. The cytotoxicity of co-exposures of uranyl ion and UVB radiation was dependent on the order of exposure and was greater than co-exposures of arsenite and UVB radiation. Uranyl ion and UVB radiation were synergistically cytotoxic in cells, and cells exposed to photoactivated DU required different DNA repair pathways than cells exposed to non-photoactivated DU. This study contributes to our understanding of the DNA lesions formed by DU, as well as their repair. Results suggest that excitation of uranyl ion by UV radiation can provide a pathway for uranyl ion to be chemically genotoxic in populations with dermal exposures to uranium and UV radiation, which would make skin an overlooked target organ for uranium exposures.
Collapse
Affiliation(s)
- Janice Wilson
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, USA
| | | | | | | |
Collapse
|
47
|
Bhandaru M, Martinka M, Li G, Rotte A. Loss of XRCC1 confers a metastatic phenotype to melanoma cells and is associated with poor survival in patients with melanoma. Pigment Cell Melanoma Res 2014; 27:366-75. [DOI: 10.1111/pcmr.12212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 01/07/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Madhuri Bhandaru
- Department of Dermatology and Skin Science; University of British Columbia; Vancouver BC Canada
| | - Magdalena Martinka
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver BC Canada
| | - Gang Li
- Department of Dermatology and Skin Science; University of British Columbia; Vancouver BC Canada
| | - Anand Rotte
- Department of Dermatology and Skin Science; University of British Columbia; Vancouver BC Canada
| |
Collapse
|
48
|
Sultana R, Abdel-Fatah T, Perry C, Moseley P, Albarakti N, Mohan V, Seedhouse C, Chan S, Madhusudan S. Ataxia telangiectasia mutated and Rad3 related (ATR) protein kinase inhibition is synthetically lethal in XRCC1 deficient ovarian cancer cells. PLoS One 2013; 8:e57098. [PMID: 23451157 PMCID: PMC3581581 DOI: 10.1371/journal.pone.0057098] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/17/2013] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Ataxia telangiectasia mutated and Rad3 Related (ATR) protein kinase is a key sensor of single-stranded DNA associated with stalled replication forks and repair intermediates generated during DNA repair. XRCC1 is a critical enzyme in single strand break repair and base excision repair. XRCC1-LIG3 complex is also an important contributor to the ligation step of the nucleotide excision repair response. METHODS In the current study, we investigated synthetic lethality in XRCC1 deficient and XRCC1 proficient Chinese Hamster ovary (CHO) and human ovarian cancer cells using ATR inhibitors (NU6027). In addition, we also investigated the ability of ATR inhibitors to potentiate cisplatin cytotoxicity in XRCC1 deficient and XRCC1 proficient CHO and human cancer cells. Clonogenic assays, alkaline COMET assays, γH2AX immunocytochemistry, FACS for cell cycle as well as FITC-annexin V flow cytometric analysis were performed. RESULTS ATR inhibition is synthetically lethal in XRCC1 deficient cells as evidenced by increased cytotoxicity, accumulation of double strand DNA breaks, G2/M cell cycle arrest and increased apoptosis. Compared to cisplatin alone, combination of cisplatin and ATR inhibitor results in enhanced cytotoxicity in XRCC1 deficient cells compared to XRCC1 proficient cells. CONCLUSIONS Our data provides evidence that ATR inhibition is suitable for synthetic lethality application and cisplatin chemopotentiation in XRCC1 deficient ovarian cancer cells.
Collapse
Affiliation(s)
- Rebeka Sultana
- Laboratory of Molecular Oncology, Academic Unit of Oncology, School of Molecular Medical Sciences, University of Nottingham, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Tarek Abdel-Fatah
- Department of Clinical Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Christina Perry
- Laboratory of Molecular Oncology, Academic Unit of Oncology, School of Molecular Medical Sciences, University of Nottingham, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Paul Moseley
- Department of Clinical Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Nada Albarakti
- Laboratory of Molecular Oncology, Academic Unit of Oncology, School of Molecular Medical Sciences, University of Nottingham, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Vivek Mohan
- Laboratory of Molecular Oncology, Academic Unit of Oncology, School of Molecular Medical Sciences, University of Nottingham, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Claire Seedhouse
- Academic Haematology, School of Molecular Medical Sciences, University of Nottingham, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Stephen Chan
- Department of Clinical Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Srinivasan Madhusudan
- Laboratory of Molecular Oncology, Academic Unit of Oncology, School of Molecular Medical Sciences, University of Nottingham, Nottingham University Hospitals, Nottingham, United Kingdom
| |
Collapse
|