1
|
Chen M, Wu W, Wang S, Lai X, Liu M, Sun Y, Liu X, Li G, Song Y, Bao C, Li X, Chen G, Deng Y. Neutrophils as emerging immunotherapeutic targets: Indirect treatment of tumors by regulating the tumor immune environment based on a sialic acid derivative-modified nanocomplex platform. Int J Pharm 2022; 620:121684. [PMID: 35314280 DOI: 10.1016/j.ijpharm.2022.121684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/25/2022] [Accepted: 03/15/2022] [Indexed: 01/02/2023]
Abstract
Tumor cells are dependent on their microenvironment; thus, targeting the non-cancerous components surrounding the tumor may be beneficial. Neutrophils are important inflammatory cells in the tumor microenvironment that significantly affect tumor cell proliferation, metastasis, and immune regulation. Targeted regulation of tumor-associated neutrophil-related pathways is expected to become a new therapeutic approach. Colchicine compounds are powerful anti-inflammatory drugs that strongly inhibit the chemotaxis of neutrophils to the inflammatory site. We attempted to achieve anticancer effects by utilizing its ability to inhibit neutrophil recruitment rather than killing tumor cells. As such drugs are likely to cause non-specific damages due to the lack of selectivity, we synthesized and used sialic acid and cholesterol derivatives (SA-CH) for surface modification of the newly synthesized low-toxic colchicine derivative (BCS) nanocomposite to improve neutrophil targeting. In vivo and in vitro experiments have shown that SA-CH-modified BCS preparations are effectively absorbed by neutrophils, inhibit cell migration, reduce infiltration of tumor-associated neutrophils, enhance T lymphocyte function, and exhibit good anti-S180 early tumor effect. In addition, in a triple-negative breast cancer model, the agent could strongly inhibit tumor metastasis to the lungs.
Collapse
Affiliation(s)
- Meng Chen
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Wenjing Wu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Shuo Wang
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Xiaoxue Lai
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Mengyang Liu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Yiming Sun
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Gang Li
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Changshun Bao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xiaohu Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
2
|
Zhu K, Li P, Mo Y, Wang J, Jiang X, Ge J, Huang W, Liu Y, Tang Y, Gong Z, Liao Q, Li X, Li G, Xiong W, Zeng Z, Yu J. Neutrophils: Accomplices in metastasis. Cancer Lett 2020; 492:11-20. [PMID: 32745581 DOI: 10.1016/j.canlet.2020.07.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/14/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022]
Abstract
Metastasis is a critical cause of treatment failure and death in patients with advanced malignancies. Tumor cells can leave the primary site and enter the bloodstream; these circulating tumor cells then colonize target organs by overcoming blood shear stress, evading immune surveillance, and silencing the offensive capabilities of immune cells, eventually forming metastatic foci. From leaving the primary focus to the completion of distant metastasis, malignant tumor cells are supported and/or antagonized by certain immune cells. In particular, it has been found that myeloid granulocytes play an important role in this process. This review therefore aims to comprehensively describe the significance of neutrophils in solid tumor metastasis in terms of their supporting role in initiating the invasion and migration of tumor cells and assisting the colonization of circulating tumor cells in distant target organs, with the hope of providing insight into and ideas for anti-tumor metastasis treatment of tumor patients.
Collapse
Affiliation(s)
- Kunjie Zhu
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Panchun Li
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jie Wang
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xianjie Jiang
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Junshang Ge
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Weilun Huang
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yan Liu
- Department of Plastic and Cosmetic Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyan Tang
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| | - Jianjun Yu
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Baker-Groberg SM, Itakura A, Gruber A, McCarty OJT. Role of coagulation in the recruitment of colon adenocarcinoma cells to thrombus under shear. Am J Physiol Cell Physiol 2013; 305:C951-9. [PMID: 23903698 DOI: 10.1152/ajpcell.00185.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Colorectal cancer metastases can appear on the peritoneum and in lymph nodes, liver, and lungs, suggesting both hematogenous and lymphatic spreading of the primary tumor. While antithrombotic agents have been shown to reduce both long-term incidence and metastasis, the role of coagulation in facilitating metastasis is ill defined. We investigated the kinetics and molecular mechanisms of metastatic colon adenocarcinoma cell recruitment to thrombi under shear flow, ex vivo. Platelet aggregates were formed by perfusing citrated anticoagulated whole blood over immobilized fibrinogen or fibrillar collagen. Thrombi were formed by perfusing recalcified whole blood over fibrinogen or fibrillar collagen in the presence of coagulation. Cultured colon adenocarcinoma cells (SW620) were perfused either during or following platelet aggregate or thrombus formation. The degree of transient tumor cell interactions (recruitment, rolling, and release) and the number of firmly adhered tumor cells were quantified using fluorescence microscopy. Platelet aggregates and thrombi formed on either fibrinogen- or fibrillar-collagen supported SW620 cell interactions and adhesion under shear. Thrombi or fibrin supported a greater degree of SW620 cell interactions and adhesion compared with platelet aggregates or fibrinogen, respectively, demonstrating that coagulation promoted SW620 cell recruitment under shear. Interestingly, in the absence of anticoagulation, we observed SW620 preferentially binding to thrombus-bound polymorphonuclear leukocytes (PMNs). The addition of purified PMNs to thrombi resulted in a doubling of the number of interacting and bound SW620 cells. Since thrombi often accumulate and activate leukocytes, our findings suggest that leukocytes may play a role in localizing metastases to sites of thrombogenesis.
Collapse
Affiliation(s)
- Sandra M Baker-Groberg
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon; and
| | | | | | | |
Collapse
|
4
|
Sleeman JP, Nazarenko I, Thiele W. Do all roads lead to Rome? Routes to metastasis development. Int J Cancer 2011; 128:2511-26. [PMID: 21365648 DOI: 10.1002/ijc.26027] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 11/26/2010] [Indexed: 01/31/2023]
Abstract
Metastasis, the life-threatening aspect of cancer, is a systemic disease process. Considerable progress has been made in recent years regarding how tumor cells circulating in the blood and lymphatic systems interact with and extravasate into secondary sites, and what determines whether these disseminated tumors cells survive, remain dormant or go on to form macrometastases. New insights into the routes that tumor cells take once leaving the primary tumor have emerged. Novel concepts regarding early seeding of metastases coupled to parallel progression, self-seeding of primary tumors by circulating tumor cells and the induction of premetastatic niches in distant organs by primary tumors have come to the fore. The perceived role of the lymphatic system in determining patterns of metastasis formation in distant organs has been reassessed. Together these new insights have the potential to offer new therapeutic options. In particular, the regulation of tumor cell dormancy emerges as a key event in metastasis formation, and therapeutic control of dormancy holds the promise of rendering cancer a chronic rather than life-threatening disease.
Collapse
Affiliation(s)
- Jonathan P Sleeman
- Medical Faculty Mannheim, University of Heidelberg, Mannheim D-68167, Germany.
| | | | | |
Collapse
|
5
|
Konstantopoulos K, Thomas SN. Cancer cells in transit: the vascular interactions of tumor cells. Annu Rev Biomed Eng 2009; 11:177-202. [PMID: 19413512 DOI: 10.1146/annurev-bioeng-061008-124949] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metastasis is a highly regulated, multistep process in which cancerous cells shed from the primary tumor and enter the circulatory system, where they interact extensively with host cells before they lodge and colonize the target organ. The adhesive interactions of circulating tumor cells with platelets, leukocytes, and endothelial cells facilitate their survival and extravasation from the vasculature, thus representing critical kick-off events for the colonization of distant organs. This review presents our current mechanistic knowledge on vascular interactions of tumor cells, and it discusses biochemical and cell and molecular biology techniques used for the identification of novel receptor-ligand pairs mediating these interactions. This review brings together diverse observations about the contributions of key molecular constituents, including selectins, fibrin(ogen), and CD44, in one mechanistic interpretation. Understanding the molecular underpinnings of adhesive interactions between tumor cells and host cells may provide guidelines for developing promising antimetastatic therapies when initiated early in the course of disease progression.
Collapse
Affiliation(s)
- Konstantinos Konstantopoulos
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | |
Collapse
|
6
|
Jadhav S, Bochner BS, Konstantopoulos K. Hydrodynamic shear regulates the kinetics and receptor specificity of polymorphonuclear leukocyte-colon carcinoma cell adhesive interactions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:5986-93. [PMID: 11698478 DOI: 10.4049/jimmunol.167.10.5986] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ability of tumor cells to metastasize hematogenously is regulated by their interactions with polymorphonuclear leukocytes (PMNs). However, the mechanisms mediating PMN binding to tumor cells under physiological shear forces remain largely unknown. This study was designed to characterize the molecular interactions between PMNs and tumor cells as a function of the dynamic shear environment, using two human colon adenocarcinoma cell lines (LS174T and HCT-8) as models. PMN and colon carcinoma cell suspensions, labeled with distinct fluorophores, were sheared in a cone-and-plate rheometer in the presence of the PMN activator fMLP. The size distribution and cellular composition of formed aggregates were determined by flow cytometry. PMN binding to LS174T cells was maximal at 100 s(-1) and decreased with increasing shear. At low shear (100 s(-1)) PMN CD11b alone mediates PMN-LS174T heteroaggregation. However, L-selectin, CD11a, and CD11b are all required for PMN binding to sialyl Lewis(x)-bearing LS174T cells at high shear (800 s(-1)). In contrast, sialyl Lewis(x)-low HCT-8 cells fail to aggregate with PMNs at high shear conditions, despite extensive adhesive interactions at low shear. Taken together, our data suggest that PMN L-selectin initiates LS174T cell tethering at high shear by binding to sialylated moieties on the carcinoma cell surface, whereas the subsequent involvement of CD11a and CD11b converts these transient tethers into stable adhesion. This study demonstrates that the shear environment of the vasculature modulates the dynamics and molecular constituents mediating PMN-tumor cell adhesion.
Collapse
Affiliation(s)
- S Jadhav
- Department of Chemical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
7
|
Wu QD, Wang JH, Condron C, Bouchier-Hayes D, Redmond HP. Human neutrophils facilitate tumor cell transendothelial migration. Am J Physiol Cell Physiol 2001; 280:C814-22. [PMID: 11245598 DOI: 10.1152/ajpcell.2001.280.4.c814] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tumor cell extravasation plays a key role in tumor metastasis. However, the precise mechanisms by which tumor cells migrate through normal vascular endothelium remain unclear. In this study, using an in vitro transendothelial migration model, we show that human polymorphonuclear neutrophils (PMN) assist the human breast tumor cell line MDA-MB-231 to cross the endothelial barrier. We found that tumor-conditioned medium (TCM) downregulated PMN cytocidal function, delayed PMN apoptosis, and concomitantly upregulated PMN adhesion molecule expression. These PMN treated with TCM attached to tumor cells and facilitated tumor cell migration through different endothelial monolayers. In contrast, MDA-MB-231 cells alone did not transmigrate. FACScan analysis revealed that these tumor cells expressed high levels of intercellular adhesion molecule-1 (ICAM-1) but did not express CD11a, CD11b, or CD18. Blockage of CD11b and CD18 on PMN and of ICAM-1 on MDA-MB-231 cells significantly attenuated TCM-treated, PMN-mediated tumor cell migration. These tumor cells still possessed the ability to proliferate after PMN-assisted transmigration. These results indicate that TCM-treated PMN may serve as a carrier to assist tumor cell transendothelial migration and suggest that tumor cells can exploit PMN and alter their function to facilitate their extravasation.
Collapse
Affiliation(s)
- Q D Wu
- Department of Surgery, Cork University Hospital, University College Cork, Wilton, Cork, Ireland
| | | | | | | | | |
Collapse
|
8
|
Chambers AF, Naumov GN, Varghese HJ, Nadkarni KV, MacDonald IC, Groom AC. Critical Steps in Hematogenous Metastasis. Surg Oncol Clin N Am 2001. [DOI: 10.1016/s1055-3207(18)30063-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Weiss L, Orr FW, Honn KV. Interactions between cancer cells and the microvasculature: a rate-regulator for metastasis. Clin Exp Metastasis 1989; 7:127-67. [PMID: 2465861 DOI: 10.1007/bf01787020] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hematogenous metastasis is a major consideration in the staging, treatment and prognosis of patients with cancer. Key events affecting hematogeneous metastasis occur in the microvasculature. This is a brief, selective review of some interactions involving cancer cells and the microvasculature in pathologic sequence, specifically: (1) intravasation of cancer cells; (2) the arrest of circulating cancer cells in the microvasculature; (3) cancer cell trauma associated with arrest; (4) microvascular trauma; (5) the inflammatory; and (6) the hemostatic coagulative responses associated with arrest, and finally (7) angiogenesis, leading to tumor vascularization. The evidence shows that through a series of complex interactions with cancer cells, the microvasculature acts as a rate-regulator for the metastatic process, in addition to providing routes for cancer cell dissemination and arrest sites for cancer cell emboli.
Collapse
Affiliation(s)
- L Weiss
- Department of Experimental Pathology, Memorial Institute, Buffalo, NY 14263
| | | | | |
Collapse
|
10
|
Ishikawa M, Koga Y, Hosokawa M, Kobayashi H. Augmentation of B16 melanoma lung colony formation in C57BL/6 mice having marked granulocytosis. Int J Cancer 1986; 37:919-24. [PMID: 3710620 DOI: 10.1002/ijc.2910370619] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The effect that polymorphonuclear leukocytes (PMN) may have on the metastatic colonization of tumor cells is controversial: some laboratories have reported that PMN can inhibit metastasis whereas others have shown an augmentation effect. We have exploited our finding that a particular fibrosarcoma (BMT-11) transplanted subcutaneously into syngeneic C57BL/6 mice induces a progressive increase in the number of circulating PMN, to re-examine this question. We used such "granulocytosis-positive" mice as recipients of B16 melanoma cells to examine the influence of significant granulocytosis on the level of lung tumor colonies. The number of B16 melanoma lung colonies detected after intravenous (i.v.) injection was significantly higher in BMT-11 tumor-bearing mice with granulocytosis than in control (non-tumor-bearing) mice. Retention of 125IUdR-labelled B16 cells 24 hr after the i.v. injection was 3 to 10 times greater in mice with granulocytosis than in controls. Either simultaneous injection, or preinjection of PMN with B16 cells, increased the lung-colonizing capacity of B16 melanoma cells. These results suggest that abnormally increased numbers of PMN in the peripheral blood, particularly in the lung circulation, can enhance the ability of tumor cells to colonize or metastasize.
Collapse
|