1
|
Wang W, Hu Y, Fu F, Ren W, Wang T, Wang S, Li Y. Advancement in Multi-omics approaches for Uterine Sarcoma. Biomark Res 2024; 12:129. [PMID: 39472980 PMCID: PMC11523907 DOI: 10.1186/s40364-024-00673-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
Uterine sarcoma (US) is a rare malignant tumor that has various pathological types and high heterogeneity in the female reproductive system. Its subtle early symptoms, frequent recurrence, and resistance to radiation and chemotherapy make the prognosis for US patients very poor. Therefore, understanding the molecular mechanisms underlying tumorigenesis and progression is essential for an accurate diagnosis and targeted therapy to improve patient outcomes. Recent advancements in high-throughput molecular sequencing have allowed for a deeper understanding of diseases through multi-omics technologies. In this review, the latest progress and future potential of multi-omics technologies in US research is examined, and their roles in biomarker discovery and their application in the precise diagnosis and treatment of US are highlighted.
Collapse
Affiliation(s)
- Wuyang Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv. Wuhan, Wuhan, Hubei, 430030, P.R. China
| | - Yu Hu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv. Wuhan, Wuhan, Hubei, 430030, P.R. China
| | - Fangfang Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv. Wuhan, Wuhan, Hubei, 430030, P.R. China
| | - Wu Ren
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv. Wuhan, Wuhan, Hubei, 430030, P.R. China
| | - Tian Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv. Wuhan, Wuhan, Hubei, 430030, P.R. China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv. Wuhan, Wuhan, Hubei, 430030, P.R. China.
| | - Yan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv. Wuhan, Wuhan, Hubei, 430030, P.R. China.
| |
Collapse
|
2
|
Fontanges Q, Truffaux N, Azmani R, Bourdon A, Croce S. [Translocation-associated uterine mesenchymal tumors: The new without forgetting the old. An integrated diagnostic approach]. Ann Pathol 2024:S0242-6498(24)00200-1. [PMID: 39424447 DOI: 10.1016/j.annpat.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/21/2024]
Abstract
This review focuses on uterine mesenchymal tumors that are defined on a molecular level by a single and unique genetic alteration, that is somehow necessary and sufficient to allow tumor growth and progression. Although diverse from a clinical, morphological and immunohistochemical point of view, the different entities we are going to talk about share both a simple genomic profile with a low number of chromosomal alterations observed by CGH Array (few deletions, gains or amplifications...) and a low mutational burden observed by sequencing technics. Some of these entities are already well known and described in the literature when found outside of the uterus and gynecological tract. It remains intriguing that uterine mesenchymal pathology has been lagging behind when compared to its extrauterine counterpart. How can we explain that when it comes to inflammatory myofibroblastic tumors, abundant numbers of articles have been published since the 70's, but it was only in the early 2000s that the first relevant descriptions of this tumor in the uterus emerged? Certainly, the increased accuracy, availability, and use of molecular biology technics and in particular RNA sequencing in the area of uterine pathology can partly explain the reduction of the gap between soft tissue and uterine pathology we currently observe. Other reasons explaining this gap may be the high prevalence of smooth muscle tumors in the uterus and the abounding diversity of their morphological aspects, which may have partly eclipsed the array of differential diagnoses. Last but not least, one can hypothesize that the relative "simplicity" of hysterectomy procedures, referring to their safety and accessibility, has cured most of the lesions and partly clouded our knowledge regarding the biological potential and natural history of these newly described entities. As a consequence of this situation, our reader will often encounter the wording "uncertain malignant potential", as for some of these rare entities, evidence to establish reliable prognostic variables is still insufficient. We hope this review to be a useful tool to guide pathologists through the diversity and complexity of uterine mesenchymal tumors. As a scientific and medical community, sharing this knowledge will help us to collectively raise our vigilance and awareness by expanding the array of our differential diagnoses. We hope this will lead to more cases being accurately diagnosed, and ultimately, to a deeper knowledge regarding the biological potential and clinical evolution of these tumors. From a therapeutical point of view, the consequences of an accurate diagnosis for the patient are already appreciable through the use of targeted therapy. Examples include: ALK inhibitors in inflammatory myofibroblastic tumor, tyrosine-kinase inhibitors in COL1A::PDGFB rearranged sarcomas or mTOR inhibitors in PEComa.
Collapse
Affiliation(s)
- Quitterie Fontanges
- Département de pathologie, cliniques universitaires de Saint-Luc, Bruxelles, Belgique.
| | | | - Rihab Azmani
- Unité bio-informatique, direction données et santé numérique, institut Bergonié, Bordeaux, France
| | - Aurélien Bourdon
- Unité bio-informatique, direction données et santé numérique, institut Bergonié, Bordeaux, France
| | - Sabrina Croce
- Département de biopathologie, institut Bergonié, Bordeaux, France; Unité Inserm 1312, Bordeaux, France
| |
Collapse
|
3
|
Cassim A, Dun MD, Gallego-Ortega D, Valdes-Mora F. EZHIP's role in diffuse midline glioma: echoes of oncohistones? Trends Cancer 2024:S2405-8033(24)00191-2. [PMID: 39343635 DOI: 10.1016/j.trecan.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
The enhancer of zeste inhibitory protein (EZHIP) is typically expressed during germ cell development and has been classified as a cancer-testis antigen (CTA) in various cancers. In 2020, 4% of diffuse midline gliomas (DMGs) were shown to aberrantly express EZHIP, mirroring the DMG hallmark histone H3 K27M (H3K27M) oncohistone mutation. Similar to H3K27M, EZHIP is a negative regulator of polycomb repressive complex 2 (PRC2), leading to global epigenomic remodeling. In this opinion, we explore the similarities and disparities between H3K27M- and EZHIP-DMGs with a focus on their shared functional hallmark of PRC2 inhibition, their genetic and epigenomic landscapes, plausible differences in the cell of origin, and therapeutic avenues. Upcoming research on EZHIP will help better understand its role in gliomagenesis and DMG therapy.
Collapse
Affiliation(s)
- Afraah Cassim
- Cancer Epigenetic Biology and Therapeutics Laboratory, Children's Cancer Institute, Lowy Cancer Centre, Kensington, New South Wales, Australia; School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, New South Wales, Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia; Paediatric Stream, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, New South Wales, Australia
| | - David Gallego-Ortega
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, New South Wales, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales Sydney, New South Wales, Australia; Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Fatima Valdes-Mora
- Cancer Epigenetic Biology and Therapeutics Laboratory, Children's Cancer Institute, Lowy Cancer Centre, Kensington, New South Wales, Australia; School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, New South Wales, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales Sydney, New South Wales, Australia; Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
| |
Collapse
|
4
|
Kolin DL, Nucci MR, Turashvili G, Song SJ, Corbett-Burns S, Cesari M, Chang MC, Clarke B, Demicco E, Dube V, Lee CH, Rouzbahman M, Shaw P, Cin PD, Swanson D, Dickson BC. Targeted RNA Sequencing Highlights a Diverse Genomic and Morphologic Landscape in Low-grade Endometrial Stromal Sarcoma, Including Novel Fusion Genes. Am J Surg Pathol 2024; 48:36-45. [PMID: 37867306 DOI: 10.1097/pas.0000000000002142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Low-grade endometrial stromal sarcoma (LGESS) represents a morphologically and genetically heterogenous mesenchymal neoplasm. Previous work has shown that approximately half of LGESS are characterized by JAZF1::SUZ12 gene fusions, while a smaller proportion involves rearrangement of other genes. However, a subset of cases has no known genetic abnormalities. To better characterize the genomic landscape of LGESS, we interrogated a cohort with targeted RNA sequencing (RNA-Seq). Cases previously diagnosed as low-grade endometrial stromal neoplasia (n=51) were identified and re-reviewed for morphology and subjected to RNA-Seq, of which 47 were successfully sequenced. The median patient age was 49 years (range: 19 to 85). The most commonly detected fusions were JAZF1::SUZ12 (n=26, 55%) and BRD8::PHF1 (n=3, 6%). In addition to the usual/typical LGESS morphology, some JAZF1::SUZ12 fusion tumors showed other morphologies, including fibrous, smooth muscle, sex-cord differentiation, and myxoid change. Novel translocations were identified in 2 cases: MEAF6::PTGR2 and HCFC1::PHF1 . Ten tumors (21%) had no identifiable fusion, despite a similar morphology and immunophenotype to fusion-positive cases. This suggests that a subset of cases may be attributable to fusion products among genes that are not covered by the assay, or perhaps altogether different molecular mechanisms. In all, these findings confirm that RNA-Seq is a potentially useful ancillary test in the diagnosis of endometrial stromal neoplasms and highlight their diverse morphology.
Collapse
Affiliation(s)
- David L Kolin
- Department of Pathology, Division of Women's and Perinatal Pathology
| | - Marisa R Nucci
- Department of Pathology, Division of Women's and Perinatal Pathology
| | - Gulisa Turashvili
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Sharon J Song
- Department of Pathology, Division of Women's and Perinatal Pathology
| | | | - Matthew Cesari
- Department of Laboratory Medicine and Pathobiology, University of Toronto
- Department of Pathology, Trillium Health Partners, Mississauga, Ontario
| | - Martin C Chang
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington, VT
| | - Blaise Clarke
- Department of Laboratory Medicine and Pathobiology, University of Toronto
- Department of Pathology & Laboratory Medicine, University Health Network
| | - Elizabeth Demicco
- Department of Laboratory Medicine and Pathobiology, University of Toronto
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital
| | - Valerie Dube
- Department of Laboratory Medicine and Pathobiology, University of Toronto
- Department of Pathology, Trillium Health Partners, Mississauga, Ontario
| | - Cheng-Han Lee
- Laboratory Medicine & Pathology Department, University of Alberta, Edmonton, Alberta, Canada
| | - Marjan Rouzbahman
- Department of Laboratory Medicine and Pathobiology, University of Toronto
- Department of Pathology & Laboratory Medicine, University Health Network
| | - Patricia Shaw
- Department of Laboratory Medicine and Pathobiology, University of Toronto
- Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, Toronto
| | - Paola Dal Cin
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - David Swanson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital
| | - Brendan C Dickson
- Department of Laboratory Medicine and Pathobiology, University of Toronto
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital
| |
Collapse
|
5
|
Moghaddam PA, Young RH, Ismiil ND, Bennett JA, Oliva E. An Unusual Endometrial Stromal Neoplasm With JAZF1-BCORL1 Rearrangement. Int J Gynecol Pathol 2024; 43:33-40. [PMID: 36811828 DOI: 10.1097/pgp.0000000000000941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Endometrial stromal tumors represent the second most common category of uterine mesenchymal tumors. Several different histologic variants and underlying genetic alterations have been recognized, one such being a group associated with BCORL1 rearrangements. They are usually high-grade endometrial stromal sarcomas, often associated with prominent myxoid background and aggressive behavior. Here, we report an unusual endometrial stromal neoplasm with JAZF1-BCORL1 rearrangement and briefly review the literature. The neoplasm formed a well-circumscribed uterine mass in a 50-yr-old woman and had an unusual morphologic appearance that did not warrant a high-grade categorization. It was characterized by a predominant population of epithelioid cells with clear to focally eosinophilic cytoplasm growing in interanastomosing cords and trabeculae set in a hyalinized stroma as well as nested and fascicular growths imparting focal resemblance to a uterine tumor resembling ovarian sex-cord tumor, PEComa, and a smooth muscle neoplasm. A minor storiform growth of spindle cells reminiscent of the fibroblastic variant of low-grade endometrial stromal sarcoma was also noted but conventional areas of low-grade endometrial stromal neoplasm were not identified. This case expands the spectrum of morphologic features seen in endometrial stromal tumors, especially when associated with a BCORL1 fusion and highlights the utility of immunohistochemical and molecular techniques in the diagnosis of these tumors, not all of which are high grade.
Collapse
|
6
|
Salomoni P, Flanagan AM, Cottone L. (B)On(e)-cohistones and the epigenetic alterations at the root of bone cancer. Cell Death Differ 2023:10.1038/s41418-023-01227-9. [PMID: 37828086 DOI: 10.1038/s41418-023-01227-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Identification of mutations in histones in a number of human neoplasms and developmental syndromes represents the most compelling evidence to date for a causal role of epigenetic perturbations in human disease. In most cases, these mutations have gain of function properties that cause deviation from normal developmental processes leading to embryo defects and/or neoplastic transformation. These exciting discoveries represent a step-change in our understanding of the role of chromatin (dys)regulation in development and disease. However, the mechanisms of action of oncogenic histone mutations (oncohistones) remain only partially understood. Here, we critically assess existing literature on oncohistones focussing mainly on bone neoplasms. We show how it is possible to draw parallels with some of the cell-autonomous mechanisms of action described in paediatric brain cancer, although the functions of oncohistones in bone tumours remain under-investigated. In this respect, it is becoming clear that histone mutations targeting the same residues display, at least in part, tissue-specific oncogenic mechanisms. Furthermore, it is emerging that cancer cells carrying oncohistones can modify the surrounding microenvironment to support growth and/or alter differentiation trajectories. A better understanding of oncohistone function in different neoplasms provide potential for identification of signalling that could be targeted therapeutically. Finally, we discuss some of the main concepts and future directions in this research area, while also drawing possible connections and parallels with other cancer epigenetic mechanisms.
Collapse
Affiliation(s)
- Paolo Salomoni
- Nuclear Function Group, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany.
| | - Adrienne M Flanagan
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK
- Department of Pathology, UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Lucia Cottone
- Department of Pathology, UCL Cancer Institute, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
7
|
Dermawan JK, Dashti N, Chiang S, Turashvili G, Dickson BC, Ellenson LH, Kirchner M, Stenzinger A, Mechtersheimer G, Agaimy A, Antonescu CR. Expanding the molecular spectrum of gene fusions in endometrial stromal sarcoma: Novel subunits of the chromatin remodeling complexes PRC2 and NuA4/TIP60 as alternative fusion partners. Genes Chromosomes Cancer 2023; 62:152-160. [PMID: 36445224 PMCID: PMC9825654 DOI: 10.1002/gcc.23109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2022] Open
Abstract
Endometrial stromal sarcomas (ESS) are morphologically and molecularly heterogeneous. We report novel gene fusions (EPC1::EED, EPC1::EZH2, ING3::PHF1) identified by targeted RNA sequencing in five cases. The ING3::PHF1-fusion positive ESS presented in a 58-year-old female as extrauterine mesocolonic, ovarian masses, and displayed large, monomorphic ovoid-to-epithelioid cells arranged in solid sheets. The patient remained alive with disease 13 months after surgery. The three ESS with EPC1::EED occurred in the uterine corpus in patients with a median age of 58 years (range 27-62 years). One tumor showed a uniform epithelioid nested morphology, while the other two were composed of monomorphic spindle cells in fascicles with elevated mitotic figures, focal tumor cell necrosis, and lymphovascular invasion. At a median follow-up of 20 months, two patients developed local recurrence, including one with concomitant distant metastasis, while one patient remained free of disease. All three patients were alive at the last follow-up. The EPC1::EZH2-fusion positive ESS presented in a 52-year-old female in the uterus, and displayed uniform spindled cells arranged in short fascicles, with focally elevated mitotic activity but without necrosis. The patient remained free of disease 3 months after surgery. All cases were diffusely positive for CD10; four diffusely express estrogen and progesterone receptors. Our study expands the molecular spectrum of EPC1 and PHF1-related gene fusions in ESS to include additional novel subunits of the PRC2 and/or NuA4/TIP60 complexes. These cases displayed a monomorphic epithelioid or spindled phenotype, spanning low-grade and high-grade cytomorphology, all expressing CD10 and commonly ER and PR, and are prone to local and/or distant spread.
Collapse
Affiliation(s)
- Josephine K. Dermawan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nooshin Dashti
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sarah Chiang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gulisa Turashvili
- Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, GA, USA
| | - Brendan C. Dickson
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, Canada
| | - Lora H. Ellenson
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martina Kirchner
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | - Abbas Agaimy
- Institute of Pathology, Erlangen University Hospital, Comprehensive Cancer Center, European Metropolitan Area Erlangen-Nuremberg, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Cristina R. Antonescu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
8
|
Guo Y, Yu Y, Wang GG. Polycomb Repressive Complex 2 in Oncology. Cancer Treat Res 2023; 190:273-320. [PMID: 38113005 DOI: 10.1007/978-3-031-45654-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Dynamic regulation of the chromatin state by Polycomb Repressive Complex 2 (PRC2) provides an important mean for epigenetic gene control that can profoundly influence normal development and cell lineage specification. PRC2 and PRC2-induced methylation of histone H3 lysine 27 (H3K27) are critically involved in a wide range of DNA-templated processes, which at least include transcriptional repression and gene imprinting, organization of three-dimensional chromatin structure, DNA replication and DNA damage response and repair. PRC2-based genome regulation often goes wrong in diseases, notably cancer. This chapter discusses about different modes-of-action through which PRC2 and EZH2, a catalytic subunit of PRC2, mediate (epi)genomic and transcriptomic regulation. We will also discuss about how alteration or mutation of the PRC2 core or axillary component promotes oncogenesis, how post-translational modification regulates functionality of EZH2 and PRC2, and how PRC2 and other epigenetic pathways crosstalk. Lastly, we will briefly touch on advances in targeting EZH2 and PRC2 dependence as cancer therapeutics.
Collapse
Affiliation(s)
- Yiran Guo
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Yao Yu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Gang Greg Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
9
|
Long Non-coding RNA H19 Recruits NFYB to Activate MBTD1 and Regulate Doxorubicin Resistance in Lymphoma Cells. Mol Biotechnol 2022; 65:997-1009. [DOI: 10.1007/s12033-022-00600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022]
|
10
|
A novel CDKN1A-JAZF1 gene fusion in low-grade endometrial stromal sarcoma arising from endometriosis in abdominal wall cesarean section scar: A case report and literature review. Taiwan J Obstet Gynecol 2022; 61:1082-1085. [DOI: 10.1016/j.tjog.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
|
11
|
de Almeida BC, dos Anjos LG, Dobroff AS, Baracat EC, Yang Q, Al-Hendy A, Carvalho KC. Epigenetic Features in Uterine Leiomyosarcoma and Endometrial Stromal Sarcomas: An Overview of the Literature. Biomedicines 2022; 10:2567. [PMID: 36289829 PMCID: PMC9599831 DOI: 10.3390/biomedicines10102567] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
There is a consensus that epigenetic alterations play a key role in cancer initiation and its biology. Studies evaluating the modification in the DNA methylation and chromatin remodeling patterns, as well as gene regulation profile by non-coding RNAs (ncRNAs) have led to the development of novel therapeutic approaches to treat several tumor types. Indeed, despite clinical and translational challenges, combinatorial therapies employing agents targeting epigenetic modifications with conventional approaches have shown encouraging results. However, for rare neoplasia such as uterine leiomyosarcomas (LMS) and endometrial stromal sarcomas (ESS), treatment options are still limited. LMS has high chromosomal instability and molecular derangements, while ESS can present a specific gene fusion signature. Although they are the most frequent types of "pure" uterine sarcomas, these tumors are difficult to diagnose, have high rates of recurrence, and frequently develop resistance to current treatment options. The challenges involving the management of these tumors arise from the fact that the molecular mechanisms governing their progression have not been entirely elucidated. Hence, to fill this gap and highlight the importance of ongoing and future studies, we have cross-referenced the literature on uterine LMS and ESS and compiled the most relevant epigenetic studies, published between 2009 and 2022.
Collapse
Affiliation(s)
- Bruna Cristine de Almeida
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil
| | - Laura Gonzalez dos Anjos
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil
| | - Andrey Senos Dobroff
- UNM Comprehensive Cancer Center (UNMCCC), University of New Mexico, Albuquerque, NM 87131, USA
- Division of Molecular Medicine, Department of Internal Medicine, (UNM) School of Medicine, UNM Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Edmund Chada Baracat
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Katia Candido Carvalho
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil
| |
Collapse
|
12
|
Han J, Song X, Liu Y, Li L. Research progress on the function and mechanism of CXorf67 in PFA ependymoma. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Sudarshan D, Avvakumov N, Lalonde ME, Alerasool N, Joly-Beauparlant C, Jacquet K, Mameri A, Lambert JP, Rousseau J, Lachance C, Paquet E, Herrmann L, Thonta Setty S, Loehr J, Bernardini MQ, Rouzbahman M, Gingras AC, Coulombe B, Droit A, Taipale M, Doyon Y, Côté J. Recurrent chromosomal translocations in sarcomas create a megacomplex that mislocalizes NuA4/TIP60 to Polycomb target loci. Genes Dev 2022; 36:664-683. [PMID: 35710139 DOI: 10.1101/gad.348982.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/31/2022] [Indexed: 11/25/2022]
Abstract
Chromosomal translocations frequently promote carcinogenesis by producing gain-of-function fusion proteins. Recent studies have identified highly recurrent chromosomal translocations in patients with endometrial stromal sarcomas (ESSs) and ossifying fibromyxoid tumors (OFMTs), leading to an in-frame fusion of PHF1 (PCL1) to six different subunits of the NuA4/TIP60 complex. While NuA4/TIP60 is a coactivator that acetylates chromatin and loads the H2A.Z histone variant, PHF1 is part of the Polycomb repressive complex 2 (PRC2) linked to transcriptional repression of key developmental genes through methylation of histone H3 on lysine 27. In this study, we characterize the fusion protein produced by the EPC1-PHF1 translocation. The chimeric protein assembles a megacomplex harboring both NuA4/TIP60 and PRC2 activities and leads to mislocalization of chromatin marks in the genome, in particular over an entire topologically associating domain including part of the HOXD cluster. This is linked to aberrant gene expression-most notably increased expression of PRC2 target genes. Furthermore, we show that JAZF1-implicated with a PRC2 component in the most frequent translocation in ESSs, JAZF1-SUZ12-is a potent transcription activator that physically associates with NuA4/TIP60, its fusion creating outcomes similar to those of EPC1-PHF1 Importantly, the specific increased expression of PRC2 targets/HOX genes was also confirmed with ESS patient samples. Altogether, these results indicate that most chromosomal translocations linked to these sarcomas use the same molecular oncogenic mechanism through a physical merge of NuA4/TIP60 and PRC2 complexes, leading to mislocalization of histone marks and aberrant Polycomb target gene expression.
Collapse
Affiliation(s)
- Deepthi Sudarshan
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Nikita Avvakumov
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Marie-Eve Lalonde
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Nader Alerasool
- Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Charles Joly-Beauparlant
- Computational Biology Laboratory, CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Karine Jacquet
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Amel Mameri
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Jean-Philippe Lambert
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada.,Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Justine Rousseau
- Institut de Recherches Cliniques de Montréal, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Catherine Lachance
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Eric Paquet
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Lara Herrmann
- Computational Biology Laboratory, CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Samarth Thonta Setty
- Computational Biology Laboratory, CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Jeremy Loehr
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Marcus Q Bernardini
- Department of Gynecologic Oncology, Princess Margaret Cancer Center, University Health Network, Sinai Health System, Toronto, Ontario M5B 2M9, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | - Marjan Rouzbahman
- Department of Laboratory Medicine and Pathobiology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario M5G 2C4, Canada
| | - Anne-Claude Gingras
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Benoit Coulombe
- Institut de Recherches Cliniques de Montréal, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Arnaud Droit
- Computational Biology Laboratory, CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Mikko Taipale
- Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Yannick Doyon
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Jacques Côté
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| |
Collapse
|
14
|
Savary C, Picard C, Corradini N, Castets M. Complex Elucidation of Cells-of-Origin in Pediatric Soft Tissue Sarcoma: From Concepts to Real Life, Hide-and-Seek through Epigenetic and Transcriptional Reprogramming. Int J Mol Sci 2022; 23:6310. [PMID: 35682989 PMCID: PMC9181261 DOI: 10.3390/ijms23116310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 02/01/2023] Open
Abstract
Soft tissue sarcoma (STS) comprise a large group of mesenchymal malignant tumors with heterogeneous cellular morphology, proliferative index, genetic lesions and, more importantly, clinical features. Full elucidation of this wide diversity remains a central question to improve their therapeutic management and the identity of cell(s)-of-origin from which these tumors arise is part of this enigma. Cellular reprogramming allows transitions of a mature cell between phenotypes, or identities, and represents one key driver of tumoral heterogeneity. Here, we discuss how cellular reprogramming mediated by driver genes in STS can profoundly reshape the molecular and morphological features of a transformed cell and lead to erroneous interpretation of its cell-of-origin. This review questions the fact that the epigenetic context in which a genetic alteration arises has to be taken into account as a key determinant of STS tumor initiation and progression. Retracing the cancer-initiating cell and its clonal evolution, notably via epigenetic approach, appears as a key lever for understanding the origin of these tumors and improving their clinical management.
Collapse
Affiliation(s)
- Clara Savary
- Childhood Cancer & Cell Death (C3), LabEx DEVweCAN, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Cécile Picard
- Department of Pathology, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, 69002 Lyon, France;
| | - Nadège Corradini
- Department of Pediatric Oncology, Institut d’Hematologie et d’Oncologie Pédiatrique, Centre Léon Bérard, 69008 Lyon, France;
- Department of Translational Research in Pediatric Oncology, Centre Léon Bérard, 69008 Lyon, France
| | - Marie Castets
- Childhood Cancer & Cell Death (C3), LabEx DEVweCAN, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
- Department of Translational Research in Pediatric Oncology, Centre Léon Bérard, 69008 Lyon, France
| |
Collapse
|
15
|
Tavares M, Khandelwal G, Muter J, Viiri K, Beltran M, Brosens JJ, Jenner RG. JAZF1-SUZ12 dysregulates PRC2 function and gene expression during cell differentiation. Cell Rep 2022; 39:110889. [PMID: 35649353 PMCID: PMC9637993 DOI: 10.1016/j.celrep.2022.110889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 03/04/2022] [Accepted: 05/06/2022] [Indexed: 11/03/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) methylates histone H3 lysine 27 (H3K27me3) to maintain gene repression and is essential for cell differentiation. In low-grade endometrial stromal sarcoma (LG-ESS), the PRC2 subunit SUZ12 is often fused with the NuA4/TIP60 subunit JAZF1. We show that JAZF1-SUZ12 dysregulates PRC2 composition, genome occupancy, histone modification, gene expression, and cell differentiation. Loss of the SUZ12 N terminus in the fusion protein abrogates interaction with specific PRC2 accessory factors, reduces occupancy at PRC2 target genes, and diminishes H3K27me3. Fusion to JAZF1 increases H4Kac at PRC2 target genes and triggers recruitment to JAZF1 binding sites during cell differentiation. In human endometrial stromal cells, JAZF1-SUZ12 upregulated PRC2 target genes normally activated during decidualization while repressing genes associated with immune clearance, and JAZF1-SUZ12-induced genes were also overexpressed in LG-ESS. These results reveal defects in chromatin regulation, gene expression, and cell differentiation caused by JAZF1-SUZ12 that may underlie its role in oncogenesis.
Collapse
Affiliation(s)
- Manuel Tavares
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Garima Khandelwal
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Joanne Muter
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Keijo Viiri
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Manuel Beltran
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Jan J Brosens
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Richard G Jenner
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK.
| |
Collapse
|
16
|
Sun Y, Li H. Chimeric RNAs Discovered by RNA Sequencing and Their Roles in Cancer and Rare Genetic Diseases. Genes (Basel) 2022; 13:741. [PMID: 35627126 PMCID: PMC9140685 DOI: 10.3390/genes13050741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 12/30/2022] Open
Abstract
Chimeric RNAs are transcripts that are generated by gene fusion and intergenic splicing events, thus comprising nucleotide sequences from different parental genes. In the past, Northern blot analysis and RT-PCR were used to detect chimeric RNAs. However, they are low-throughput and can be time-consuming, labor-intensive, and cost-prohibitive. With the development of RNA-seq and transcriptome analyses over the past decade, the number of chimeric RNAs in cancer as well as in rare inherited diseases has dramatically increased. Chimeric RNAs may be potential diagnostic biomarkers when they are specifically expressed in cancerous cells and/or tissues. Some chimeric RNAs can also play a role in cell proliferation and cancer development, acting as tools for cancer prognosis, and revealing new insights into the cell origin of tumors. Due to their abilities to characterize a whole transcriptome with a high sequencing depth and intergenically identify spliced chimeric RNAs produced with the absence of chromosomal rearrangement, RNA sequencing has not only enhanced our ability to diagnose genetic diseases, but also provided us with a deeper understanding of these diseases. Here, we reviewed the mechanisms of chimeric RNA formation and the utility of RNA sequencing for discovering chimeric RNAs in several types of cancer and rare inherited diseases. We also discussed the diagnostic, prognostic, and therapeutic values of chimeric RNAs.
Collapse
Affiliation(s)
- Yunan Sun
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA;
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Hui Li
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA;
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
17
|
Dashti NK, Dermawan J, Schoolmeester JK, Halling KC, Antonescu CR. A novel
WWTR1
::
AFF2
fusion in an intra‐abdominal soft tissue sarcoma with associated endometriosis. Genes Chromosomes Cancer 2022; 61:497-502. [PMID: 35429182 PMCID: PMC9233893 DOI: 10.1002/gcc.23045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 11/08/2022] Open
Abstract
Application of molecular testing in clinical practice has led to significant advances in the classification of soft tissue sarcomas. Despite remarkable progress, there are still challenging cases that remain unclassified. In this study, we present an unusual spindle cell sarcoma arising in the abdominal cavity of a 37-year-old female. An extensive panel of immunostains was nonspecific for a line of differentiation and the tumor was subjected to targeted RNA sequencing for further classification. The findings showed a novel WWTR1::AFF2 fusion, which was further confirmed by break-apart FISH analysis for WWTR1 gene rearrangement. The tumor was attached to the wall of sigmoid colon and showed a highly cellular proliferation of plump spindle to epithelioid cells arranged in intersecting fascicles. Areas of extensive endometriosis were identified adjacent to the tumor. The immunoprofile was significant for reactivity with desmin, calponin, WT-1, ER, and PR, while negative for CD10, SMA, caldesmon, pan-keratin, ALK, CD117, and S100. The patient is alive and well after 11 months of follow-up. The exact histogenesis of this sarcoma remains unclear, however, the presence of adjacent endometriosis and coexpression of WT1/ER/PR raises the possibility of an unusual endometrioid stromal sarcoma, occurring outside the GYN tract. Additional cases are needed to establish the recurrent potential of this fusion event and to better define its pathogenesis and clinical behavior.
Collapse
Affiliation(s)
- Nooshin K. Dashti
- Department of Pathology and Laboratory Medicine Cedar‐Sinai Los Angeles California United States
| | - Josephine Dermawan
- Department of Pathology Memorial Sloan Kettering Cancer Center New York New York United States
| | | | - Kevin C. Halling
- Department of Pathology and Laboratory Medicine Mayo Clinic Rochester Minnesota United States
| | - Cristina R. Antonescu
- Department of Pathology Memorial Sloan Kettering Cancer Center New York New York United States
| |
Collapse
|
18
|
Sun L, Zhao W, Zhao Z, Zhu Y. JAZF1, YWHAE and BCOR gene translocation in primary extrauterine low-grade and high-grade endometrial stromal sarcomas. Histopathology 2022; 80:809-819. [PMID: 34843125 DOI: 10.1111/his.14608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 11/26/2022]
Abstract
AIMS JAZF1 translocation is the most common genetic change in low-grade (LG) endometrial stromal sarcoma (ESS), and YWHAE and BCOR translocations are common in high-grade (HG) ESS. Primary extrauterine ESS is rare, and there are limited data on molecular alterations in these tumours. METHODS AND RESULTS Cases of primary extrauterine ESS, comprising eight LG-ESS cases and five HG-ESS cases were collected. Haematoxylin and eosin and immunohistochemical staining were used to observe the histomorphology and analyse related protein expression. JAZF1, YWHAE and BCOR rearrangements were explored with fluorescence in-situ hybridisation (FISH). In LG-ESS, the tumour cells resembled normal proliferative-phase endometrial stromal cells; CD10, oestrogen receptor and progesterone receptor were expressed in all eight cases. In HG-ESS, the tumour cells had uniform HG round and/or spindle morphology, sometimes with an LG component; CD10 was fully expressed in one case and focally expressed in four cases; BCOR was expressed in all five cases, and cyclin D1 in four of five cases. FISH analysis showed JAZF1 translocation in one of eight LG-ESS cases (12.5%). YWHAE translocation occurred in four of five HG-ESS cases, with a positivity rate of 80%. BCOR translocation was absent in all five cases. CONCLUSIONS In extrauterine LG-ESS, the rate of JAZF1 rearrangement was significantly lower than in uterine LG-ESS. This result limited the value of JAZF1 translocation for diagnosis. YWHAE rearrangement is a common genetic change in extrauterine HG-ESS. Further studies are required to confirm these findings, especially in LG-ESS.
Collapse
Affiliation(s)
- Lili Sun
- Department of Pathology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Wei Zhao
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zehua Zhao
- Department of Pathology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Yanmei Zhu
- Department of Pathology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
19
|
Parreno V, Martinez AM, Cavalli G. Mechanisms of Polycomb group protein function in cancer. Cell Res 2022; 32:231-253. [PMID: 35046519 PMCID: PMC8888700 DOI: 10.1038/s41422-021-00606-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/10/2021] [Indexed: 02/01/2023] Open
Abstract
Cancer arises from a multitude of disorders resulting in loss of differentiation and a stem cell-like phenotype characterized by uncontrolled growth. Polycomb Group (PcG) proteins are members of multiprotein complexes that are highly conserved throughout evolution. Historically, they have been described as essential for maintaining epigenetic cellular memory by locking homeotic genes in a transcriptionally repressed state. What was initially thought to be a function restricted to a few target genes, subsequently turned out to be of much broader relevance, since the main role of PcG complexes is to ensure a dynamically choregraphed spatio-temporal regulation of their numerous target genes during development. Their ability to modify chromatin landscapes and refine the expression of master genes controlling major switches in cellular decisions under physiological conditions is often misregulated in tumors. Surprisingly, their functional implication in the initiation and progression of cancer may be either dependent on Polycomb complexes, or specific for a subunit that acts independently of other PcG members. In this review, we describe how misregulated Polycomb proteins play a pleiotropic role in cancer by altering a broad spectrum of biological processes such as the proliferation-differentiation balance, metabolism and the immune response, all of which are crucial in tumor progression. We also illustrate how interfering with PcG functions can provide a powerful strategy to counter tumor progression.
Collapse
Affiliation(s)
- Victoria Parreno
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France
| | - Anne-Marie Martinez
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| |
Collapse
|
20
|
Jenseit A, Camgöz A, Pfister SM, Kool M. EZHIP: a new piece of the puzzle towards understanding pediatric posterior fossa ependymoma. Acta Neuropathol 2022; 143:1-13. [PMID: 34762160 PMCID: PMC8732814 DOI: 10.1007/s00401-021-02382-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/14/2022]
Abstract
Ependymomas (EPN) are tumors of the central nervous system (CNS) that can arise in the supratentorial brain (ST-EPN), hindbrain or posterior fossa (PF-EPN) or anywhere in the spinal cord (SP-EPN), both in children and adults. Molecular profiling studies have identified distinct groups and subtypes in each of these anatomical compartments. In this review, we give an overview on recent findings and new insights what is driving PFA ependymomas, which is the most common group. PFA ependymomas are characterized by a young median age at diagnosis, an overall balanced genome and a bad clinical outcome (56% 10-year overall survival). Sequencing studies revealed no fusion genes or other highly recurrently mutated genes, suggesting that the disease is epigenetically driven. Indeed, recent findings have shown that the characteristic global loss of the repressive histone 3 lysine 27 trimethylation (H3K27me3) mark in PFA ependymoma is caused by aberrant expression of the enhancer of zeste homolog inhibitory protein (EZHIP) or in rare cases by H3K27M mutations, which both inhibit EZH2 thereby preventing the polycomb repressive complex 2 (PRC2) from spreading H3K27me3. We present the current status of the ongoing work on EZHIP and its essential role in the epigenetic disturbance of PFA biology. Comparisons to the oncohistone H3K27M and its role in diffuse midline glioma (DMG) are drawn, highlighting similarities but also differences between the tumor entities and underlying mechanisms. A strong focus is to point out missing information and to present directions of further research that may result in new and improved therapies for PFA ependymoma patients.
Collapse
Affiliation(s)
- Anne Jenseit
- Hopp Children's Cancer Center (KITZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Aylin Camgöz
- Hopp Children's Cancer Center (KITZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center (KITZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Hematology and Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center (KITZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
21
|
Goossens R, Tihaya MS, van den Heuvel A, Tabot-Ndip K, Willemsen IM, Tapscott SJ, González-Prieto R, Chang JG, Vertegaal ACO, Balog J, van der Maarel SM. A proteomics study identifying interactors of the FSHD2 gene product SMCHD1 reveals RUVBL1-dependent DUX4 repression. Sci Rep 2021; 11:23642. [PMID: 34880314 PMCID: PMC8654949 DOI: 10.1038/s41598-021-03030-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022] Open
Abstract
Structural Maintenance of Chromosomes Hinge Domain Containing 1 (SMCHD1) is a chromatin repressor, which is mutated in > 95% of Facioscapulohumeral dystrophy (FSHD) type 2 cases. In FSHD2, SMCHD1 mutations ultimately result in the presence of the cleavage stage transcription factor DUX4 in muscle cells due to a failure in epigenetic repression of the D4Z4 macrosatellite repeat on chromosome 4q, which contains the DUX4 locus. While binding of SMCHD1 to D4Z4 and its necessity to maintain a repressive D4Z4 chromatin structure in somatic cells are well documented, it is unclear how SMCHD1 is recruited to D4Z4, and how it exerts its repressive properties on chromatin. Here, we employ a quantitative proteomics approach to identify and characterize novel SMCHD1 interacting proteins, and assess their functionality in D4Z4 repression. We identify 28 robust SMCHD1 nuclear interactors, of which 12 are present in D4Z4 chromatin of myocytes. We demonstrate that loss of one of these SMCHD1 interacting proteins, RuvB-like 1 (RUVBL1), further derepresses DUX4 in FSHD myocytes. We also confirm the interaction of SMCHD1 with EZH inhibitory protein (EZHIP), a protein which prevents global H3K27me3 deposition by the Polycomb repressive complex PRC2, providing novel insights into the potential function of SMCHD1 in the repression of DUX4 in the early stages of embryogenesis. The SMCHD1 interactome outlined herein can thus provide further direction into research on the potential function of SMCHD1 at genomic loci where SMCHD1 is known to act, such as D4Z4 repeats, the inactive X chromosome, autosomal gene clusters, imprinted loci and telomeres.
Collapse
Affiliation(s)
- Remko Goossens
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Mara S Tihaya
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Anita van den Heuvel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Klorane Tabot-Ndip
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Iris M Willemsen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Román González-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jer-Gung Chang
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Judit Balog
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | | |
Collapse
|
22
|
Dundr P, Gregová M, Hojný J, Krkavcová E, Michálková R, Němejcová K, Bártů M, Hájková N, Laco J, Mára M, Richtárová A, Zima T, Stružinská I. Uterine cellular leiomyomas are characterized by common HMGA2 aberrations, followed by chromosome 1p deletion and MED12 mutation: morphological, molecular, and immunohistochemical study of 52 cases. Virchows Arch 2021; 480:281-291. [PMID: 34626221 DOI: 10.1007/s00428-021-03217-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/14/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022]
Abstract
Cellular leiomyoma (CL) represents an uncommon variant of uterine leiomyoma with limited data concerning its immunohistochemical and molecular profile. We performed a comprehensive analysis of 52 CL cases all of which were analyzed immunohistochemically. Molecular analysis was possible in 32 cases with sufficient DNA, and 38 cases with sufficient RNA. The immunohistochemical results showed a high expression of smooth muscle markers (calponin (100%), desmin (100%), smooth muscle actin (98.1%), caldesmon (96.1%), transgelin (96.1%), smooth muscle myosin heavy chain (86.5%), and smoothelin (61.5%)). Concerning markers of endometrial stromal differentiation, the expression of CD10 was observed in 65.4% cases (42.2% with H-score > 50), and IFITM1 in 36.5% cases (1.9% with H-score > 50). 36.5% showed HMGA2 overexpression at the IHC level, associated with increased mRNA expression in 14/14 cases. The rearrangement of the HMGA2 gene was detected in 13.2%. Chromosome 1p deletion was found in 19.3%, while 9.4% of tumors showed a pathogenic mutation in the MED12 gene. In conclusion, CL is immunohistochemically characterized by a high expression of "smooth muscle" markers commonly associated with a co-expression of "endometrial stromal" markers, where IFITM1 shows superior performance compared to CD10 regarding its specificity for differentiation from endometrial stromal tumors. The sensitivity of smoothelin in CL seems rather low, but no data is available to assess its specificity. On a molecular level, the most common mutually exclusive aberration in CL affects HMGA2, followed by chromosome 1p deletions and MED12 mutations.
Collapse
Affiliation(s)
- Pavel Dundr
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic.
| | - Mária Gregová
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Jan Hojný
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Eva Krkavcová
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Romana Michálková
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Kristýna Němejcová
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Michaela Bártů
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Nikola Hájková
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Jan Laco
- The Fingerland Department of Pathology, Faculty of Medicine in Hradec Králové, University Hospital in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Michal Mára
- Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Adéla Richtárová
- Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tomáš Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ivana Stružinská
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| |
Collapse
|
23
|
Zaytseva M, Papusha L, Novichkova G, Druy A. Molecular Stratification of Childhood Ependymomas as a Basis for Personalized Diagnostics and Treatment. Cancers (Basel) 2021; 13:cancers13194954. [PMID: 34638438 PMCID: PMC8507860 DOI: 10.3390/cancers13194954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/07/2023] Open
Abstract
Ependymomas are among the most enigmatic tumors of the central nervous system, posing enormous challenges for pathologists and clinicians. Despite the efforts made, the treatment options are still limited to surgical resection and radiation therapy, while none of conventional chemotherapies is beneficial. While being histologically similar, ependymomas show considerable clinical and molecular diversity. Their histopathological evaluation alone is not sufficient for reliable diagnostics, prognosis, and choice of treatment strategy. The importance of integrated diagnosis for ependymomas is underscored in the recommendations of Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy. These updated recommendations were adopted and implemented by WHO experts. This minireview highlights recent advances in comprehensive molecular-genetic characterization of ependymomas. Strong emphasis is made on the use of molecular approaches for verification and specification of histological diagnoses, as well as identification of prognostic markers for ependymomas in children.
Collapse
Affiliation(s)
- Margarita Zaytseva
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (L.P.); (G.N.); (A.D.)
- Correspondence:
| | - Ludmila Papusha
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (L.P.); (G.N.); (A.D.)
| | - Galina Novichkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (L.P.); (G.N.); (A.D.)
| | - Alexander Druy
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (L.P.); (G.N.); (A.D.)
- Research Institute of Medical Cell Technologies, 620026 Yekaterinburg, Russia
| |
Collapse
|
24
|
Li C, Wang C. LG-ESSs and HG-ESSs: underlying molecular alterations and potential therapeutic strategies. J Zhejiang Univ Sci B 2021; 22:633-646. [PMID: 34414699 PMCID: PMC8377580 DOI: 10.1631/jzus.b2000797] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/29/2022]
Abstract
Endometrial stromal tumors (ESTs) include endometrial stromal nodule (ESN), low-grade endometrial stromal sarcoma (LG-ESS), high-grade endometrial stromal sarcoma (HG-ESS), and undifferentiated uterine sarcoma (UUS). Since these are rare tumor types, there is an unmet clinical need for the systematic therapy of advanced LG-ESS or HG-ESS. Cytogenetic and molecular advances in ESTs have shown that multiple recurrent gene fusions are present in a large proportion of LG-ESSs, and HG-ESSs are identified by the tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon (YWHAE)-family with sequence similarity 22 (FAM22) fusion. Recently, a group of ESSs harboring both zinc finger CCCH domain-containing protein 7B (ZC3H7B)-B-cell lymphoma 6 corepressor(BCOR) fusion and internal tandem duplication (ITD) of the BCOR gene have been provisionally classified as HG-ESSs. In this review, we firstly describe current knowledge about the molecular characteristics of recurrent aberrant proteins and their roles in the tumorigenesis of LG-ESSs and HG-ESSs. Next, we summarize the possibly shared signal pathways in the tumorigenesis of LG-ESSs and HG-ESSs, and list potentially actionable targets. Finally, based on the above discussion, we propose a few promising therapeutic strategies for LG-ESSs and HG-ESSs with recurrent gene alterations.
Collapse
Affiliation(s)
- Chunhui Li
- Quality Management Office, The Second Hospital of Jilin University, Changchun 130041, China
| | - Chunhong Wang
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
25
|
Lu B, Jiang R, Xie B, Wu W, Zhao Y. Fusion genes in gynecologic tumors: the occurrence, molecular mechanism and prospect for therapy. Cell Death Dis 2021; 12:783. [PMID: 34381020 PMCID: PMC8357806 DOI: 10.1038/s41419-021-04065-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
Gene fusions are thought to be driver mutations in multiple cancers and are an important factor for poor patient prognosis. Most of them appear in specific cancers, thus satisfactory strategies can be developed for the precise treatment of these types of cancer. Currently, there are few targeted drugs to treat gynecologic tumors, and patients with gynecologic cancer often have a poor prognosis because of tumor progression or recurrence. With the application of massively parallel sequencing, a large number of fusion genes have been discovered in gynecologic tumors, and some fusions have been confirmed to be involved in the biological process of tumor progression. To this end, the present article reviews the current research status of all confirmed fusion genes in gynecologic tumors, including their rearrangement mechanism and frequency in ovarian cancer, endometrial cancer, endometrial stromal sarcoma, and other types of uterine tumors. We also describe the mechanisms by which fusion genes are generated and their oncogenic mechanism. Finally, we discuss the prospect of fusion genes as therapeutic targets in gynecologic tumors.
Collapse
Affiliation(s)
- Bingfeng Lu
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruqi Jiang
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bumin Xie
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wu Wu
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
26
|
Vaginal Low-Grade Endometrial Stromal Sarcoma: An Extremely Rare Case Report and Review of the Literature. Int J Gynecol Pathol 2021; 39:447-451. [PMID: 31569185 DOI: 10.1097/pgp.0000000000000626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Endometrial stromal sarcoma (ESS) is a malignant tumor of the uterus that has been described as the second most common malignant uterine mesenchymal tumor. Primary extrauterine ESS (EESS) is an extremely uncommon occurrence. We hereby report a new bona fide case of low-grade EESS in a 74-yr-old woman arising in the vagina, presenting as a polypoid mass associated with irregular vaginal bleeding. On examination, a 6×2×2 cm polypoid mass was found in the left vaginal wall. Consequently, the patient underwent partial vaginectomy and repair. No ESS or endometriotic lesion was found in the endometrium and bilateral adnexa. The diagnosis of ESS performed by typical pathologic and immunohistochemical evaluation was as follows: beta-catenin (+++), estrogen receptor (+++), progesterone receptor (++), vimentin (++), and uniformly negative for CD10, EMA, CD31, CD34, CD117,CD99, SMA, desmin, h-caldesmon, S-100, MelanA, and HMB45. She has remained disease free with no signs or symptoms of recurrent or advanced disease for 46 mo. Although CD10 is the most useful immunohistochemical marker for the diagnosis of this tumor, negative CD10 staining can be encountered with underfixation. Therefore, it is important to use a panel of immunostains that includes CD10, beta-catenin, and smooth muscle markers. The present study describes the clinical and pathologic features of low-grade EESS through a case report and literature review. To the best of our knowledge, this is the eighth report of EESS arising from the vagina.
Collapse
|
27
|
Low-grade Endometrial Stromal Sarcoma With Sex Cord-like Differentiation and PHF1-JAZF1 Fusion With Deletions: A Diagnostic Pitfall of JAZF1 FISH. Int J Gynecol Pathol 2021; 41:244-250. [PMID: 34074959 DOI: 10.1097/pgp.0000000000000795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The molecular knowledge on endometrial stromal neoplasms has been rapidly increasing and is considered complementary to morphologic and immunohistochemical findings for better categorization of these tumors. The most common molecular alteration observed in low-grade endometrial stromal sarcomas is the JAZF1-SUZ12 fusion, whereas, low-grade endometrial stromal sarcoma with sex cord-like differentiation have been shown more commonly to have fusions involving PHF1. Herein, we present a low-grade endometrial stromal sarcoma with sex cord-like differentiation with a fluorescence in situ hybridization showing the apparent loss of one copy of JAZF1 5' and 3' signals, rather than the expected "break-apart" pattern seen in the setting of a JAZF1 fusion. The case was then further evaluated by chromosome microarray and RNA fusion analysis. Overall, the molecular findings supported a PHF1-JAZF1 fusion with deletions right before and after the JAZF1 locus, impairing probe binding and resulting in the unusual "deletion" pattern observed in the JAZF1 fluorescence in situ hybridization, which would not intuitively suggest a fusion involving JAZF1. This case illustrates the importance of integration of morphological and molecular findings as well as the limitations of fluorescence in situ hybridization in detecting fusions, particularly in the setting of more complex chromosomal alterations even though the fusion partners are well-known.
Collapse
|
28
|
Guo Y, Zhao S, Wang GG. Polycomb Gene Silencing Mechanisms: PRC2 Chromatin Targeting, H3K27me3 'Readout', and Phase Separation-Based Compaction. Trends Genet 2021; 37:547-565. [PMID: 33494958 PMCID: PMC8119337 DOI: 10.1016/j.tig.2020.12.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022]
Abstract
Modulation of chromatin structure and/or modification by Polycomb repressive complexes (PRCs) provides an important means to partition the genome into functionally distinct subdomains and to regulate the activity of the underlying genes. Both the enzymatic activity of PRC2 and its chromatin recruitment, spreading, and eviction are exquisitely regulated via interactions with cofactors and DNA elements (such as unmethylated CpG islands), histones, RNA (nascent mRNA and long noncoding RNA), and R-loops. PRC2-catalyzed histone H3 lysine 27 trimethylation (H3K27me3) is recognized by distinct classes of effectors such as canonical PRC1 and BAH module-containing proteins (notably BAHCC1 in human). These effectors mediate gene silencing by different mechanisms including phase separation-related chromatin compaction and histone deacetylation. We discuss recent advances in understanding the structural architecture of PRC2, the regulation of its activity and chromatin recruitment, and the molecular mechanisms underlying Polycomb-mediated gene silencing. Because PRC deregulation is intimately associated with the development of diseases, a better appreciation of Polycomb-based (epi)genomic regulation will have far-reaching implications in biology and medicine.
Collapse
Affiliation(s)
- Yiran Guo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shuai Zhao
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
29
|
Piunti A, Shilatifard A. The roles of Polycomb repressive complexes in mammalian development and cancer. Nat Rev Mol Cell Biol 2021; 22:326-345. [PMID: 33723438 DOI: 10.1038/s41580-021-00341-1] [Citation(s) in RCA: 202] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
More than 80 years ago, the first Polycomb-related phenotype was identified in Drosophila melanogaster. Later, a group of diverse genes collectively called Polycomb group (PcG) genes were identified based on common mutant phenotypes. PcG proteins, which are well-conserved in animals, were originally characterized as negative regulators of gene transcription during development and subsequently shown to function in various biological processes; their deregulation is associated with diverse phenotypes in development and in disease, especially cancer. PcG proteins function on chromatin and can form two distinct complexes with different enzymatic activities: Polycomb repressive complex 1 (PRC1) is a histone ubiquitin ligase and PRC2 is a histone methyltransferase. Recent studies have revealed the existence of various mutually exclusive PRC1 and PRC2 variants. In this Review, we discuss new concepts concerning the biochemical and molecular functions of these new PcG complex variants, and how their epigenetic activities are involved in mammalian development and cancer.
Collapse
Affiliation(s)
- Andrea Piunti
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
30
|
Update on Endometrial Stromal Tumours of the Uterus. Diagnostics (Basel) 2021; 11:diagnostics11030429. [PMID: 33802452 PMCID: PMC8000701 DOI: 10.3390/diagnostics11030429] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Endometrial stromal tumours (ESTs) are rare, intriguing uterine mesenchymal neoplasms with variegated histopathological, immunohistochemical and molecular characteristics. Morphologically, ESTs resemble endometrial stromal cells in the proliferative phase of the menstrual cycle. In 1966 Norris and Taylor classified ESTs into benign and malignant categories according to the mitotic count. In the most recent classification by the WHO (2020), ESTs have been divided into four categories: Endometrial Stromal Nodules (ESNs), Low-Grade Endometrial Stromal Sarcomas (LG-ESSs), High-Grade Endometrial Stromal Sarcomas (HG-ESSs) and Undifferentiated Uterine Sarcomas (UUSs). ESNs are clinically benign. LG-ESSs are tumours of low malignant potential, often with indolent clinical behaviour, with some cases presented with a late recurrence after hysterectomy. HG-ESSs are tumours of high malignant potential with more aggressive clinical outcome. UUSs show high-grade morphological features with very aggressive clinical behavior. With the advent of molecular techniques, the morphological classification of ESTs can be integrated with molecular findings in enhanced classification of these tumours. In the future, the morphological and immunohistochemical features correlated with molecular categorisation of ESTs, will become a robust means to plan therapeutic decisions, especially in recurrences and metastatic disease. In this review, we summarise the morphological, immunohistochemical and molecular features of ESTs with particular reference to the most recent molecular findings.
Collapse
|
31
|
Li J, Galbo PM, Gong W, Storey AJ, Tsai YH, Yu X, Ahn JH, Guo Y, Mackintosh SG, Edmondson RD, Byrum SD, Farrar JE, He S, Cai L, Jin J, Tackett AJ, Zheng D, Wang GG. ZMYND11-MBTD1 induces leukemogenesis through hijacking NuA4/TIP60 acetyltransferase complex and a PWWP-mediated chromatin association mechanism. Nat Commun 2021; 12:1045. [PMID: 33594072 PMCID: PMC7886901 DOI: 10.1038/s41467-021-21357-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 01/22/2021] [Indexed: 12/26/2022] Open
Abstract
Recurring chromosomal translocation t(10;17)(p15;q21) present in a subset of human acute myeloid leukemia (AML) patients creates an aberrant fusion gene termed ZMYND11-MBTD1 (ZM); however, its function remains undetermined. Here, we show that ZM confers primary murine hematopoietic stem/progenitor cells indefinite self-renewal capability ex vivo and causes AML in vivo. Genomics profilings reveal that ZM directly binds to and maintains high expression of pro-leukemic genes including Hoxa, Meis1, Myb, Myc and Sox4. Mechanistically, ZM recruits the NuA4/Tip60 histone acetyltransferase complex to cis-regulatory elements, sustaining an active chromatin state enriched in histone acetylation and devoid of repressive histone marks. Systematic mutagenesis of ZM demonstrates essential requirements of Tip60 interaction and an H3K36me3-binding PWWP (Pro-Trp-Trp-Pro) domain for oncogenesis. Inhibitor of histone acetylation-'reading' bromodomain proteins, which act downstream of ZM, is efficacious in treating ZM-induced AML. Collectively, this study demonstrates AML-causing effects of ZM, examines its gene-regulatory roles, and reports an attractive mechanism-guided therapeutic strategy.
Collapse
MESH Headings
- Acetylation
- Animals
- Carcinogenesis
- Cell Cycle Proteins/chemistry
- Cell Cycle Proteins/metabolism
- Cell Differentiation
- Cell Proliferation
- Cell Transformation, Neoplastic
- Chromatin/metabolism
- Chromosomal Proteins, Non-Histone/chemistry
- Chromosomal Proteins, Non-Histone/metabolism
- Co-Repressor Proteins/chemistry
- Co-Repressor Proteins/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/metabolism
- Disease Models, Animal
- Enhancer Elements, Genetic/genetics
- Gene Expression Regulation, Leukemic
- Genome, Human
- HEK293 Cells
- Hematopoietic Stem Cells/metabolism
- Histones/metabolism
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Lysine Acetyltransferase 5/metabolism
- Mice, Inbred BALB C
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Oncogene Proteins, Fusion/metabolism
- Protein Binding
- Protein Domains
- Transcription Factors/metabolism
- Mice
Collapse
Affiliation(s)
- Jie Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Phillip M Galbo
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Weida Gong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeong Hyun Ahn
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Yiran Guo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ricky D Edmondson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jason E Farrar
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Shenghui He
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Ling Cai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology and Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
32
|
da Costa LT, dos Anjos LG, Kagohara LT, Torrezan GT, De Paula CAA, Baracat EC, Carraro DM, Carvalho KC. The mutational repertoire of uterine sarcomas and carcinosarcomas in a Brazilian cohort: A preliminary study. Clinics (Sao Paulo) 2021; 76:e2324. [PMID: 33503190 PMCID: PMC7798418 DOI: 10.6061/clinics/2021/e2324] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/15/2020] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVES The present study aimed to contribute to the catalog of genetic mutations involved in the carcinogenic processes of uterine sarcomas (USs) and carcinosarcomas (UCSs), which may assist in the accurate diagnosis of, and selection of treatment regimens for, these conditions. METHODS We performed gene-targeted next-generation sequencing (NGS) of 409 cancer-related genes in 15 US (7 uterine leiomyosarcoma [ULMS], 7 endometrial stromal sarcoma [ESS], 1 adenosarcoma [ADS]), 5 UCS, and 3 uterine leiomyoma (ULM) samples. Quality, frequency, and functional filters were applied to select putative somatic variants. RESULTS Among the 23 samples evaluated in this study, 42 loss-of-function (LOF) mutations and 111 missense mutations were detected, with a total of 153 mutations. Among them, 66 mutations were observed in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. TP53 (48%), ATM (22%), and PIK3CA (17%) were the most frequently mutated genes. With respect to specific tumor subtypes, ESS showed mutations in the PDE4DIP, IGTA10, and DST genes, UCS exhibited mutations in ERBB4, and ULMS showed exclusive alterations in NOTCH2 and HER2. Mutations in the KMT2A gene were observed exclusively in ULM and ULMS. In silico pathway analyses demonstrated that many genes mutated in ULMS and ESS have functions associated with the cellular response to hypoxia and cellular response to peptide hormone stimulus. In UCS and ADS, genes with most alterations have functions associated with phosphatidylinositol kinase activity and glycerophospholipid metabolic process. CONCLUSION This preliminary study observed pathogenic mutations in US and UCS samples. Further studies with a larger cohort and functional analyses will foster the development of a precision medicine-based approach for the treatment of US and UCS.
Collapse
Affiliation(s)
- Leonardo Tomiatti da Costa
- Laboratorio de Ginecologia Estrutural e Molecular, Disciplina de Ginecologia, Hospital das Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Laura Gonzalez dos Anjos
- Laboratorio de Ginecologia Estrutural e Molecular, Disciplina de Ginecologia, Hospital das Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Luciane Tsukamoto Kagohara
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | | | | | - Edmund Chada Baracat
- Laboratorio de Ginecologia Estrutural e Molecular, Disciplina de Ginecologia, Hospital das Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Dirce Maria Carraro
- Grupo de Biologia Molecular e Genomica, Centro A.C.Camargo, Sao Paulo, SP, BR
| | - Katia Candido Carvalho
- Laboratorio de Ginecologia Estrutural e Molecular, Disciplina de Ginecologia, Hospital das Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|
33
|
Han J, Yu M, Bai Y, Yu J, Jin F, Li C, Zeng R, Peng J, Li A, Song X, Li H, Wu D, Li L. Elevated CXorf67 Expression in PFA Ependymomas Suppresses DNA Repair and Sensitizes to PARP Inhibitors. Cancer Cell 2020; 38:844-856.e7. [PMID: 33186520 PMCID: PMC8455074 DOI: 10.1016/j.ccell.2020.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 07/12/2020] [Accepted: 10/07/2020] [Indexed: 01/01/2023]
Abstract
Ependymoma is the third most common pediatric tumor with posterior fossa group A (PFA) being its most aggressive subtype. Ependymomas are generally refractory to chemotherapies and thus lack any effective treatment. Here, we report that elevated expression of CXorf67 (chromosome X open reading frame 67), which frequently occurs in PFA ependymomas, suppresses homologous recombination (HR)-mediated DNA repair. Mechanistically, CXorf67 interacts with PALB2 and inhibits PALB2-BRCA2 interaction, thereby inhibiting HR repair. Concordantly, tumor cells with high CXorf67 expression levels show increased sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors, especially when combined with radiotherapy. Thus, our findings have revealed a role of CXorf67 in HR repair and suggest that combination of PARP inhibitors with radiotherapy could be an effective treatment option for PFA ependymomas.
Collapse
Affiliation(s)
- Jichang Han
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Meng Yu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yiqin Bai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianzhong Yu
- Department of Neurosurgery, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Fei Jin
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Chen Li
- CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Rong Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinghong Peng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ao Li
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 208089, USA
| | - Xiaomin Song
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Hao Li
- Department of Neurosurgery, Children's Hospital of Fudan University, Shanghai 201102, China.
| | - Dianqing Wu
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 208089, USA.
| | - Lin Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
34
|
Micci F, Heim S, Panagopoulos I. Molecular pathogenesis and prognostication of "low-grade'' and "high-grade" endometrial stromal sarcoma. Genes Chromosomes Cancer 2020; 60:160-167. [PMID: 33099834 PMCID: PMC7894482 DOI: 10.1002/gcc.22907] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Endometrial stromal sarcomas (ESS) are a heterogeneous group of rare mesenchymal cancers. Considerable knowledge has been gained in recent years about the molecular characteristics of these cancers, which helps to classify them in a more meaningful manner leading to improved diagnosis, prognostication, and treatment. According to this classification, ESS is now grouped as low‐ or high‐grade. ESS may have overlapping clinical presentation, morphology, and immunohistochemical profile. Their genetic characteristics allow subdivision of many of them depending on which pathogenetically important fusion genes they carry, but clearly much more needs to be unraveled in this regard. We here provide an overview of the molecular pathogenetic knowledge gained so far on low‐ and high‐grade ESS.
Collapse
Affiliation(s)
- Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, Oslo, Norway
| |
Collapse
|
35
|
Nacev BA, Jones KB, Intlekofer AM, Yu JSE, Allis CD, Tap WD, Ladanyi M, Nielsen TO. The epigenomics of sarcoma. Nat Rev Cancer 2020; 20:608-623. [PMID: 32782366 PMCID: PMC8380451 DOI: 10.1038/s41568-020-0288-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
Epigenetic regulation is critical to physiological control of development, cell fate, cell proliferation, genomic integrity and, fundamentally, transcriptional regulation. This epigenetic control occurs at multiple levels including through DNA methylation, histone modification, nucleosome remodelling and modulation of the 3D chromatin structure. Alterations in genes that encode chromatin regulators are common among mesenchymal neoplasms, a collection of more than 160 tumour types including over 60 malignant variants (sarcomas) that have unique and varied genetic, biological and clinical characteristics. Herein, we review those sarcomas in which chromatin pathway alterations drive disease biology. Specifically, we emphasize examples of dysregulation of each level of epigenetic control though mechanisms that include alterations in metabolic enzymes that regulate DNA methylation and histone post-translational modifications, mutations in histone genes, subunit loss or fusions in chromatin remodelling and modifying complexes, and disruption of higher-order chromatin structure. Epigenetic mechanisms of tumorigenesis have been implicated in mesenchymal tumours ranging from chondroblastoma and giant cell tumour of bone to chondrosarcoma, malignant peripheral nerve sheath tumour, synovial sarcoma, epithelioid sarcoma and Ewing sarcoma - all diseases that present in a younger patient population than most cancers. Finally, we review current and potential future approaches for the development of sarcoma therapies based on this emerging understanding of chromatin dysregulation.
Collapse
Affiliation(s)
- Benjamin A Nacev
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- The Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA
| | - Kevin B Jones
- Department of Orthopaedics, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Andrew M Intlekofer
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jamie S E Yu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - C David Allis
- The Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA
| | - William D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Torsten O Nielsen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
36
|
Chang B, Bai Q, Liang L, Ge H, Yao Q. Recurrent uterine tumors resembling ovarian sex-cord tumors with the growth regulation by estrogen in breast cancer 1-nuclear receptor coactivator 2 fusion gene: a case report and literature review. Diagn Pathol 2020; 15:110. [PMID: 32921307 PMCID: PMC7489201 DOI: 10.1186/s13000-020-01025-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Uterine tumors resembling ovarian sex-cord tumors (UTROSCTs) are rare mesenchymal neoplasms predominantly arising in perimenopausal and postmenopausal women. UTROSCTs with growth regulation by estrogen in breast cancer 1 (GREB1)-rearrangement or GREB1-rearranged uterine tumors are exceptionally rare, with only 12 previously reported cases. Here, we report a case of UTROSCT with the GREB1-nuclear receptor coactivator 2 (NCOA2) fusion gene. CASE PRESENTATION A 57-year-old woman presented with a 10.0 cm uterine mass. The tumor was composed of short spindle or epithelioid cells, arranged in diffused sheets, nested, and trabecular/cordlike. The tumor harbored the GREB1-NCOA2 fusion gene, as confirmed by RNA sequencing. The tumor recurred in the pelvis at 30 months after the initial diagnosis. We also compared the clinical and pathologic features of this case with those of the 12 previously published uterine GREB1-rearranged tumors. Of the combined 13 cases (present case and 12 previous cases), the mean age of patients was 64.8 years (range, 51-74 years). Of the nine reported cases of GREB1-rearranged tumor with follow up, four cases recurred or metastasized (44.4%). Microscopically, most tumors (10/12, 83.3%) showed infiltrative growth, and two were well demarcated. Mitotic figures ranged from 0 to 14 per 10 high-power fields (2 mm2; mean: 3.6). Lymphovascular invasion and necrosis were each present in two cases (2/12, 16.7% and 2/7, 28.6%, respectively). CONCLUSIONS This case provided further evidence that UTROSCTs with GREB1-rearrangement may have a high risk of recurrence/metastasis. Further studies are necessary to clarify the clinical features of this type of tumor, particularly the prognosis, potential treatment, and range of possible molecular events.
Collapse
Affiliation(s)
- Bin Chang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Qianming Bai
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lin Liang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huijuan Ge
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qianlan Yao
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Brahmi M, Franceschi T, Treilleux I, Pissaloux D, Ray-Coquard I, Dufresne A, Vanacker H, Carbonnaux M, Meeus P, Sunyach MP, Bouhamama A, Karanian M, Meurgey A, Blay JY, Tirode F. Molecular Classification of Endometrial Stromal Sarcomas Using RNA Sequencing Defines Nosological and Prognostic Subgroups with Different Natural History. Cancers (Basel) 2020; 12:cancers12092604. [PMID: 32933053 PMCID: PMC7563240 DOI: 10.3390/cancers12092604] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/27/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
A series of 42 patient tumors diagnosed as endometrial stromal sarcoma (ESS) based on the morphology but negative for JAZF1 and/or YWHAE rearrangement in FISH was analyzed by RNA-sequencing. A chromosomal rearrangement was identified in 31 (74%) of the cases and a missense mutation in known oncogenes/tumor suppressor genes in 11 (26%). Cluster analyses on the expression profiles from this series together with a control cohort composed of five samples of low grade ESS harboring a JAZF1-SUZ12 fusion, one high grade ESS harboring a BCOR-ITD, two uterine tumors resembling ovarian sex cord tumors, two samples each of uterine leiomyoma and leiomyosarcomas and a series of BCOR-rearranged family of tumor (n = 8) indicated that tumors could be gather in three distinct subgroups: one mainly composed of BCOR-rearranged samples that contained seven ESS samples, one mainly composed of JAZF1-fused ESS (n = 15) and the last composed of various molecular subtypes (n = 19). These three subgroups display different gene signatures, different in silico cell cycle scores and very different clinical presentations, natural history and survival (log-rank test, p = 0.004). While YWHAE-NUTM2 fusion genes may be present in both high and low grade ESS, the high-grade presents with additional BCOR or BCORL1 gene mutations. RNAseq brings clinically relevant molecular classification, enabling the reclassification of diseases and the guidance of therapeutic strategy.
Collapse
Affiliation(s)
- Mehdi Brahmi
- Department of Medical Oncology, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France; (I.R.-C.); (A.D.); (H.V.); (M.C.); (J.-Y.B.)
- Cancer Research Center of Lyon, Centre Léon Bérard, Univ Lyon, Claude Bernard University Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France; (D.P.); (M.K.)
- Correspondence: (M.B.); (F.T.)
| | - Tatiana Franceschi
- Department of Biopathology, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France; (T.F.); (I.T.); (A.M.)
| | - Isabelle Treilleux
- Department of Biopathology, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France; (T.F.); (I.T.); (A.M.)
| | - Daniel Pissaloux
- Cancer Research Center of Lyon, Centre Léon Bérard, Univ Lyon, Claude Bernard University Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France; (D.P.); (M.K.)
- Department of Biopathology, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France; (T.F.); (I.T.); (A.M.)
| | - Isabelle Ray-Coquard
- Department of Medical Oncology, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France; (I.R.-C.); (A.D.); (H.V.); (M.C.); (J.-Y.B.)
- Cancer Research Center of Lyon, Centre Léon Bérard, Univ Lyon, Claude Bernard University Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France; (D.P.); (M.K.)
| | - Armelle Dufresne
- Department of Medical Oncology, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France; (I.R.-C.); (A.D.); (H.V.); (M.C.); (J.-Y.B.)
| | - Helene Vanacker
- Department of Medical Oncology, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France; (I.R.-C.); (A.D.); (H.V.); (M.C.); (J.-Y.B.)
| | - Melodie Carbonnaux
- Department of Medical Oncology, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France; (I.R.-C.); (A.D.); (H.V.); (M.C.); (J.-Y.B.)
| | - Pierre Meeus
- Department of Surgery, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France;
| | - Marie-Pierre Sunyach
- Department of Radiation Oncology, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France;
| | - Amine Bouhamama
- Department of Radiology, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France;
| | - Marie Karanian
- Cancer Research Center of Lyon, Centre Léon Bérard, Univ Lyon, Claude Bernard University Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France; (D.P.); (M.K.)
- Department of Biopathology, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France; (T.F.); (I.T.); (A.M.)
| | - Alexandra Meurgey
- Department of Biopathology, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France; (T.F.); (I.T.); (A.M.)
| | - Jean-Yves Blay
- Department of Medical Oncology, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France; (I.R.-C.); (A.D.); (H.V.); (M.C.); (J.-Y.B.)
- Cancer Research Center of Lyon, Centre Léon Bérard, Univ Lyon, Claude Bernard University Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France; (D.P.); (M.K.)
| | - Franck Tirode
- Department of Medical Oncology, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France; (I.R.-C.); (A.D.); (H.V.); (M.C.); (J.-Y.B.)
- Cancer Research Center of Lyon, Centre Léon Bérard, Univ Lyon, Claude Bernard University Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France; (D.P.); (M.K.)
- Correspondence: (M.B.); (F.T.)
| |
Collapse
|
38
|
Mindiola-Romero AE, Liu X, Dillon JL, Talarico M, Smith G, Zhang L, Linos K. Metastatic low-grade endometrial stromal sarcoma after 24 years: A case report and review of recent molecular genetics. Diagn Cytopathol 2020; 49:E99-E105. [PMID: 32910526 DOI: 10.1002/dc.24601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022]
Abstract
Low-grade endometrial stromal sarcoma (LGESS) is a rare malignant uterine tumor with the potential to metastasize years after the primary resection. There is a broad differential diagnosis for endometrial stromal sarcomas (ESS), including both benign and malignant entities. Herein, we present the case of a 64-year-old female with metastatic LGESS to the lung, diagnosed by cytology, 24 years after her initial presentation. This report discusses the cytomorphologic and histopathologic characteristics, and ancillary studies including immunohistochemical stains and recent advances in molecular diagnostics of ESS. Accurate diagnosis of spindle cell lesions in the lung can be challenging. As such, this case highlights the instrumental role of ancillary testing and molecular diagnostics to achieve a more definitive diagnosis.
Collapse
Affiliation(s)
- Andres E Mindiola-Romero
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center and Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Xiaoying Liu
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center and Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Jessica L Dillon
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center and Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Michael Talarico
- Department of Radiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Geoffrey Smith
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Linsheng Zhang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Konstantinos Linos
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center and Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
39
|
Libertini M, Hallin M, Thway K, Noujaim J, Benson C, van der Graaf W, Jones RL. Gynecological Sarcomas: Molecular Characteristics, Behavior, and Histology-Driven Therapy. Int J Surg Pathol 2020; 29:4-20. [PMID: 32909482 DOI: 10.1177/1066896920958120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gynecological sarcomas represent 3% to 4% of all gynecological malignancies and 13% of all sarcomas. The uterus is the most frequent primary site (83%); less frequently sarcomas are diagnosed originating from the ovary (8%), vulva and vagina (5%), and other gynecologic organs (2%). As the classification of gynecologic sarcomas continues to diversify, so does the management. Accurate histopathologic diagnosis, utilizing appropriate ancillary immunohistochemical and molecular analysis, could lead to a more personalized approach. However, there are subtypes that require further definition, with regard to putative predictive markers and optimal management. The aim of this review is to highlight the importance of accurate diagnosis and classification of gynecologic sarcoma subtypes by the surgical pathologist in order to provide more tailored systemic treatment, and to highlight the increasing importance of close collaboration between the pathologist and the oncologist.
Collapse
Affiliation(s)
| | - Magnus Hallin
- Royal Marsden Hospital/Institute of Cancer Research, London, UK
| | - Khin Thway
- Royal Marsden Hospital/Institute of Cancer Research, London, UK
| | | | | | | | - Robin L Jones
- Royal Marsden Hospital/Institute of Cancer Research, London, UK
| |
Collapse
|
40
|
Chadchan SB, Maurya VK, Krekeler GL, Jungheim ES, Kommagani R. A Role for Malignant Brain Tumor Domain-Containing Protein 1 in Human Endometrial Stromal Cell Decidualization. Front Cell Dev Biol 2020; 8:745. [PMID: 32850854 PMCID: PMC7432280 DOI: 10.3389/fcell.2020.00745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/16/2020] [Indexed: 11/13/2022] Open
Abstract
Up to 30% of women experience early miscarriage due to impaired decidualization. For implantation to occur, the uterine endometrial stromal fibroblast-like cells must differentiate into decidual cells, but the genes required for decidualization have not been fully defined. Here, we show that Malignant Brain Tumor Domain-containing Protein 1 (MBTD1), a member of the polycomb group protein family, is critical for human endometrial stromal cell (HESC) decidualization. MBTD1 predominantly localized to HESCs during the secretory phase and the levels were significantly elevated during in vitro decidualization of both immortalized and primary HESCs. Importantly, siRNA-mediated MBTD1 knockdown significantly impaired in vitro decidualization of both immortalized and primary HESCs, as evidenced by reduced expression of the decidualization markers PRL and IGFBP1. Further, knockdown of MBTD1 reduced cell proliferation and resulted in G2/M cell cycle arrest in decidualizing HESCs. Although progesterone signaling is required for decidualization, MBTD1 expression was not affected by progesterone signaling; however, MBTD1 knockdown significantly reduced expression of the progesterone target genes WNT4, FOXOA1, and GREB1. Collectively, our data suggest that MBTD1 contributes to in vitro decidualization of HESCs by sustaining progesterone signaling. This work could have implications for designing diagnostic and therapeutic tools for recurrent pregnancy loss.
Collapse
Affiliation(s)
- Sangappa B Chadchan
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Vineet K Maurya
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Gwendalyn L Krekeler
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Emily S Jungheim
- Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, United States.,Department of Obstetrics and Gynecology, Fienberg School of Medicine, Chicago, IL, United States
| | - Ramakrishna Kommagani
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
41
|
Capozzi VA, Monfardini L, Ceni V, Cianciolo A, Butera D, Gaiano M, Berretta R. Endometrial stromal sarcoma: A review of rare mesenchymal uterine neoplasm. J Obstet Gynaecol Res 2020; 46:2221-2236. [PMID: 32830415 DOI: 10.1111/jog.14436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/05/2020] [Accepted: 07/30/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE This review aims to analyze the pathological aspects, diagnosis and treatment of rare mesenchymal uterine tumors. METHODS On August 2019, a systematic review of the literature was done on Pubmed, MEDLINE, Scopus, and Google Scholar search engines. The systematic review was carried out in agreement with the Preferred Reporting Items for Systematic Reviews and Meta-Analyzes statement (PRISMA). The following words and key phrases have been searched: "endometrial stromal sarcoma", "low-grade endometrial stromal sarcoma", "high-grade endometrial stromal sarcoma", "uterine sarcoma", "mesenchymal uterine tumors" and "uterine stromal sarcoma". Across these platforms and research studies, five main aspects were analyzed: the biological characteristics of the neoplasms, the number of cases, the different therapeutic approaches used, the follow-up and the oncological outcomes. RESULTS Of the 94 studies initially identified, 55 were chosen selecting articles focusing on endometrial stromal sarcoma. Of these fifty-five studies, 46 were retrospective in design, 7 were reviews and 2 randomized phases III trials. CONCLUSION Endometrial stromal sarcomas are rare mesenchymal uterine neoplasms and surgery represents the standard treatment. For uterus-limited disease, the remove en bloc with an intact resection of the tumor (without the use of morcellation) is strongly recommended. For advanced-stage disease, the standard surgical treatment is adequate cytoreduction with metastatectomy. Pelvic and para-aortic lymphadenectomy is not recommended in patients with Low-grade Endometrial Stromal Sarcoma (ESS), while is not clear whether cytoreduction of advanced tumors improves patient survival in High-grade ESS. Administration of adjuvant radiotherapy or chemotherapy is not routinely used and its role is still debated.
Collapse
Affiliation(s)
- V A Capozzi
- Department of Gynecology and obstetrics of Parma, University of Parma, Parma, Italy
| | - L Monfardini
- Department of Gynecology and obstetrics of Parma, University of Parma, Parma, Italy
| | - V Ceni
- Department of Gynecology and obstetrics of Parma, University of Parma, Parma, Italy
| | - A Cianciolo
- Department of Gynecology and obstetrics of Parma, University of Parma, Parma, Italy
| | - D Butera
- Department of Gynecology and obstetrics of Parma, University of Parma, Parma, Italy
| | - M Gaiano
- Department of Gynecology and obstetrics of Parma, University of Parma, Parma, Italy
| | - R Berretta
- Department of Gynecology and obstetrics of Parma, University of Parma, Parma, Italy
| |
Collapse
|
42
|
Hübner JM, Müller T, Papageorgiou DN, Mauermann M, Krijgsveld J, Russell RB, Ellison DW, Pfister SM, Pajtler KW, Kool M. EZHIP/CXorf67 mimics K27M mutated oncohistones and functions as an intrinsic inhibitor of PRC2 function in aggressive posterior fossa ependymoma. Neuro Oncol 2020; 21:878-889. [PMID: 30923826 DOI: 10.1093/neuonc/noz058] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Posterior fossa A (PFA) ependymomas are one of 9 molecular groups of ependymoma. PFA tumors are mainly diagnosed in infants and young children, show a poor prognosis, and are characterized by a lack of the repressive histone H3 lysine 27 trimethylation (H3K27me3) mark. Recently, we reported overexpression of chromosome X open reading frame 67 (CXorf67) as a hallmark of PFA ependymoma and showed that CXorf67 can interact with enhancer of zeste homolog 2 (EZH2), thereby inhibiting polycomb repressive complex 2 (PRC2), but the mechanism of action remained unclear. METHODS We performed mass spectrometry and peptide modeling analyses to identify the functional domain of CXorf67 responsible for binding and inhibition of EZH2. Our findings were validated by immunocytochemistry, western blot, and methyltransferase assays. RESULTS We find that the inhibitory mechanism of CXorf67 is similar to diffuse midline gliomas harboring H3K27M mutations. A small, highly conserved peptide sequence located in the C-terminal region of CXorf67 mimics the sequence of K27M mutated histones and binds to the SET domain (Su(var)3-9/enhancer-of-zeste/trithorax) of EZH2. This interaction blocks EZH2 methyltransferase activity and inhibits PRC2 function, causing de-repression of PRC2 target genes, including genes involved in neurodevelopment. CONCLUSIONS Expression of CXorf67 is an oncogenic mechanism that drives H3K27 hypomethylation in PFA tumors by mimicking K27M mutated histones. Disrupting the interaction between CXorf67 and EZH2 may serve as a novel targeted therapy for PFA tumors but also for other tumors that overexpress CXorf67. Based on its function, we have renamed CXorf67 as "EZH Inhibitory Protein" (EZHIP).
Collapse
Affiliation(s)
- Jens-Martin Hübner
- Division of Pediatric Neurooncology, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Torsten Müller
- Division of Proteomics of Stem Cells and Cancer, DKFZ, Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Dimitris N Papageorgiou
- Division of Pediatric Neurooncology, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Monika Mauermann
- Division of Pediatric Neurooncology, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center, Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, DKFZ, Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Robert B Russell
- Heidelberg University Biochemistry Center, Heidelberg, Germany.,Bioquant, Heidelberg University, Heidelberg, Germany
| | - David W Ellison
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, University Hospital, Heidelberg, Germany
| | - Kristian W Pajtler
- Division of Pediatric Neurooncology, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, University Hospital, Heidelberg, Germany
| | - Marcel Kool
- Division of Pediatric Neurooncology, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center, Heidelberg, Germany
| |
Collapse
|
43
|
Patel SB, McCormack C, Hodge JC. Non-fusion mutations in endometrial stromal sarcomas: what is the potential impact on tumourigenesis through cell cycle dysregulation? J Clin Pathol 2020; 73:830-835. [PMID: 32385140 DOI: 10.1136/jclinpath-2020-206432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/30/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022]
Abstract
Targeted next-generation sequencing using the 50-gene Ion AmpliSeq Cancer Hotspot Panel v2 identified two significant point mutations in endometrial stromal sarcomas (ESS). Case 1 is a uterine mass from a quadragenarian woman with a karyotype lacking any known ESS rearrangements but demonstrated to have a CTNNB1-activating mutation (c.133T>C, p.[Ser45Pro]). Analysis of a uterine mass from case 2, a sexagenarian woman, revealed biallelic CDKN2A-inactivating mutations (c.172C>T, p.[Arg58Ter] and a deletion). Break-apart studies to identify YWHAE, JAZF1 and PHF1 rearrangements were negative in both tumours. We propose a model in which these point mutations may affect cell proliferation, converging at Wnt signalling and G1-S checkpoint control, that independently or in concert with a rare gene fusion result in ESS tumour development or progression.
Collapse
Affiliation(s)
- Snehal B Patel
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Molecular Diagnostics Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.,Strata Oncology, Ann Arbor, MI, United States
| | - Colin McCormack
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Baylor Scott & White Medical Center-Temple, Temple, TX, United States
| | - Jennelle C Hodge
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA .,Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA.,Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
44
|
Han L, Liu YJ, Ricciotti RW, Mantilla JG. A novel MBTD1-PHF1 gene fusion in endometrial stromal sarcoma: A case report and literature review. Genes Chromosomes Cancer 2020; 59:428-432. [PMID: 32237188 DOI: 10.1002/gcc.22845] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
The classification of endometrial stromal sarcoma (ESS) has been refined and aided by the discovery of various recurrent gene translocations. Low-grade ESS (LG-ESS) is most commonly characterized by JAZF1-SUZ12 fusions followed by rearrangements involving PHD finger protein-1 (PHF1) and multiple fusion partners, including JAZF1, EPC1, EPC2, and MEAF6. In the present study, integrating anchored polymerase chain reaction and paired-end next-generation ribonucleic acid sequencing, we identified the presence of a novel malignant brain tumor domain-containing 1 (MBTD1)-PHF1 gene fusion in a case of LG-ESS. MBTD1 belongs to the Polycomb gene group, and its fusion with PHF1 is predicted to mediate tumorigenesis through aberrant transcriptional repression. Histology and immunohistochemical studies demonstrated conventional morphology for LG-ESS and clinical follow-up showed no progression of disease after 6 months. These findings help expand the current knowledge on the spectrum of gene rearrangements in the diagnosis of ESS.
Collapse
Affiliation(s)
- Lisa Han
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Yajuan J Liu
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Robert W Ricciotti
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Jose G Mantilla
- Department of Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
45
|
PGR Gene Fusions Identify a Molecular Subset of Uterine Epithelioid Leiomyosarcoma With Rhabdoid Features. Am J Surg Pathol 2020; 43:810-818. [PMID: 30829727 DOI: 10.1097/pas.0000000000001239] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genetic aberrations among uterine epithelioid leiomyosarcomas are unknown. Following identification of an index case with NR4A3-PGR fusion demonstrating monomorphic morphologic features, we interrogated additional uterine tumors demonstrating similar histology and sought to describe the morphologic and immunohistochemical characteristics of PGR-rearranged sarcomas. Targeted next-generation RNA sequencing was performed on RNA extracted from formalin-fixed paraffin-embedded tissue of the index case. Fluorescence in situ hybridization using custom probes flanking PGR and NR4A3 genes was applied to 17 epithelioid leiomyosarcomas, 6 endometrial stromal tumors, and 3 perivascular epithelioid cell tumors. NR4A3-PGR fusion (n=4) and PGR rearrangement (n=2) were detected in 6 (35%) epithelioid leiomyosarcomas. Median patient age was 45 years, and all presented with FIGO stage I or II tumors, 2 being alive with disease at 75 and 180 months. All tumors were centered in the cervical stroma or myometrium and consisted of cells with abundant eosinophilic cytoplasm (epithelioid), including many displaying dense intracytoplasmic inclusions (rhabdoid). Myxoid matrix and hydropic change imparted a microcystic growth pattern in 4 tumors. Five also showed a minor spindle cell component which was low-grade in 3, consisting of bland spindle cells with low mitotic activity. High-grade spindle cell morphology was seen in 2 tumors, exhibiting a storiform pattern of atypical spindle cells associated with brisk mitotic activity. Desmin, estrogen receptor, and progesterone receptor were positive in all 6 tumors, while CD10 and HMB45 were negative. PGR rearrangements define a genetic subset of epithelioid leiomyosarcomas with often biphasic morphology consisting of epithelioid and rhabdoid as well as spindle cell components.
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Altered epigenetics is central to oncogenesis in many pediatric cancers. Aberrant epigenetic states are induced by mutations in histones or epigenetic regulatory genes, aberrant expression of genes regulating chromatin complexes, altered DNA methylation patterns, or dysregulated expression of noncoding RNAs. Developmental contexts of dysregulated epigenetic states are equally important for initiation and progression of many childhood cancers. As an improved understanding of disease-specific roles and molecular consequences of epigenetic alterations in oncogenesis is emerging, targeting these mechanisms of disease in childhood cancers is increasingly becoming important. RECENT FINDINGS In addition to disease-causing epigenetic events, DNA methylation patterns and specific oncohistone mutations are being utilized for the diagnosis of pediatric central nervous system (CNS) and solid tumors. These discoveries have improved the classification of poorly differentiated tumors and laid the foundation for future improved clinical management. On the therapeutic side, the first therapies targeting epigenetic alterations have recently entered clinical trials. Current clinical trials include pharmacological inhibition of histone and DNA modifiers in aggressive types of pediatric cancer. SUMMARY Targeting novel epigenetic vulnerabilities, either by themselves, or coupled with targeting altered transcriptional states, developmental cell states or immunomodulation will result in innovative approaches for treating deadly pediatric cancers.
Collapse
Affiliation(s)
- Eshini Panditharatna
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Broad Institute of Harvard and MIT, Cambridge, MA
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Broad Institute of Harvard and MIT, Cambridge, MA.,Boston Children's Cancer and Blood Disorder Center, Boston, Massachusetts, USA
| |
Collapse
|
47
|
Abstract
Supplemental Digital Content is available in the text Background: Fusion genes may play an important role in tumorigenesis, prognosis, and drug resistance; however, studies on fusion genes in endometrial cancer (EC) are rare. This study aimed to identify new fusion genes and to explore their clinical significance in EC. Methods: A total of 28 patients diagnosed with EC were enrolled in this study. RNA sequencing was used to obtain entire genomes and transcriptomes. STAR-comparison and STAR-fusion prediction were applied to predict the fusion genes. Chi-square tests and Student t tests were used to verify the clinical significance with SPSS 13.0 software. Results: New fusion genes were found, and the number of fusion genes varied from 3 to 110 among all patients with EC. The type of fusion genes varied and included messenger RNA (mRNA)-mRNA, long non-coding RNA (lncRNA)-lncRNA, and lncRNA-mRNA. There were six fusion genes with high fusion rates, namely, RP11–123O10.4–GRIP1, RP11–444D3.1–SOX5, RP11–680G10.1–GSE1, NRIP1–AF127936.7, RP11–96H19.1–RP11–446N19.1, and DPH7–PTP4A3. Further studies showed that these fusion genes are related to stage, grade, and recurrence, in which NRIP1–AF127936.7 and DPH7–PTP4A3 were found only in stage III patients with EC. DPH7–PTP4A3 was found in grades 2 and 3, and recurrent patients with EC. Conclusion: Fusion genes play an essential role in EC. Six genes that are overexpressed with high fusion rates are identified. NRIP1–AF127936.7 and DPH7–PTP4A3 might be related to stage, and DPH7–PTP4A3 be related to grade and recurrence.
Collapse
|
48
|
Fu D, Lu C, Qu X, Li P, Chen K, Shan L, Zhu X. LncRNA TTN-AS1 regulates osteosarcoma cell apoptosis and drug resistance via the miR-134-5p/MBTD1 axis. Aging (Albany NY) 2019; 11:8374-8385. [PMID: 31600142 PMCID: PMC6814585 DOI: 10.18632/aging.102325] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023]
Abstract
AIM To explore the mechanism by which long non-coding RNA (lncRNA) TTN-AS1 regulates osteosarcoma cell apoptosis and drug resistance via the microRNA miR-134-5p/malignant brain tumour domain containing 1 (MBTD1) axis. RESULTS The lncRNA TTN-AS1 was highly expressed in osteosarcoma and was associated with poor prognosis. The lncRNA TTN-AS1 promoted cell viability and inhibited apoptosis. MiR-134-5p targeted MBTD1, which was regulated by lncRNA TTN-AS1. MBTD1 was highly expressed in osteosarcoma and was associated with poor prognosis. MBTD1 promoted cell viability and inhibited apoptosis, and knockdown of MBTD1 reversed the cancer-promoting effects of lncRNA TTN-AS1. Downregulation of lncRNA TTN-AS1 reduced drug resistance. CONCLUSION In osteosarcoma, lncRNA TTN-AS1 promoted the expression of MBTD1 by targeting miR-134-5p and regulated cell growth, apoptosis and drug resistance. METHODS The expression characteristics of genes in osteosarcoma patients were analysed using bioinformatics. Plasmid transfection technology was applied to silence or overexpress lncRNA TTN-AS1, miR-134-5p and MBTD1. Western blotting and quantitative polymerase chain reaction (qPCR) were used to detect protein and RNA, respectively. A cell counting kit 8 (CCK-8) and flow cytometry were used to detect cell viability and apoptosis. The effects of lncRNA TTN-AS1 and MBTD1 on osteosarcoma in vivo were studied by using a tumour burden assay.
Collapse
Affiliation(s)
- Dong Fu
- Children's Hospital of Shanghai, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunwen Lu
- Department of Spinal Surgery, Changhai Hospital, Affiliated to Naval Military Medical University, Shanghai, China
| | - Xingzhou Qu
- The Department of Oral Maxillofacial and Head Neck Oncology in the Ninth Hospital Affiliated Shanghai Jiaotong University, Shanghai, China
| | - Peng Li
- Children's Hospital of Shanghai, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Chen
- Hai'an People's Hospital, Hai'an, Nantong, Jiangsu, China
| | - Liancheng Shan
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Zhu
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
49
|
|
50
|
EZHIP constrains Polycomb Repressive Complex 2 activity in germ cells. Nat Commun 2019; 10:3858. [PMID: 31451685 PMCID: PMC6710278 DOI: 10.1038/s41467-019-11800-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 08/06/2019] [Indexed: 12/18/2022] Open
Abstract
The Polycomb group of proteins is required for the proper orchestration of gene expression due to its role in maintaining transcriptional silencing. It is composed of several chromatin modifying complexes, including Polycomb Repressive Complex 2 (PRC2), which deposits H3K27me2/3. Here, we report the identification of a cofactor of PRC2, EZHIP (EZH1/2 Inhibitory Protein), expressed predominantly in the gonads. EZHIP limits the enzymatic activity of PRC2 and lessens the interaction between the core complex and its accessory subunits, but does not interfere with PRC2 recruitment to chromatin. Deletion of Ezhip in mice leads to a global increase in H3K27me2/3 deposition both during spermatogenesis and at late stages of oocyte maturation. This does not affect the initial number of follicles but is associated with a reduction of follicles in aging. Our results suggest that mature oocytes Ezhip-/- might not be fully functional and indicate that fertility is strongly impaired in Ezhip-/- females. Altogether, our study uncovers EZHIP as a regulator of chromatin landscape in gametes.
Collapse
|