1
|
Matikhina T, Cohen CJ. Targeting TGFβ with chimeric switch receptor and secreted trap to improve T cells anti-tumor activity. Front Immunol 2024; 15:1460266. [PMID: 39512355 PMCID: PMC11540659 DOI: 10.3389/fimmu.2024.1460266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction TGFβ is a major immunoinhibitory factor present in the microenvironment of solid tumors. Various cancer types acquire the ability to overexpress TGFβ to escape immune response. Specifically, TGFβ dampens cytotoxic T cell activity, and its presence has been correlated with tumor invasion and poor prognosis. Methods In this study, we developed two approaches to counteract the effects of TGFβ and provide a functional advantage to genetically engineered T cells in the immunoinhibitory tumor milieu. We designed a TGFβRI-based co-stimulatory switch receptor (CSRI), comprising the TGFβ receptor I extracellular binding domain and a 4-1BB co-stimulatory signaling moiety. Additionally, we tested the efficacy of a TGFβ-binding scFv trap produced by T cells. Results We demonstrated that both approaches enhanced tumor-specific T cell cytokine secretion, upregulated activation markers, and reduced inhibition markers upon co-culture with melanoma targets. Furthermore, CSRI and the anti-TGFβ trap exhibited improved anti-tumor function in vivo. Conclusion Overall, we show that targeting the TGFβ pathway can enhance cellular immunotherapy.
Collapse
Affiliation(s)
| | - Cyrille J. Cohen
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
2
|
Chu GJ, Bailey CG, Nagarajah R, Sagnella SM, Adelstein S, Rasko JEJ. The 4-1BBζ costimulatory domain in chimeric antigen receptors enhances CD8+ T-cell functionality following T-cell receptor stimulation. Cancer Cell Int 2023; 23:327. [PMID: 38105188 PMCID: PMC10726568 DOI: 10.1186/s12935-023-03171-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T-cells have revolutionized the treatment of CD19- and B-cell maturation antigen-positive haematological malignancies. However, the effect of a CAR construct on the function of T-cells stimulated via their endogenous T-cell receptors (TCRs) has yet to be comprehensively investigated. METHODS Experiments were performed to systematically assess TCR signalling and function in CAR T-cells using anti-mesothelin human CAR T-cells as a model system. CAR T-cells expressing the CD28 or 4-1BB costimulatory endodomains were manufactured and compared to both untransduced T-cells and CAR T-cells with a non-functional endodomain. These cell products were treated with staphylococcal enterotoxin B to stimulate the TCR, and in vitro functional assays were performed by flow cytometry. RESULTS Increased proliferation, CD69 expression and IFNγ production were identified in CD8+ 4-1BBζ CAR T-cells compared to control untransduced CD8+ T-cells. These functional differences were associated with higher levels of phosphorylated ZAP70 after stimulation. In addition, these functional differences were associated with a differing immunophenotype, with a more than two-fold increase in central memory cells in CD8+ 4-1BBζ CAR T-cell products. CONCLUSION Our data indicate that the 4-1BBζ CAR enhances CD8+ TCR-mediated function. This could be beneficial if the TCR targets epitopes on malignant tissues or infectious agents, but detrimental if the TCR targets autoantigens.
Collapse
Affiliation(s)
- Gerard J Chu
- Gene and Stem Cell Therapy Program Centenary Institute, Camperdown, NSW, Australia
- Department of Clinical Immunology and Allergy, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Charles G Bailey
- Gene and Stem Cell Therapy Program Centenary Institute, Camperdown, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Cancer & Gene Regulation Laboratory Centenary Institute, Camperdown, NSW, Australia
| | - Rajini Nagarajah
- Gene and Stem Cell Therapy Program Centenary Institute, Camperdown, NSW, Australia
| | - Sharon M Sagnella
- Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Stephen Adelstein
- Department of Clinical Immunology and Allergy, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - John E J Rasko
- Gene and Stem Cell Therapy Program Centenary Institute, Camperdown, NSW, Australia.
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
- Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
| |
Collapse
|
3
|
Zur RT, Adler G, Shamalov K, Tal Y, Ankri C, Cohen CJ. Adoptive T-cell Immunotherapy: Perfecting Self-Defenses. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:253-294. [PMID: 35165867 DOI: 10.1007/978-3-030-91311-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As an important part of the immune system, T lymphocytes exhibit undoubtedly an important role in targeting and eradicating cancer. However, despite these characteristics, their natural antitumor response may be insufficient. Numerous clinical trials in terminally ill cancer patients testing the design of novel and efficient immunotherapeutic approaches based on the adoptive transfer of autologous tumor-specific T lymphocytes have shown encouraging results. Moreover, this also led to the approval of engineered T-cell therapies in patients. Herein, we will expand on the development and the use of such strategies using tumor-infiltrating lymphocytes or genetically engineered T-cells. We will also comment on the requirements and potential hurdles encountered when elaborating and implementing such treatments as well as the exciting prospects for this kind of emerging personalized medicine therapy.
Collapse
Affiliation(s)
- Raphaëlle Toledano Zur
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Galit Adler
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Katerina Shamalov
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Yair Tal
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Chen Ankri
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Cyrille J Cohen
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
4
|
Ankri C, Cohen CJ. Out of the bitter came forth sweet: Activating CD28-dependent co-stimulation via PD-1 ligands. Oncoimmunology 2021; 3:e27399. [PMID: 24711957 PMCID: PMC3976982 DOI: 10.4161/onci.27399] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/02/2013] [Indexed: 11/19/2022] Open
Abstract
Programmed cell death 1 (PDCD1, best known as PD-1) is a central negative regulator of effector T cells that is involved in the etiology of chronic inflammatory conditions, viral diseases, and cancer. We have recently sought to improve T-cell functions by means of a novel chimeric co-stimulatory molecule that could divert the negative signals normally transmitted by PD-1 into positive ones. Human T cells transduced to express a fusion protein encompassing the extracellular domain of PD-1 and the intracellular portion of the co-stimulatory molecule CD28, which we named PD-1/28, exhibited an increase in cytokine secretion, the upregulation of activation markers, an improved proliferative potential and superior antineoplastic activity in xenograft models of human melanoma.
Collapse
Affiliation(s)
- Chen Ankri
- Laboratory of Tumor Immunology and Immunotherapy; The Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat Gan, Israel
| | - Cyrille J Cohen
- Laboratory of Tumor Immunology and Immunotherapy; The Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat Gan, Israel
| |
Collapse
|
5
|
Gaissmaier L, Elshiaty M, Christopoulos P. Breaking Bottlenecks for the TCR Therapy of Cancer. Cells 2020; 9:E2095. [PMID: 32937956 PMCID: PMC7564186 DOI: 10.3390/cells9092095] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 12/26/2022] Open
Abstract
Immune checkpoint inhibitors have redefined the treatment of cancer, but their efficacy depends critically on the presence of sufficient tumor-specific lymphocytes, and cellular immunotherapies develop rapidly to fill this gap. The paucity of suitable extracellular and tumor-associated antigens in solid cancers necessitates the use of neoantigen-directed T-cell-receptor (TCR)-engineered cells, while prevention of tumor evasion requires combined targeting of multiple neoepitopes. These can be currently identified within 2 weeks by combining cutting-edge next-generation sequencing with bioinformatic pipelines and used to select tumor-reactive TCRs in a high-throughput manner for expeditious scalable non-viral gene editing of autologous or allogeneic lymphocytes. "Young" cells with a naive, memory stem or central memory phenotype can be additionally armored with "next-generation" features against exhaustion and the immunosuppressive tumor microenvironment, where they wander after reinfusion to attack heavily pretreated and hitherto hopeless neoplasms. Facilitated by major technological breakthroughs in critical manufacturing steps, based on a solid preclinical rationale, and backed by rapidly accumulating evidence, TCR therapies break one bottleneck after the other and hold the promise to become the next immuno-oncological revolution.
Collapse
Affiliation(s)
- Lena Gaissmaier
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany; (L.G.); (M.E.)
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Mariam Elshiaty
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany; (L.G.); (M.E.)
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany; (L.G.); (M.E.)
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Rath JA, Arber C. Engineering Strategies to Enhance TCR-Based Adoptive T Cell Therapy. Cells 2020; 9:E1485. [PMID: 32570906 PMCID: PMC7349724 DOI: 10.3390/cells9061485] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
T cell receptor (TCR)-based adoptive T cell therapies (ACT) hold great promise for the treatment of cancer, as TCRs can cover a broad range of target antigens. Here we summarize basic, translational and clinical results that provide insight into the challenges and opportunities of TCR-based ACT. We review the characteristics of target antigens and conventional αβ-TCRs, and provide a summary of published clinical trials with TCR-transgenic T cell therapies. We discuss how synthetic biology and innovative engineering strategies are poised to provide solutions for overcoming current limitations, that include functional avidity, MHC restriction, and most importantly, the tumor microenvironment. We also highlight the impact of precision genome editing on the next iteration of TCR-transgenic T cell therapies, and the discovery of novel immune engineering targets. We are convinced that some of these innovations will enable the field to move TCR gene therapy to the next level.
Collapse
MESH Headings
- Biomedical Engineering
- Cell Engineering
- Cell- and Tissue-Based Therapy/adverse effects
- Cell- and Tissue-Based Therapy/methods
- Cell- and Tissue-Based Therapy/trends
- Gene Editing
- Genetic Therapy
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/trends
- Lymphocyte Activation
- Molecular Targeted Therapy
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Safety
- Synthetic Biology
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Translational Research, Biomedical
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
| | - Caroline Arber
- Department of oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
7
|
Bagheri S, Safaie Qamsari E, Yousefi M, Riazi-Rad F, Sharifzadeh Z. Targeting the 4-1BB costimulatory molecule through single chain antibodies promotes the human T-cell response. Cell Mol Biol Lett 2020; 25:28. [PMID: 32336974 PMCID: PMC7178758 DOI: 10.1186/s11658-020-00219-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 03/27/2020] [Indexed: 11/12/2022] Open
Abstract
Background Adoptive T-cell therapy (ACT) using autologous tumor-reactive T lymphocytes has considerable potential for cancer immunotherapy. In ACT, T cells are isolated from cancer patients and then stimulated and expanded in vitro by cytokines and costimulatory molecules. 4-1BB is an important costimulatory protein belonging to the TNF receptor superfamily. It is involved in T-cell survival, proliferation and activation. Agonistic anti-4-1BB monoclonal antibodies have been introduced as appropriate tools for ACT. Methods Here, various single-chain fragment variable (scFv) antibodies were used to activate T cells isolated from peripheral blood via immune magnetic isolation. The T cells were stimulated with IL-2 and anti-CD-3 mAb and then treated with agonistic anti-4-1BB scFvs. The results showed the remarkable effects of anti-41BB scFvs on the functional properties of T cells, including their activation, proliferation and cytokine production. The flow cytometry analysis revealed a considerable increase in the expression of the T-cell activation marker CD69. Moreover, T-cell proliferation was evidenced in treated cells by CFSE labeling compared to the control groups. Result Anti-4-1BB scFvs significantly increased IFN-γ and IL-2 mRNA and protein expression in T cells, but exhibited no stimulatory effect on IL-4 expression. These findings show that anti-4-1BB scFvs could evoke a Type I immune response. Conclusions Our results demonstrate that targeting the 4-1BB molecule using agonistic scFvs could be an effective strategy for T-cell stimulation as part of an ACT approach to cancer treatment.
Collapse
Affiliation(s)
- Salman Bagheri
- 1Department of Immunology, Pasteur Institute of Iran, Tehran, Iran.,2Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,3Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elmira Safaie Qamsari
- 1Department of Immunology, Pasteur Institute of Iran, Tehran, Iran.,2Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,3Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- 2Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Riazi-Rad
- 1Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
8
|
Hoogi S, Eisenberg V, Mayer S, Shamul A, Barliya T, Cohen CJ. A TIGIT-based chimeric co-stimulatory switch receptor improves T-cell anti-tumor function. J Immunother Cancer 2019; 7:243. [PMID: 31500665 PMCID: PMC6734436 DOI: 10.1186/s40425-019-0721-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/28/2019] [Indexed: 12/16/2022] Open
Abstract
Background Tumors can employ different mechanisms to evade immune surveillance and function. Overexpression of co-inhibitory ligands that bind to checkpoint molecules on the surface of T-cells can greatly impair the function of latter. TIGIT (T cell immunoreceptor with Ig and ITIM domains) is such a co-inhibitory receptor expressed by T and NK cells which, upon binding to its ligand (e.g., CD155), can diminish cytokine production and effector function. Additionally, the absence of positive co-stimulation at the tumor site can further dampen T-cell response. Methods As T-cell genetic engineering has become clinically-relevant in the recent years, we devised herein a strategy aimed at enhancing T-cell anti-tumor function by diverting T-cell coinhibitory signals into positive ones using a chimeric costimulatory switch receptor (CSR) composed of the TIGIT exodomain fused to the signaling domain of CD28. Results After selecting an optimized TIGIT-28 CSR, we co-transduced it along with tumor-specific TCR or CAR into human T-cells. TIGIT-28-equipped T-cells exhibited enhanced cytokine secretion and upregulation of activation markers upon co-culture with tumor cells. TIGIT-28 enhancing capability was also demonstrated in an original in vitro model of T-cell of hypofunction induction upon repetitive antigen exposure. Finally, we tested the function of this molecule in the context of a xenograft model of established human melanoma tumors and showed that TIGIT-28-engineered human T-cells demonstrated superior anti-tumor function. Conclusion Overall, we propose that TIGIT-based CSR can substantially enhance T-cell function and thus contribute to the improvement of engineered T cell-based immunotherapy. Electronic supplementary material The online version of this article (10.1186/s40425-019-0721-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shiran Hoogi
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900-02, Ramat Gan, Israel
| | - Vasyl Eisenberg
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900-02, Ramat Gan, Israel
| | - Shimrit Mayer
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900-02, Ramat Gan, Israel
| | - Astar Shamul
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900-02, Ramat Gan, Israel
| | - Tilda Barliya
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900-02, Ramat Gan, Israel
| | - Cyrille J Cohen
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900-02, Ramat Gan, Israel.
| |
Collapse
|
9
|
Vairy S, Garcia JL, Teira P, Bittencourt H. CTL019 (tisagenlecleucel): CAR-T therapy for relapsed and refractory B-cell acute lymphoblastic leukemia. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3885-3898. [PMID: 30518999 PMCID: PMC6237143 DOI: 10.2147/dddt.s138765] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the past decades, survival of patients with acute lymphoblastic leukemia (ALL) has dramatically improved, but the subgroup of patients with relapsed/refractory ALL still continues to have dismal prognosis. As an emerging therapeutic approach, chimeric antigen receptor-modified T-cells (CAR-T) represent one of the few practice-changing therapies for this subgroup of patients. Originally conceived and built in Philadelphia (University of Pennsylvania), CTL019 or tisagenlecleucel, the first CAR-T approved by the US Food and Drug Administration, showed impressive results in refractory/relapsed ALL since the publication on two pediatric patients in 2013. It is in this context that we provide a review of this product in terms of manufacturing, pharmacology, toxicity, and efficacy studies. Evaluation and management of toxicities, particularly cytokine release syndrome and neurotoxicity, is recognized as an essential part of the patient treatment with broader use of IL-6 receptor inhibitor. An under-assessed aspect, the quality of life of patients entering CAR-T cells treatment, will also be reviewed. By their unique nature, CAR-T cells such as tisagenlecleucel operate in a different way than typical drugs, but also provide unique hope for B-cell malignancies.
Collapse
Affiliation(s)
- Stephanie Vairy
- Division of Haematology and Oncology, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada,
| | - Julia Lopes Garcia
- Division of Haematology and Oncology, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada,
| | - Pierre Teira
- Division of Haematology and Oncology, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada,
| | - Henrique Bittencourt
- Division of Haematology and Oncology, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada,
| |
Collapse
|
10
|
Inderberg EM, Mensali N, Oksvold MP, Fallang LE, Fåne A, Skorstad G, Stenvik GE, Progida C, Bakke O, Kvalheim G, Myklebust JH, Wälchli S. Human c-SRC kinase (CSK) overexpression makes T cells dummy. Cancer Immunol Immunother 2018; 67:525-536. [PMID: 29248956 PMCID: PMC11028372 DOI: 10.1007/s00262-017-2105-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/09/2017] [Indexed: 12/26/2022]
Abstract
Adoptive cell therapy with T-cell receptor (TCR)-engineered T cells represents a powerful method to redirect the immune system against tumours. However, although TCR recognition is restricted to a specific peptide-MHC (pMHC) complex, increasing numbers of reports have shown cross-reactivity and off-target effects with severe consequences for the patients. This demands further development of strategies to validate TCR safety prior to clinical use. We reasoned that the desired TCR signalling depends on correct pMHC recognition on the outside and a restricted clustering on the inside of the cell. Since the majority of the adverse events are due to TCR recognition of the wrong target, we tested if blocking the signalling would affect the binding. By over-expressing the c-SRC kinase (CSK), a negative regulator of LCK, in redirected T cells, we showed that peripheral blood T cells inhibited anti-CD3/anti-CD28-induced phosphorylation of ERK, whereas TCR proximal signalling was not affected. Similarly, overexpression of CSK together with a therapeutic TCR prevented pMHC-induced ERK phosphorylation. Downstream effector functions were also almost completely blocked, including pMHC-induced IL-2 release, degranulation and, most importantly, target cell killing. The lack of effector functions contrasted with the unaffected TCR expression, pMHC recognition, and membrane exchange activity (trogocytosis). Therefore, co-expression of CSK with a therapeutic TCR did not compromise target recognition and binding, but rendered T cells incapable of executing their effector functions. Consequently, we named these redirected T cells "dummy T cells" and propose to use them for safety validation of new TCRs prior to therapy.
Collapse
Affiliation(s)
- Else Marit Inderberg
- Section for Cellular Therapy, Department for Cancer Treatment, Oslo University Hospital-Radiumhospitalet, PO Box 4953, Nydalen, 0424, Oslo, Norway
| | - Nadia Mensali
- Section for Cellular Therapy, Department for Cancer Treatment, Oslo University Hospital-Radiumhospitalet, PO Box 4953, Nydalen, 0424, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Morten P Oksvold
- Section for Cancer Immunology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | | | - Anne Fåne
- Section for Cellular Therapy, Department for Cancer Treatment, Oslo University Hospital-Radiumhospitalet, PO Box 4953, Nydalen, 0424, Oslo, Norway
| | - Gjertrud Skorstad
- Section for Cellular Therapy, Department for Cancer Treatment, Oslo University Hospital-Radiumhospitalet, PO Box 4953, Nydalen, 0424, Oslo, Norway
| | | | - Cinzia Progida
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Gunnar Kvalheim
- Section for Cellular Therapy, Department for Cancer Treatment, Oslo University Hospital-Radiumhospitalet, PO Box 4953, Nydalen, 0424, Oslo, Norway
| | - June H Myklebust
- Section for Cancer Immunology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Sébastien Wälchli
- Section for Cellular Therapy, Department for Cancer Treatment, Oslo University Hospital-Radiumhospitalet, PO Box 4953, Nydalen, 0424, Oslo, Norway.
- Section for Cancer Immunology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway.
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
11
|
Eisenberg V, Shamalov K, Meir S, Hoogi S, Sarkar R, Pinker S, Markel G, Porgador A, Cohen CJ. Targeting Multiple Tumors Using T-Cells Engineered to Express a Natural Cytotoxicity Receptor 2-Based Chimeric Receptor. Front Immunol 2017; 8:1212. [PMID: 29085357 PMCID: PMC5649149 DOI: 10.3389/fimmu.2017.01212] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 09/12/2017] [Indexed: 12/22/2022] Open
Abstract
Recent developments in cancer treatment are demonstrating the increasing and powerful potential of immunotherapeutic strategies. In this regard, the adoptive transfer of tumor-specific T-lymphocytes approaches can lead to tumor regression in cancer patients. More recently, the use of T-cells genetically engineered to express cancer-specific receptors such as the anti-CD19 chimeric antigen receptor (CAR) continues to show promise for the treatment of hematological malignancies. Still, there is a crucial need to develop efficient CAR-T cell approaches for the treatment of solid tumors. It has been shown that other lymphocytes such as natural killer (NK) cells can demonstrate potent antitumor function—nonetheless, their use in immunotherapy is rather limited due to difficulties in expanding these cells to therapeutically relevant numbers and to suppression by endogenous inhibitory mechanisms. Cancer recognition by NK cells is partly mediated by molecules termed natural cytotoxicity receptors (NCRs). In the present study, we hypothesize that it is possible to endow T-cells with an NK recognition pattern, providing them with a mean to recognize tumor cells, in a non-MHC restricted way. To test this, we genetically modified human T-cells with different chimeric receptors based on the human NCR2 molecule and then assessed their antitumor activity in vitro and in vivo. Our results show that expression in primary lymphocytes of an NCR2-derived CAR, termed s4428z, confers T-cells with the ability to specifically recognize heterogeneous tumors and to mediate tumor cytotoxicity in a mouse model. This study demonstrates the benefit of combining tumor recognition capability of NK cells with T cell effectiveness to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Vasyl Eisenberg
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Katerina Shamalov
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Shimrit Meir
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Shiran Hoogi
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Rhitajit Sarkar
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel.,ASAS, Amity University Haryana, Manesar, India
| | - Shirel Pinker
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Gal Markel
- The Ella Lemelbaum Institute of Immuno-Oncology, Institute of Oncology, Sheba Medical Center, Tel Hashomer, Israel
| | - Angel Porgador
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Cyrille J Cohen
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
12
|
Abstract
Second-generation chimeric antigen receptors (CARs) retarget and reprogramme T cells to augment their antitumour efficacy. The combined activating and co-stimulatory domains incorporated in these CARs critically determine the function, differentiation, metabolism and persistence of engineered T cells. CD19-targeted CARs that incorporate CD28 or 4-1BB signalling domains are the best known to date. Both have shown remarkable complete remission rates in patients with refractory B cell malignancies. Recent data indicate that CD28-based CARs direct a brisk proliferative response and boost effector functions, whereas 4-1BB-based CARs induce a more progressive T cell accumulation that may compensate for less immediate potency. These distinct kinetic features can be exploited to further develop CAR-based T cell therapies for a variety of cancers. A new field of immunopharmacology is emerging.
Collapse
|
13
|
An NCR1-based chimeric receptor endows T-cells with multiple anti-tumor specificities. Oncotarget 2015; 5:10949-58. [PMID: 25431955 PMCID: PMC4279421 DOI: 10.18632/oncotarget.1919] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/24/2014] [Indexed: 02/07/2023] Open
Abstract
The Ral (Ras-like) GTP-binding proteins (RalA and RalB), as effectors of the proto-oncogene Natural killer (NK) cells are an important component of the anti-tumor response. Tumor recognition by NK cells was found to be partly triggered by molecules termed natural cytotoxic receptors (NCRs). Adoptive transfer of genetically-engineered tumor-reactive T-lymphocytes can mediate remarkable tumor regressions mostly in melanoma and leukemia patients. Yet, the application of such treatments to other cancers is needed and dependent on the isolation of receptors that could facilitate efficient recognition of these malignancies. Herein, we aimed at combining NK tumor recognition capability with the genetic modification of T-cells to provide the latter with a means to recognize several tumors in a non-MHC restricted way. Consequently, we generated and evaluated several chimeric receptors based on the extracellular domain of NCR1 (NKp46) fused to multiple signaling moieties and assess their antitumor activity when retrovirally expressed in T-cells. Following co-culture with different tumors, primary human T-lymphocytes expressing a chimeric NCR1 molecule recognized target cells derived from lung, cervical carcinoma, leukemia and pancreatic cancer. In addition, this receptor mediated an upregulation of surface activation markers and significant antitumor cytotoxicity both in vitro and in vivo. These results have meaningful implications for the immunotherapeutic treatment of cancer using gene-modified T-cells.
Collapse
|
14
|
Pilones KA, Aryankalayil J, Babb JS, Demaria S. Invariant natural killer T cells regulate anti-tumor immunity by controlling the population of dendritic cells in tumor and draining lymph nodes. J Immunother Cancer 2014; 2:37. [PMID: 25349699 PMCID: PMC4206765 DOI: 10.1186/s40425-014-0037-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 09/11/2014] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Invariant natural killer T (iNKT) cells are CD1d-restricted T cells, which respond rapidly to antigen recognition and promote development of anti-tumor immunity in many tumor models. Surprisingly, we previously found that mice deficient in iNKT cells developed spontaneous CD8(+) T cells responses partially effective at inhibiting metastases in mice bearing the 4T1 mammary carcinoma, and showed a markedly improved response to treatment with local radiotherapy and anti-CTLA-4 antibody compared to wild type (WT) mice. METHODS To understand the mechanisms of the immunosuppressive function of iNKT cells, dendritic cells (DCs) were analyzed by immunohistochemistry and flow cytometry in WT and iNKT-deficient (iNKT(-/-)) mice. The effects of antibody-mediated blockade of CD1d on DC number and phenotype, priming of anti-tumor T cells, and tumor response to treatment with local radiotherapy and anti-CTLA-4 antibody were evaluated. To determine if the improved response to treatment in the absence of iNKT cells was independent from the immunotherapy employed, 4T1-tumor bearing WT and iNKT(-/-) mice were treated with local radiotherapy in combination with antibody-mediated CD137 co-stimulation. RESULTS DCs in 4T1 tumors and tumor-draining lymph nodes but not distant lymph nodes were significantly reduced in WT mice compared to iNKT(-/-) mice (p < 0.05), suggesting the selective elimination of DCs cross-presenting tumor-associated antigens by iNKT cells. Consistently, priming of T cells to a tumor-specific CD8 T cell epitope in mice treated with radiotherapy and anti-CTLA-4 or anti-CD137 was markedly enhanced in iNKT(-/-) compared to WT mice. CD1d blockade restored the number of DC in WT mice, improved T cell priming in draining lymph nodes and significantly enhanced response to treatment. CONCLUSIONS Here we describe a novel mechanism of tumor immune escape mediated by iNKT cells that limit priming of anti-tumor T cells by controlling DC in tumors and draining lymph nodes. These results have important implications for the design of immunotherapies targeting iNKT cells.
Collapse
Affiliation(s)
- Karsten A Pilones
- Department of Pathology, New York University School of Medicine, New York, NY 10016 USA
| | - Joseph Aryankalayil
- Department of Pathology, New York University School of Medicine, New York, NY 10016 USA
| | - James S Babb
- Department of Radiology, New York University School of Medicine, New York, NY 10016 USA
| | - Sandra Demaria
- Department of Pathology, New York University School of Medicine, New York, NY 10016 USA ; Department of Radiation Oncology, New York University School of Medicine, New York, NY 10016 USA ; New York University School of Medicine, Alexandria Center for Life Sciences, 450 East 29th St, Room 324B, New York, NY 10016 USA
| |
Collapse
|
15
|
Ankri C, Shamalov K, Horovitz-Fried M, Mauer S, Cohen CJ. Human T Cells Engineered To Express a Programmed Death 1/28 Costimulatory Retargeting Molecule Display Enhanced Antitumor Activity. THE JOURNAL OF IMMUNOLOGY 2013; 191:4121-9. [DOI: 10.4049/jimmunol.1203085] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|