1
|
Zhu L, Yu X, Tang X, Hu C, Wu L, Liu Y, Zhou Q. Evolving landscape of treatments targeting the microenvironment of liver metastases in non-small cell lung cancer. Chin Med J (Engl) 2024; 137:1019-1032. [PMID: 38251678 PMCID: PMC11062672 DOI: 10.1097/cm9.0000000000002981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
ABSTRACT Liver metastases (LMs) are common in lung cancer. Despite substantial advances in diagnosis and treatment, the survival rate of patients with LM remains low as the immune-suppressive microenvironment of the liver allows tumor cells to evade the immune system. The impact of LMs on the outcomes of immune checkpoint inhibitors in patients with solid tumors has been the main focus of recent translational and clinical research. Growing evidence indicates that the hepatic microenvironment delivers paracrine and autocrine signals from non-parenchymal and parenchymal cells. Overall, these microenvironments create pre- and post-metastatic conditions for the progression of LMs. Herein, we reviewed the epidemiology, physiology, pathology and immunology, of LMs associated with non-small cell lung cancer and the role and potential targets of the liver microenvironment in LM in each phase of metastasis. Additionally, we reviewed the current treatment strategies and challenges that should be overcome in preclinical and clinical investigations. These approaches target liver elements as the basis for future clinical trials, including combinatorial interventions reported to resolve hepatic immune suppression, such as immunotherapy plus chemotherapy, immunotherapy plus radiotherapy, immunotherapy plus anti-angiogenesis therapy, and surgical resection.
Collapse
Affiliation(s)
- Lingling Zhu
- Lung Cancer Center, Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xianzhe Yu
- Department of Gastrointestinal Surgery, Chengdu Second People’s Hospital, Chengdu, Sichuan 610041, China
| | - Xiaojun Tang
- Lung Cancer Center, Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenggong Hu
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lei Wu
- Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanyang Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qinghua Zhou
- Lung Cancer Center, Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
2
|
Ezhilarasan D, Najimi M. Deciphering the possible reciprocal loop between hepatic stellate cells and cancer cells in the tumor microenvironment of the liver. Crit Rev Oncol Hematol 2023; 182:103902. [PMID: 36621514 DOI: 10.1016/j.critrevonc.2022.103902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023] Open
Abstract
Activated hepatic stellate cells (HSCs)/myofibroblasts are the important sources of cancer-associated fibroblasts in the liver tumor microenvironment (TME). The crosstalk between activated HSCs and tumor cells mediates HCC progression, metastasis, tumor cell survival, angiogenesis and chemoresistance. In TME, HCC cells secrete various soluble factors responsible for the phenotypic activation of quiescent HSCs. Tumor cells use activated HSC-derived extracellular matrix (ECM) for migration and invasion. Further, in liver TME, activated HSCs and sinusoidal endothelial cells engage in a crosstalk that causes the secretion of angiogenesis and metastasis-related growth factors and cytokines. Activated HSCs and immune cells crosstalk to decrease immune surveillance in the liver TME by increasing the population of T regulatory cells and M2 macrophages or myeloid-derived suppressor cells. Thus, HSCs play a vital role in liver TME cell interactions. Therefore, a deep understanding of HSCs activation and their crosstalk with cancer and immune cells in TME may lead to the development of novel therapeutic strategies to target HCC.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India.
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels 1200, Belgium
| |
Collapse
|
3
|
Cytoplasmic Clusterin Suppresses Lung Cancer Metastasis by Inhibiting the ROCK1-ERK Axis. Cancers (Basel) 2022; 14:cancers14102463. [PMID: 35626071 PMCID: PMC9140019 DOI: 10.3390/cancers14102463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary We show that CLU, especially cytoplasmic precursor CLU, is downregulated in lung cancer and correlates with poor survival. The silencing of CLU promotes lung cancer cell migration and invasion, while the overexpression of CLU potently inhibits these phenomena. Interestingly, secretory CLU proteins are slightly decreased in lung cancer tissue and fail to exert similar anti-metastatic effects like cytoplasmic precursor CLU, demonstrating that cytoplasmic precursor CLU is the primary functional isoform of CLU, which exerts the anti-metastatic effects of lung cancer. Mechanistically, cytoplasmic precursor CLU binds ROCK1 to decrease phosphorylation of ERK1/2 by inhibiting the kinase activity of ROCK1, leading to an anti-metastatic effect in lung cancer cells. These findings reveal a novel insight into the function and regulation of cytoplasmic CLU in lung cancer, which might be a potential target for the diagnosis and treatment of metastatic lung cancer. Abstract Clusterin (CLU) is a heterodimeric glycoprotein that has been detected in diverse human tissues and implicated in many cellular processes. Accumulating evidence indicates that the expression of secreted CLU correlates with the progression of cancers. However, the molecular mechanisms underlying its tumor-suppressive roles are incompletely uncovered. In this study, we demonstrate that precursor CLU is widely downregulated in lung cancer tissue, in which secretory CLU proteins are slightly decreased. Impressively, overexpressing CLU potently inhibits the migration, invasion and metastasis of lung cancer cells, whereas silencing CLU promotes this behavior; however, it appears that secretory CLU fails to exert similar anti-metastatic effects. Interestingly, the cytoplasmic precursor CLU binds ROCK1 to abrogate the interaction between ROCK1 and ERK and impair ERK activity, leading to the suppression of lung cancer invasiveness. Meanwhile, the expression of CLU was remarkably diminished in lung cancer bone metastasis loci when compared with subcutaneous tumors in the mouse model and hardly detected in the bone metastasis loci of lung cancer patients when compared with the primary. These findings reveal a novel insight into the function and regulation of cytoplasmic CLU in lung cancer, which might be a potential target for the diagnosis and treatment of metastatic lung cancer.
Collapse
|
4
|
Mahmoudi A, Butler AE, Majeed M, Banach M, Sahebkar A. Investigation of the Effect of Curcumin on Protein Targets in NAFLD Using Bioinformatic Analysis. Nutrients 2022; 14:nu14071331. [PMID: 35405942 PMCID: PMC9002953 DOI: 10.3390/nu14071331] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a prevalent metabolic disorder. Defects in function/expression of genes/proteins are critical in initiation/progression of NAFLD. Natural products may modulate these genes/proteins. Curcumin improves steatosis, inflammation, and fibrosis progression. Here, bioinformatic tools, gene−drug and gene-disease databases were utilized to explore targets, interactions, and pathways through which curcumin could impact NAFLD. METHODS: Significant curcumin−protein interaction was identified (high-confidence:0.7) in the STITCH database. Identified proteins were investigated to determine association with NAFLD. gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were analyzed for significantly involved targets (p < 0.01). Specificity of obtained targets with NAFLD was estimated and investigated in Tissue/Cells−gene associations (PanglaoDB Augmented 2021, Mouse Gene Atlas) and Disease−gene association-based EnrichR algorithms (Jensen DISEASES, DisGeNET). RESULTS: Two collections were constructed: 227 protein−curcumin interactions and 95 NAFLD-associated genes. By Venn diagram, 14 significant targets were identified, and their biological pathways evaluated. Based on gene ontology, most targets involved stress and lipid metabolism. KEGG revealed chemical carcinogenesis, the AGE-RAGE signaling pathway in diabetic complications and NAFLD as the most common significant pathways. Specificity to diseases database (EnrichR algorithm) revealed specificity for steatosis/steatohepatitis. CONCLUSION: Curcumin may improve, or inhibit, progression of NAFLD through activation/inhibition of NAFLD-related genes.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran;
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya 15503, Bahrain;
| | | | - Maciej Banach
- Nephrology and Hypertension, Department of Preventive Cardiology and Lipidology, Medical University of Lodz, 93-338 Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, 65-417 Zielona Gora, Poland
- Correspondence: (M.B.); (A.S.)
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran
- Correspondence: (M.B.); (A.S.)
| |
Collapse
|
5
|
Niu G, Zhang X, Hong R, Yang X, Gu J, Song T, Hu Z, Chen L, Wang X, Xia J, Ke Z, Ren J, Hong L. GJA1 promotes hepatocellular carcinoma progression by mediating TGF-β-induced activation and the epithelial-mesenchymal transition of hepatic stellate cells. Open Med (Wars) 2021; 16:1459-1471. [PMID: 34693020 PMCID: PMC8486017 DOI: 10.1515/med-2021-0344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 08/12/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
Introduction Gap junction protein, alpha 1 (GJA1), which is correlated with recurrences and unfavorable prognoses in hepatocellular carcinomas (HCCs), is one of the specific proteins expressed by activated hepatic stellate cells (HSCs). Methods Expression of GJA1 was compared between HCCs and nontumor tissues (NTs), between hepatic cirrhosis and NTs, and between primary and metastatic HCCs using transcriptomic datasets from the Gene Expression Omnibus and the Integrative Molecular Database of Hepatocellular Carcinoma. The in vitro activities of GJA1 were investigated in cultured HSCs and HCC cells. The underlying mechanism was characterized using Gene Set Enrichment Analysis and validated by western blotting. Results The expression of GJA1 was significantly increased in HCCs and hepatic cirrhosis compared to that in NTs. GJA1 was also overexpressed in pulmonary metastases from HCCs when compared with HCCs without metastasis. Overexpression of GJA1 promoted while knockdown of GJA1 inhibited proliferation and transforming growth factor (TGF)-β-mediated activation and migration of cultured HSCs. Overexpression of GJA1 by lentivirus infection promoted proliferation and migration, while conditioned medium from HSCs overexpressing GJA1 promoted migration but inhibited proliferation of Hep3B and PLC-PRF-5 cells. Lentivirus infection with shGJA1 or conditioned medium from shGJA1-infected HSCs inhibited the proliferation and migration of HCCLM3 cells that had a high propensity toward lung metastasis. Mechanistically, GJA1 induced the epithelial–mesenchymal transition (EMT) in HSCs and HCCLM3 cells. Conclusion GJA1 promoted HCC progression by inducing HSC activation and the EMT in HSCs. GJA1 is potentially regulated by TGF-β and thus may be a therapeutic target to inhibit HCC progression.
Collapse
Affiliation(s)
- Gengming Niu
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, Minhang District, Shanghai, 200240, People's Republic of China
| | - Xiaotian Zhang
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, Minhang District, Shanghai, 200240, People's Republic of China
| | - Runqi Hong
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, Minhang District, Shanghai, 200240, People's Republic of China
| | - Ximin Yang
- Department of Radiology, Dongying New District Hospital, Dongying, Shandong Province, 257000, People's Republic of China
| | - Jiawei Gu
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, Minhang District, Shanghai, 200240, People's Republic of China
| | - Tao Song
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, Minhang District, Shanghai, 200240, People's Republic of China
| | - Zhiqing Hu
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, Minhang District, Shanghai, 200240, People's Republic of China
| | - Liang Chen
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, Minhang District, Shanghai, 200240, People's Republic of China
| | - Xin Wang
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, Minhang District, Shanghai, 200240, People's Republic of China
| | - Jie Xia
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, Minhang District, Shanghai, 200240, People's Republic of China
| | - Zhongwei Ke
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Minhang District, Shanghai, 200240, People's Republic of China
| | - Jun Ren
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Minhang District, Shanghai, 200240, People's Republic of China
| | - Liang Hong
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Minhang District, Shanghai, 200240, People's Republic of China
| |
Collapse
|
6
|
Besutti G, Damato A, Venturelli F, Bonelli C, Vicentini M, Monelli F, Mancuso P, Ligabue G, Pattacini P, Pinto C, Giorgi Rossi P. Baseline liver steatosis has no impact on liver metastases and overall survival in rectal cancer patients. BMC Cancer 2021; 21:253. [PMID: 33750342 PMCID: PMC7941741 DOI: 10.1186/s12885-021-07980-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/24/2021] [Indexed: 01/15/2023] Open
Abstract
Background The liver is one of the most frequent sites of metastases in rectal cancer. This study aimed to evaluate how the development of synchronous or metachronous liver metastasis and overall survival are impacted by baseline liver steatosis and chemotherapy-induced liver damage in rectal cancer patients. Methods Patients diagnosed with stage II to IV rectal cancer between 2010 and 2016 in our province with suitable baseline CT scan were included. Data on cancer diagnosis, staging, therapy, outcomes and liver function were collected. CT scans were retrospectively reviewed to assess baseline steatosis (liver density < 48 HU and/or liver-to-spleen ratio < 1.1). Among patients without baseline steatosis and treated with neoadjuvant chemotherapy, chemotherapy-induced liver damage was defined as steatosis appearance, ≥ 10% liver volume increase, or significant increase in liver function tests. Results We included 283 stage II to IV rectal cancer patients with suitable CT scan (41% females; mean age 68 ± 14 years). Steatosis was present at baseline in 90 (31.8%) patients, synchronous liver metastasis in 42 (15%) patients and metachronous liver metastasis in 26 (11%); 152 (54%) deaths were registered. The prevalence of synchronous liver metastasis was higher in patients with steatosis (19% vs 13%), while the incidence of metachronous liver metastasis was similar. After correcting for age, sex, stage, and year of diagnosis, steatosis was not associated with metachronous liver metastasis nor with overall survival. In a small analysis of 63 patients without baseline steatosis and treated with neoadjuvant chemotherapy, chemotherapy-induced liver damage was associated with higher incidence of metachronous liver metastasis and worse survival, results which need to be confirmed by larger studies. Conclusions Our data suggest that rectal cancer patients with steatosis had a similar occurrence of metastases during follow-up, even if the burden of liver metastases at diagnosis was slightly higher, compatible with chance. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07980-9.
Collapse
Affiliation(s)
- Giulia Besutti
- Clinical and Experimental Medicine PhD program, University of Modena and Reggio Emilia, Modena, Italy.,Radiology Unit, Department of Diagnostic Imaging and Laboratory Medicine, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Angela Damato
- Medical Oncology Unit, AUSL-IRCCS of Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy.,Department of Medical Biotechnologies, University of Siena, Strada delle Scotte 4, 53100, Siena, Italy
| | - Francesco Venturelli
- Epidemiology Unit, AUSL-IRCCS of Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Candida Bonelli
- Medical Oncology Unit, AUSL-IRCCS of Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Massimo Vicentini
- Epidemiology Unit, AUSL-IRCCS of Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Filippo Monelli
- Clinical and Experimental Medicine PhD program, University of Modena and Reggio Emilia, Modena, Italy. .,Radiology Unit, Department of Diagnostic Imaging and Laboratory Medicine, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| | - Pamela Mancuso
- Epidemiology Unit, AUSL-IRCCS of Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Guido Ligabue
- Department of Radiology, Azienda Ospedaliero-Universitaria Policlinico di Modena, University of Modena and Reggio Emilia, 41124, Modena, Italy
| | - Pierpaolo Pattacini
- Radiology Unit, Department of Diagnostic Imaging and Laboratory Medicine, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Carmine Pinto
- Medical Oncology Unit, AUSL-IRCCS of Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Paolo Giorgi Rossi
- Epidemiology Unit, AUSL-IRCCS of Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| |
Collapse
|
7
|
Shang C, Qiao J, Guo H. The dynamic behavior of lipid droplets in the pre-metastatic niche. Cell Death Dis 2020; 11:990. [PMID: 33203856 PMCID: PMC7672095 DOI: 10.1038/s41419-020-03207-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
The pre-metastatic niche is a favorable microenvironment for the colonization of metastatic tumor cells in specific distant organs. Lipid droplets (LDs, also known as lipid bodies or adiposomes) have increasingly been recognized as lipid-rich, functionally dynamic organelles within tumor cells, immune cells, and other stromal cells that are linked to diverse biological functions and human diseases. Moreover, in recent years, several studies have described the indispensable role of LDs in the development of pre-metastatic niches. This review discusses current evidence related to the biogenesis, composition, and functions of LDs related to the following characteristics of the pre-metastatic niche: immunosuppression, inflammation, angiogenesis/vascular permeability, lymphangiogenesis, organotropism, reprogramming. We also address the function of LDs in mediating pre-metastatic niche formation. The potential of LDs as markers and targets for novel antimetastatic therapies will be discussed.
Collapse
Affiliation(s)
- Chunliang Shang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, 100191, Beijing, China
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, 100191, Beijing, China. .,National Clinical Research Center for Obstetrics and Gynecology, 100191, Beijing, China. .,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, 100191, Beijing, China. .,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, 100191, Beijing, China. .,Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, 100191, Beijing, China.
| | - Hongyan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, 100191, Beijing, China.
| |
Collapse
|
8
|
Deng L, Li T, Liao Y, Liu S, Xie Z, Huang Z, Dai H, Li J, Lei X. Peritumoral activated hepatic stellate cells are associated with hepatic recurrence for resectable colorectal adenocarcinoma liver metastasis following resection. Oncol Lett 2020; 20:287. [PMID: 33014165 PMCID: PMC7520724 DOI: 10.3892/ol.2020.12150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 07/14/2020] [Indexed: 12/24/2022] Open
Abstract
The formation of the pre-metastatic niche (PMN), which precedes the establishment of tumor lesions, plays a critical role in cancer recurrence and metastasis. Hepatic stellate cells (HSCs), a critical liver stromal cell component, can be induced to facilitate metastasis by modeling liver PMN formation. In the present study, activated HSCs were observed in the peritumor non-cancerous liver tissues (PNLT) colorectal adenocarcinoma liver metastasis (CRALM), and the density of activated HSCs was higher in PNLT compared with that in normal liver tissues (NLT). High density of activated HSC in the PNLT was positively associated with the number of tumor liver metastases (P=0.036), maximum diameter of liver metastases (P=0.002), and recurrence following synchronous radical resection (P=0.003). High density of activated HSCs in the PNLT was identified as a significant and independent prognostic factor for disease-free survival (HR, 2.083; 95% CI, 1.504–2.885; P=0.016) and overall survival (HR, 2.039; 95% CI, 1.312–3.169; P=0.019). Functionally, in vitro assays revealed that activated HSCs facilitated colorectal adenocarcinoma (CRA) cells to colonize the liver. Molecularly, it was demonstrated that the pro-recurrence of activated HSCs depended on paracrine hepatic growth factor. Taken together, the present results showed that high density of activated HSCs in the PNLT was an independent predictor for CRALM recurrence following resection, and they exerted their roles via their effect on CRA cell recruitment and proliferation by paracrine HGF.
Collapse
Affiliation(s)
- Li Deng
- Ultrasonic Department, Jiangxi Pingxiang People's Hospital, Pingxiang, Jiangxi 337000, P.R. China
| | - Taiyuan Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Gastrointeral Surgical Institute of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yuanyuan Liao
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shuang Liu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhen Xie
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhixiang Huang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hua Dai
- Department of Pathology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jianfeng Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiong Lei
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Gastrointeral Surgical Institute of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
9
|
Shahbazi R, Baradaran B, Khordadmehr M, Safaei S, Baghbanzadeh A, Jigari F, Ezzati H. Targeting ROCK signaling in health, malignant and non-malignant diseases. Immunol Lett 2020; 219:15-26. [PMID: 31904392 DOI: 10.1016/j.imlet.2019.12.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/15/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022]
Abstract
A Rho-associated coiled-coil kinase (ROCK) is identified as a critical downstream effector of GTPase RhoA which contains two isoforms, ROCK1 (also known as p160ROCK and ROKβ) and ROCK2 (also known as Rho-kinase and ROKα), the gene of which is placed on chromosomes 18 (18q11.1) and 2 (2p24), respectively. ROCKs have a principal function in the generation of actin-myosin contractility and regulation of actin cytoskeleton dynamics. They represent a chief role in regulating various cellular functions, such as apoptosis, growth, migration, and metabolism through modulation of cytoskeletal actin synthesis, and cellular contraction through phosphorylation of numerous downstream targets. Emerging evidence has indicated that ROCKs present a significant function in cardiac physiology. Of note, dysregulation of ROCKs involves in several cardiac pathological processes like cardiac hypertrophy, cardiac fibrosis, systemic blood pressure disorder, and pulmonary hypertension. Moreover, ROCKs, in addition to their role in regulating renal arteriolar contraction, glomerular blood flow, and filtration, can also play a role in controlling podocytes, tubular cells, and mesangial cell structure and function. Hyperactivity disorder and over-gene expression of Rho/ROCK have been indicated in different cancers. Furthermore, it seems that increasing the expression of mRNA or ROCK protein has an undesirable effect on patient survival and has a positive impact on the progression and worsening of disease prognosis. This review focuses on the physiological and pathological functions of ROCKs with a particular view on its possible value of ROCK inhibitors as a new therapy in cancers and non-cancer diseases.
Collapse
Affiliation(s)
- Roya Shahbazi
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, 51665-1647, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran.
| | - Monireh Khordadmehr
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, 51665-1647, Tabriz, Iran.
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran.
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran.
| | - Farinaz Jigari
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, 51665-1647, Tabriz, Iran.
| | - Hamed Ezzati
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, 51665-1647, Tabriz, Iran.
| |
Collapse
|
10
|
Okimoto S, Kuroda S, Tashiro H, Kobayashi T, Taogoshi T, Matsuo H, Ohdan H. Vitamin A-coupled liposomal Rho-kinase inhibitor ameliorates liver fibrosis without systemic adverse effects. Hepatol Res 2019; 49:663-675. [PMID: 30675748 DOI: 10.1111/hepr.13317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 02/08/2023]
Abstract
AIM Rho-kinase (ROCK) inhibitor could ameliorate liver fibrosis by suppressing hepatic stellate cell (HSC) activation. However, because systemic administration of ROCK inhibitor causes serious adverse effects, we developed a drug delivery system selectively delivering ROCK inhibitor to HSCs. Here, we examined whether our developed vitamin A (VA)-coupled liposomal ROCK inhibitor reduced liver fibrosis in rats without causing systemic adverse effects. METHODS LX-2 HSCs were analyzed for morphological changes and the expression of profibrotic proteins. The inhibitory effects of VA-coupled liposomal ROCK inhibitor on liver fibrosis were confirmed in a rat model of liver fibrosis induced by i.p. injection of carbon tetrachloride. The degree of liver fibrosis, biochemical changes, and survival rates were also investigated. RESULTS Vitamin A-coupled liposomal ROCK inhibitor had an effect at approximately 1/100 the amount of the free ROCK inhibitor for inhibiting the activation of LX-2 cells and caused significant decreases in the expression levels of α-smooth muscle actin (SMA) and transforming growth factor (TGF)-β1. The degree of liver fibrosis was suppressed by treatment with VA-coupled liposomal ROCK inhibitor, and the expression of α-SMA and TGF-β1 in liver tissues was also significantly suppressed. In addition, serum levels of alanine aminotransferase and hyaluronic acid were significantly reduced, and there was no decline in kidney function, which has been noted as a systemic adverse effect of ROCK inhibitor. Furthermore, VA-coupled liposomal ROCK inhibitor improved survival rates in rats with liver fibrosis. CONCLUSION Vitamin A-coupled liposomal ROCK inhibitor efficiently suppressed liver fibrosis without causing systemic adverse effects.
Collapse
Affiliation(s)
- Sho Okimoto
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shintaro Kuroda
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hirotaka Tashiro
- Department of Surgery, National Hospital Organization Kure Medical Center, Hiroshima, Japan
| | - Tsuyoshi Kobayashi
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takanori Taogoshi
- Department of Pharmaceutical Services, Hiroshima University, Hiroshima, Japan
| | - Hiroaki Matsuo
- Department of Pharmaceutical Services, Hiroshima University, Hiroshima, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
11
|
Wu W, Liao H, Ye W, Li X, Zhang J, Bu J. Fatty liver is a risk factor for liver metastasis in Chinese patients with non-small cell lung cancer. PeerJ 2019; 7:e6612. [PMID: 30886784 PMCID: PMC6421062 DOI: 10.7717/peerj.6612] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/13/2019] [Indexed: 12/24/2022] Open
Abstract
Background The hepatic microenvironment, which may include chronic inflammation and fibrosis, is considered to contribute to the development of liver metastases. Hepatic steatosis (HS) might cause liver inflammation and fibrosis. However, to date, no studies have investigated the impact of HS on liver metastasis in patients with non-small cell lung cancer (NSCLC). Methods A retrospective cohort study was performed on patients who received NSCLC treatment at two hospitals affiliated with the Southern Medical University from January 2005 to December 2015. The patients were grouped according to the presence of HS. The clinicopathological features of patients between the two groups were compared. The effect of HS on liver metastasis and overall metastasis was evaluated, adjusting for other confounders using Cox regression analyses. Results In total, 1,873 patients with NSCLC with no distant metastases were included in this study, and 408 (21.8%) patients were diagnosed with HS (at the time of diagnosis or before diagnosis). Liver metastases occurred in 166 (8.9%) patients. Liver metastasis-free survival was significantly worse in the study (HS) group (hazard ratio (HR) 1.42; (95% CI [1.03–1.96]); P = 0.031). Multivariate regression analysis demonstrated that HS was an independent risk factor for liver metastasis (HR 1.43; 95% CI [1.02–2.01]; P = 0.039). However, HS was not associated with overall metastasis of NSCLC (HR 0.99; 95% CI [0.84–1.17]; P = 0.895). Conclusion Hepatic steatosis was an independent predictor of liver metastasis from in patients with NSCLC.
Collapse
Affiliation(s)
- Wenyu Wu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Target and Interventional Therapy Department of Oncology, First People's Hospital of Foshan, Foshan, China
| | - Haiyan Liao
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weilin Ye
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xi Li
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Junguo Bu
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Guo Y, Ji X, Liu J, Fan D, Zhou Q, Chen C, Wang W, Wang G, Wang H, Yuan W, Ji Z, Sun Z. Effects of exosomes on pre-metastatic niche formation in tumors. Mol Cancer 2019; 18:39. [PMID: 30857545 PMCID: PMC6413442 DOI: 10.1186/s12943-019-0995-1] [Citation(s) in RCA: 276] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/28/2019] [Indexed: 12/15/2022] Open
Abstract
A pre-metastatic niche is a microenvironment prepared for the colonization of circulating tumor cells in specific organs. Exosomes are extracellular vesicles with a variety of biological functions. Exosomes play an irreplaceable role in the development of pre-metastatic niches, and mainly function as communication medium. In this review, we analyzed the effects of exosomes on pre-metastatic niches from various perspectives, including inflammation, immune response, angiogenesis, organotropism, matrix remodeling and biomarker expression. In particular, exosomes express programmed death ligand 1 (PD-L1) and cause the immune escape of tumor cells. The immunomodulatory effects of exosomes and their potential in liquid diagnosis have drawn our attention. The potential value of exosomes and pre-metastatic niches will be realized in the field of immunity therapy.
Collapse
Affiliation(s)
- Yaxin Guo
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.,School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiang Ji
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Dandan Fan
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Chen Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Guixian Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Haijiang Wang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Xinjiang Medical University, Ürümqi, 830011, Xinjiang, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Zhenyu Ji
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China. .,School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Xinjiang Medical University, Ürümqi, 830011, Xinjiang, China.
| |
Collapse
|
13
|
Chang F, Zhang Y, Mi J, Zhou Q, Bai F, Xu X, Fisher DE, Sun Q, Wu X. ROCK inhibitor enhances the growth and migration of BRAF-mutant skin melanoma cells. Cancer Sci 2018; 109:3428-3437. [PMID: 30168234 PMCID: PMC6215891 DOI: 10.1111/cas.13786] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 12/19/2022] Open
Abstract
Rho-associated protein kinase (ROCK) plays crucial roles in the proliferation and migration of different types of cells. ROCK inhibitor Y-27632 was previously reported to inhibit melanoma cell growth, and ROCK signaling was suggested to be a therapeutic target for treating melanoma. However, the negative effect of Y-27632 on melanoma cells was mainly seen in studies on murine B16 melanoma cells. Here, we reported that ROCK inhibitor actually promoted human melanoma cell growth and migration in vitro. Y-27632 increased the growth and migration of BRAF-mutated melanoma cells but had a negative effect on wild-type melanoma cells or primary melanocytes. We discovered that Y-27632 enhanced the growth of BRAF-mutated melanoma cells through increased ATK and ERK activity. The in vivo study further confirmed the in vitro finding. These data suggested that the effect of ROCK inhibitor on melanoma cells is cell-context dependent, and the application of ROCK inhibitor in the treatment of melanoma requires further study.
Collapse
Affiliation(s)
- Fei Chang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Laboratory for Tissue Engineering and Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Stomatology, The Second Hospital of Shandong University, Jinan, China
| | - Yunpeng Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China
| | - Jun Mi
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Laboratory for Tissue Engineering and Regeneration, School of Stomatology, Shandong University, Jinan, China
| | - Qian Zhou
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Laboratory for Tissue Engineering and Regeneration, School of Stomatology, Shandong University, Jinan, China
| | - Fuxiang Bai
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Laboratory for Tissue Engineering and Regeneration, School of Stomatology, Shandong University, Jinan, China
| | - Xin Xu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China
| | - David E Fisher
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Qinfeng Sun
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China
| | - Xunwei Wu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Laboratory for Tissue Engineering and Regeneration, School of Stomatology, Shandong University, Jinan, China.,Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
14
|
Wu J. Utilization of animal models to investigate nonalcoholic steatohepatitis-associated hepatocellular carcinoma. Oncotarget 2018; 7:42762-42776. [PMID: 27072576 PMCID: PMC5173170 DOI: 10.18632/oncotarget.8641] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/29/2016] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) comprises a spectrum of liver disorders with fat accumulation from simple fatty liver, nonalcoholic steatohepatitis (NASH), fibrosis/cirrhosis and NAFLD/NASH-associated hepatocellular carcinoma (HCC). NASH is a progressive form of NAFLD and requires medical attention. One of 5-10 NASH patients may progress to end-state liver disease (ESLD or cirrhosis) in 5-10 years; meanwhile, life-threatening complications of ESLD and HCC account for major mortality. An increasing burden of NAFLD in clinics, elucidation of its pathogenesis and progression, and assessment of the efficacy of potential therapeutics demand reliable animal models. Most NASH-associated HCC occurs in cirrhotic subjects; however, HCC does appear in NASH patients without cirrhosis. Lipotoxicity, oxidant stress, insulin resistance, endoplasmic reticulum stress, altered adipokine and lymphokine profiles and gut microbiome changes affect NAFLD progression and constitute key pathobiologic interplays. How these factors promote malignant transformation in a microenvironment of steatotic inflammation and fibrosis/cirrhosis, and lead to development of neoplasms is one of critical questions faced in the hepatology field. The present review summarizes the characteristics of emerging rodent NASH-HCC models, and discusses the challenges in utilizing these models to unveil the mysteries of NASH-associated HCC development.
Collapse
Affiliation(s)
- Jian Wu
- Key Laboratory of Molecular Virology, Fudan University Shanghai Medical College, Shanghai, China.,Shanghai Institute of Liver Diseases, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Dong G, Wang M, Gu G, Li S, Sun X, Li Z, Cai H, Zhu Z. MACC1 and HGF are associated with survival in patients with gastric cancer. Oncol Lett 2017; 15:3207-3213. [PMID: 29435059 DOI: 10.3892/ol.2017.7710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 11/02/2017] [Indexed: 02/06/2023] Open
Abstract
Metastasis-associsated in colon cancer 1 (MACC1), a newly identified oncogene, promotes tumor cell proliferation and invasion. In the present study, the expression of MACC1, hepatocyte growth factor (HGF) and its receptor, MET proto-oncogene (c-Met), was investigated in human gastric cancer tissues and adjacent normal tissues by immunohistochemistry. The association between the expression levels of the proteins and the clinicopathological parameters of the tumors were statistically analyzed. Furthermore, lentiviral particles expressing MACC1 were used to infect the hepatic satellite cell (HSC) line LX2. The expression of α-smooth muscle actin (SMA), HGF, matrix metallopeptidase (MMP)-2 and MMP-9 in human HSCs was examined by western blotting and reverse transcription-quantitative polymerase chain reaction. Transwell assays were used to measure the effect of MACC1-infected or non-infected HSCs on the migration and invasion abilities of MKN45 and MKN74 gastric carcinoma cells in vitro. The results demonstrated that positive protein expression of MACC1, HGF and c-Met was significantly higher in human gastric cancer tissues compared with adjacent normal tissues. Positive expression of MACC1 and c-Met in gastric cancer tissues had no correlation with the sex, age, tumor location and peritoneal metastasis of patients, but was significantly correlated with tumor size, depth of tumor invasion, lymph node metastasis, TNM stage, histological differentiation, and overall (5 years) and disease-free survival (5 years). Positive expression of each MACC1, HGF and c-Met protein was demonstrated to be positively correlated with each other in human gastric cancer tissues. Western blotting results confirmed that MACC1 protein was overexpressed in MACC1-overexpressing lentivirus-infected HSCs. Overexpression of MACC1 significantly increased HGF, MMP-2, MMP-9 and α-SMA expression levels in HSCs. Results from the Transwell assays indicated an increase in the number of MKN45 or MKN74 cells migrating towards MACC1-overexpressing HSCs, compared with control HSCs. These findings suggested that MACC1 may regulate the expression of HGF, MMP-2 and MMP-9 in HSCs, and may thus promote migration and invasion of gastric carcinoma cells. MACC1, HGF and c-Met might cooperatively participate in the malignant progression of gastric cancer. In conclusion, MACC1 might serve as a useful molecular target for the diagnosis, treatment and prognosis of gastric cancer.
Collapse
Affiliation(s)
- Guokai Dong
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Man Wang
- Department of Medical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Guangfu Gu
- Department of Medical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Shanshan Li
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Xiaoming Sun
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Zhouru Li
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Hongxing Cai
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Zhengqiu Zhu
- Department of Medical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| |
Collapse
|
16
|
Cascione M, De Matteis V, Toma CC, Pellegrino P, Leporatti S, Rinaldi R. Morphomechanical and structural changes induced by ROCK inhibitor in breast cancer cells. Exp Cell Res 2017; 360:303-309. [PMID: 28935466 DOI: 10.1016/j.yexcr.2017.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/08/2017] [Accepted: 09/13/2017] [Indexed: 11/20/2022]
Abstract
The EMT phenomenon is based on tumour progression. The cells lose their physiologic phenotype and assumed a mesenchymal phenotype characterized by an increased migratory capacity, invasiveness and high resistance to apoptosis. In this process, RHO family regulates the activation or suppression of ROCK (Rho-associated coiled-coil containing protein kinase) which in turn regulates the cytoskeleton dynamics. However, while the biochemical mechanisms are widely investigated, a comprehensive and careful estimation of biomechanical changes has not been extensively addressed. In this work, we used a strong ROCK inhibitor, Y-27632, to evaluate the effects of inhibition on living breast cancer epithelial cells by a biomechanical approach. Atomic Force Microscopy (AFM) was used to estimate changes of cellular elasticity, quantified by Young's modulus parameter. The morphometric alterations were analyzed by AFM topographies and Confocal Laser Scanning Microscopy (CLSM). Our study revealed a significant modification in the Young's modulus after treatment, especially as regards cytoskeletal region. Our evidences suggest that the use of Y-27632 enhanced the cell rigidity, preventing cell migration and arrested the metastasization process representing a potential powerful factor for cancer treatment.
Collapse
Affiliation(s)
- Mariafrancesca Cascione
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università degli Studi di Bari "Aldo Moro", c/o Policlinico Bari, Bari, Italy
| | - Valeria De Matteis
- Dipartimento di Matematica e Fisica "E. De Giorgi", Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Chiara Cristina Toma
- Dipartimento di Matematica e Fisica "E. De Giorgi", Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Paolo Pellegrino
- Dipartimento di Matematica e Fisica "E. De Giorgi", Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Stefano Leporatti
- CNR Nanotec-Istituto di Nanotecnologia, Polo di Nanotecnologia, c/o Campus Ecoteckne, Lecce, Italy.
| | - Rosaria Rinaldi
- Dipartimento di Matematica e Fisica "E. De Giorgi", Università del Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
17
|
申 九, 熊 共, 郑 启, 张 宏, 洪 再. 自然杀伤细胞抑制肝癌肺转移. Shijie Huaren Xiaohua Zazhi 2017; 25:2028-2038. [DOI: 10.11569/wcjd.v25.i22.2028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
目的 研究自然杀伤(natural killer, NK)细胞对肝癌的抑制作用, 为临床应用提供实验依据.
方法 从人外周血分离培养及鉴定NK细胞. 在体外, 研究NK细胞抑制肝癌细胞的增殖、迁徙、转移. 在体内, 检测NK细胞在裸鼠肝脏存活情况. 利用人肝癌组织裸鼠肝脏原位移植模型来评估NK细胞在体内对肝癌生长、转移的抑制功能. 通过检测NK细胞活化受体、NKB1、穿孔素和颗粒酶的表达情况来评估白介素(interleukin, IL)-2对NK细胞免疫功能的刺激作用.
结果 采用密度梯度法可以获取较大量的外周血单个核细胞, 且能够从中分离到高活力的NK细胞. NK细胞经IL-2激活后活力增高, 成簇悬浮繁殖、扩增、生长. 在体外, NK细胞可抑制肝癌细胞的增殖、迁移和侵袭. 在体内, NK细胞在裸鼠肝脏可长期存活; NK细胞可明显抑制裸鼠肝癌肺转移. 然而, NK细胞对肝脏肿瘤生长抑制不明显. IL-2可诱导NK细胞免疫相关分子的表达并提高其肿瘤抑制功能.
结论 NK细胞的免疫学功能可被IL-2活化从而抑制肝癌的转移.
Collapse
|
18
|
Abstract
肿瘤侵袭转移研究目前多聚焦肿瘤微环境对肿瘤细胞恶性生物学行为的调控解析, 而针对肿瘤细胞定植转移靶器官前, 由原发瘤诱导靶器官"土壤"微环境改变形成"预转移龛"的关注和认知却明显不足. 随着原发瘤来源肿瘤可溶性因子、膜泡、外泌体, 及募集骨髓衍生细胞在不同肿瘤动物模型转移靶器官中相继鉴定发现, 预转移龛加速促成转移在靶器官实现获得越来越多实验上的验证与支撑. 本文对肿瘤预转移龛形成的始动因素、细胞组分、形成调控、促转移发生机制进行总结综述, 并讨论预转移龛潜在的临床意义及其面临的挑战.
Collapse
|
19
|
Lachowski D, Cortes E, Robinson BK, Rombouts K, del Río Hernández A. Assaying the rigidity guided migration of human tumour stromal myofibroblasts (TSMs) on polyacrylamide substrates mimicking the healthy and fibrotic tissue transition boundary. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2016. [DOI: 10.1088/2057-1739/aa4e4c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
20
|
Liu Y, Cao X. Characteristics and Significance of the Pre-metastatic Niche. Cancer Cell 2016; 30:668-681. [PMID: 27846389 DOI: 10.1016/j.ccell.2016.09.011] [Citation(s) in RCA: 724] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/22/2016] [Accepted: 09/20/2016] [Indexed: 12/17/2022]
Abstract
Primary tumors create a favorable microenvironment, namely, pre-metastatic niche, in secondary organs and tissue sites for subsequent metastases. The pre-metastatic niche can be primed and established through a complex interplay among primary tumor-derived factors, tumor-mobilized bone marrow-derived cells, and local stromal components. We review here our current understanding of the key components and underlying mechanisms for pre-metastatic niche formation. We propose six characteristics that define the pre-metastatic niche, which enable tumor cell colonization and promote metastasis, including immunosuppression, inflammation, angiogenesis/vascular permeability, lymphangiogenesis, organotropism, and reprogramming. We highlight the significance of the pre-metastatic niche, and discuss potential implications and future research directions.
Collapse
Affiliation(s)
- Yang Liu
- National Key Laboratory of Medical Molecular Biology, Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xuetao Cao
- National Key Laboratory of Medical Molecular Biology, Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
21
|
Ma JC, Huang X, Shen YW, Zheng C, Su QH, Xu JK, Zhao J. Tenascin-C promotes migration of hepatic stellate cells and production of type I collagen. Biosci Biotechnol Biochem 2016; 80:1470-7. [PMID: 27031437 DOI: 10.1080/09168451.2016.1165600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tenascin-C (TN-C) is an extracellular matrix glycoprotein markedly upregulated during liver fibrosis. The study is performed to explore the role of TN-C during the growth and activation of hepatic stellate cells (HSCs). We found that TN-C was accumulated accompanying with the HSC activation. Our data on cell migration assay revealed that the rTN-C treatment enhanced HSC migration in a dose- and time-dependent manner, but did not influence their proliferation. HSCs transfected with pTARGET-TN-C overexpression vector displayed increased the type I collagen (Col I) production. TN-C overexpression enhanced the process of HSC activation through TGF-β1 signaling. Moreover, the anti-α9β1 integrin antibody treatment blocked the TN-C-driven Col I increase in rat HSCs. Collectively, TN-C had a positive role in activation of HSCs mediated by TGF-β1 and α9β1 integrin, manifesting elevation of Col I production and promotion of cell migration. Our results provide a potential insight for the therapy of hepatic fibrosis.
Collapse
Affiliation(s)
- Jian-Cang Ma
- a Department of General Surgery , Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Xin Huang
- b Department of General Surgery , Xi'an Central Hospital, Xi'an Jiaotong University , Xi'an , China
| | - Ya-Wei Shen
- b Department of General Surgery , Xi'an Central Hospital, Xi'an Jiaotong University , Xi'an , China
| | - Chen Zheng
- b Department of General Surgery , Xi'an Central Hospital, Xi'an Jiaotong University , Xi'an , China
| | - Qing-Hua Su
- a Department of General Surgery , Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Jin-Kai Xu
- a Department of General Surgery , Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Jun Zhao
- a Department of General Surgery , Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| |
Collapse
|
22
|
Hong ZF, Zhao WX, Yin ZY, Xie CR, Xu YP, Chi XQ, Zhang S, Wang XM. Natural killer cells inhibit pulmonary metastasis of hepatocellular carcinoma in nude mice. Oncol Lett 2016; 11:2019-2026. [PMID: 26998115 PMCID: PMC4774462 DOI: 10.3892/ol.2016.4170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 12/08/2015] [Indexed: 12/29/2022] Open
Abstract
Natural killer (NK) cells have been demonstrated to inhibit tumor growth. However, the role of NK cells in the inhibition of hepatocellular carcinoma metastasis is not well understood. The present study aimed to investigate the roles that NK cells may serve in inhibiting hepatocellular carcinoma metastasis. The role of isolated NK cells in the inhibition, proliferation, migration and invasion of the hepatoma cell line, MHCC97-H, was examined in vitro. Additionally, the survival rate of NK cells labeled with carboxyfluorescein diacetate-succinimidyl ester was assessed in vivo. An orthotopic implantation model was used to evaluate the role of NK cells in suppressing MHCC97-H cells in vivo. The effect of interleukin (IL)-2 stimulation on the tumor-inhibitory role of the NK cells was measured indirectly by analyzing the expression of various NK cell receptors and activated NK cell markers. It was observed that the NK cells inhibited the proliferation, migration and invasion of the MHCC97-H cells in vitro. Furthermore, the NK cells demonstrated long-term survival in the livers of the nude mice, and inhibited lung metastasis of hepatocellular carcinoma in vivo. However, liver tumor growth was not inhibited by the NK cells. IL-2 was identified to enhance the tumor-inhibitory effect of NK cells. The present study concludes that IL-2 may enhance the antitumor activity of the NK cells, and thereby inhibit the metastases of hepatocellular carcinoma in mice.
Collapse
Affiliation(s)
- Zai-Fa Hong
- Department of Hepatobiliary Surgery and Liver Disease Center, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian 361000, P.R. China; Post Graduate College, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Wen-Xiu Zhao
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Zhen-Yu Yin
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Cheng-Rong Xie
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Ya-Ping Xu
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Xiao-Qin Chi
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Sheng Zhang
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Xiao-Min Wang
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| |
Collapse
|
23
|
Wei L, Surma M, Shi S, Lambert-Cheatham N, Shi J. Novel Insights into the Roles of Rho Kinase in Cancer. Arch Immunol Ther Exp (Warsz) 2016; 64:259-78. [PMID: 26725045 PMCID: PMC4930737 DOI: 10.1007/s00005-015-0382-6] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/24/2015] [Indexed: 12/12/2022]
Abstract
Rho-associated coiled-coil kinase (ROCK) is a major downstream effector of the small GTPase RhoA. The ROCK family, consisting of ROCK1 and ROCK2, plays a central role in the organization of the actin cytoskeleton, and is involved in a wide range of fundamental cellular functions such as contraction, adhesion, migration, proliferation, and apoptosis. Since the discovery of effective inhibitors such as fasudil and Y27632, the biological roles of ROCK have been extensively explored in numerous diseases, including cancer. Accumulating evidence supports the concept that ROCK plays important roles in tumor development and progression through regulating many key cellular functions associated with malignancy, including tumorigenicity, tumor growth, metastasis, angiogenesis, tumor cell apoptosis/survival and chemoresistance as well. This review focuses on the new advances of the most recent 5 years from the studies on the roles of ROCK in cancer development and progression; the discussion is mainly focused on the potential value of ROCK inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Lei Wei
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA. .,Department of Cellular and Integrative Physiology, Indiana University, School of Medicine, 1044 West Walnut Street, R4-370, Indianapolis, IN, 46202-5225, USA.
| | - Michelle Surma
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA
| | - Stephanie Shi
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA
| | - Nathan Lambert-Cheatham
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA
| | - Jianjian Shi
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA.
| |
Collapse
|
24
|
Mikuriya Y, Tashiro H, Kobayashi T, Kuroda S, Abe T, Hashimoto M, Ohdan H. Clinicopathological features of hepatocellular carcinoma in patients with nonalcoholic fatty liver disease. Langenbecks Arch Surg 2015; 400:471-6. [PMID: 25744657 DOI: 10.1007/s00423-015-1295-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/23/2015] [Indexed: 12/20/2022]
Abstract
PURPOSE The incidence of hepatocellular carcinoma (HCC) in patients with nonalcoholic fatty liver disease (NAFLD) is increasing. However, the clinicopathological features of HCC in these patients are little known. Thus, we investigated the differences in the clinical and pathological characteristics of HCC between NAFLD patients and hepatitis-C virus (HCV) patients. METHODS Data from 21 HCC patients with NAFLD and 645 HCC patients with HCV who underwent curative hepatectomy were collected and analyzed. To overcome bias due to differences in the distribution of covariates between the two groups, propensity score matching was performed, and clinicopathological features and outcomes were compared. RESULTS In propensity score analysis, the rate of microscopic vascular invasion was significantly higher in the NAFLD group than in the HCV group (65 vs. 30%; P = 0.027). However, overall survival and disease-free survival did not differ between the two matched groups. CONCLUSIONS NAFLD may have permissive microenvironment for HCC progression.
Collapse
Affiliation(s)
- Yoshihiro Mikuriya
- Department of Gastroenterological and Transplant Surgery, Hiroshima University Hospital, 1-2-3, Kasumi, Hiroshima, 734-8551, Japan
| | | | | | | | | | | | | |
Collapse
|