1
|
Chen YJ, Fang LW, Su WC, Hsu WY, Yang KC, Huang HL. Lapatinib induces autophagic cell death and differentiation in acute myeloblastic leukemia. Onco Targets Ther 2016; 9:4453-64. [PMID: 27499639 PMCID: PMC4959590 DOI: 10.2147/ott.s105664] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Lapatinib is an oral-form dual tyrosine kinase inhibitor of epidermal growth factor receptor (EGFR or ErbB/Her) superfamily members with anticancer activity. In this study, we examined the effects and mechanism of action of lapatinib on several human leukemia cells lines, including acute myeloid leukemia (AML), chronic myeloid leukemia (CML), and acute lymphoblastic leukemia (ALL) cells. We found that lapatinib inhibited the growth of human AML U937, HL-60, NB4, CML KU812, MEG-01, and ALL Jurkat T cells. Among these leukemia cell lines, lapatinib induced apoptosis in HL-60, NB4, and Jurkat cells, but induced nonapoptotic cell death in U937, K562, and MEG-01 cells. Moreover, lapatinib treatment caused autophagic cell death as shown by positive acridine orange staining, the massive formation of vacuoles as seen by electronic microscopy, and the upregulation of LC3-II, ATG5, and ATG7 in AML U937 cells. Furthermore, autophagy inhibitor 3-methyladenine and knockdown of ATG5, ATG7, and Beclin-1 using short hairpin RNA (shRNA) partially rescued lapatinib-induced cell death. In addition, the induction of phagocytosis and ROS production as well as the upregulation of surface markers CD14 and CD68 was detected in lapatinib-treated U937 cells, suggesting the induction of macrophagic differentiation in AML U937 cells by lapatinib. We also noted the synergistic effects of the use of lapatinib and cytotoxic drugs in U937 leukemia cells. These results indicate that lapatinib may have potential for development as a novel antileukemia agent.
Collapse
Affiliation(s)
- Yu-Jen Chen
- Department of Medical Research; Department of Radiation Oncology, Mackay Memorial Hospital; Institute of Traditional Medicine, School of Medicine, National Yang-Ming University; Institute of Pharmacology, Taipei Medical University, Taipei
| | - Li-Wen Fang
- Department of Nutrition, I-Shou University, Kaohsiung
| | - Wen-Chi Su
- Research Center for Emerging Viruses, China Medical University Hospital; Graduate Institute of Clinical Medical Science, China Medical University, Taichung
| | | | | | - Huey-Lan Huang
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan, Taiwan, Republic of China
| |
Collapse
|
2
|
Huang HL, Lin TW, Huang YL, Huang RL. Induction of apoptosis and differentiation by atractylenolide-1 isolated from Atractylodes macrocephala in human leukemia cells. Bioorg Med Chem Lett 2016; 26:1905-9. [DOI: 10.1016/j.bmcl.2016.03.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 11/29/2022]
|
3
|
Huang HL, Chen YC, Huang YC, Yang KC, Pan HY, Shih SP, Chen YJ. Lapatinib induces autophagy, apoptosis and megakaryocytic differentiation in chronic myelogenous leukemia K562 cells. PLoS One 2011; 6:e29014. [PMID: 22216158 PMCID: PMC3245247 DOI: 10.1371/journal.pone.0029014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 11/17/2011] [Indexed: 01/29/2023] Open
Abstract
Lapatinib is an oral, small-molecule, dual tyrosine kinase inhibitor of epidermal growth factor receptors (EGFR, or ErbB/Her) in solid tumors. Little is known about the effect of lapatinib on leukemia. Using human chronic myelogenous leukemia (CML) K562 cells as an experimental model, we found that lapatinib simultaneously induced morphological changes resembling apoptosis, autophagy, and megakaryocytic differentiation. Lapatinib-induced apoptosis was accompanied by a decrease in mitochondrial transmembrane potential and was attenuated by the pancaspase inhibitor z-VAD-fmk, indicating a mitochondria-mediated and caspase-dependent pathway. Lapatinib-induced autophagic cell death was verified by LC3-II conversion, and upregulation of Beclin-1. Further, autophagy inhibitor 3-methyladenine as well as autophagy-related proteins Beclin-1 (ATG6), ATG7, and ATG5 shRNA knockdown rescued the cells from lapatinib-induced growth inhibition. A moderate number of lapatinib-treated K562 cells exhibited features of megakaryocytic differentiation. In summary, lapatinib inhibited viability and induced multiple cellular events including apoptosis, autophagic cell death, and megakaryocytic differentiation in human CML K562 cells. This distinct activity of lapatinib against CML cells suggests potential for lapatinib as a therapeutic agent for treatment of CML. Further validation of lapatinib activity in vivo is warranted.
Collapse
Affiliation(s)
- Huey-Lan Huang
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan, Taiwan
| | - Yu-Chieh Chen
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan, Taiwan
| | - Yu-Chuen Huang
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Kai-Chien Yang
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsin yi Pan
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan, Taiwan
| | - Shou-Ping Shih
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan, Taiwan
| | - Yu-Jen Chen
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Radiation Oncology, Mackay Memorial Hospital, Taipei, Taiwan
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Pharmacology, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
4
|
Li MJ, McMahon R, Snyder DS, Yee JK, Rossi JJ. Specific killing of Ph+ chronic myeloid leukemia cells by a lentiviral vector-delivered anti-bcr/abl small hairpin RNA. Oligonucleotides 2004; 13:401-9. [PMID: 15000831 DOI: 10.1089/154545703322617087] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chronic myeloid leukemia (CML) is characterized by a reciprocal chromosomal translocation between chromosomes 9 and 22 t(9;22)(q34;q11) that causes fusion of the bcr and abl genes. Transcription and splicing of the fusion gene generate two major splice variants of the bcr/abl transcript that encode an oncoprotein with tyrosine kinase activity. We have taken advantage of lentiviral vectormediated delivery of anti-bcr/abl short hairpin RNAs (shRNA) to downregulate the bcr/abl transcript in Philadelphia chromosome-positive (Ph+) K562 leukemia cells. This downregulation caused complete inhibition of proliferation of these cells and was accompanied by >90% inhibition of the bcr/abl transcript and p210 protein. These results demonstrate the feasibility of using a lentiviral vector to stably transduce therapeutic shRNAs into leukemia cells for the potential ex vivo purging of Ph+ cells in an autologous hematopoietic cell transplant setting. Furthermore, the robust expression of the shRNAs from our lentiviral vector suggests that this system could be generally useful for the expression of other shRNAs.
Collapse
MESH Headings
- Base Sequence
- Cell Division
- Fusion Proteins, bcr-abl/genetics
- Gene Expression Regulation, Neoplastic/genetics
- Gene Silencing
- Genetic Vectors
- Humans
- K562 Cells
- Lentivirus/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Philadelphia Chromosome
- Plasmids/genetics
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Ming-Jie Li
- Division of Molecular Biology, City of Hope Medical Center and Beckman Research Institute, Duarte, CA 91010, USA
| | | | | | | | | |
Collapse
|
5
|
Honma Y, Ishii Y, Sassa T, Asahi KI. Treatment of human promyelocytic leukemia in the SCID mouse model with cotylenin A, an inducer of myelomonocytic differentiation of leukemia cells. Leuk Res 2003; 27:1019-25. [PMID: 12859995 DOI: 10.1016/s0145-2126(03)00071-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cotylenin A has differentiation-inducing activity in human myeloid leukemia cell lines and leukemic cells that were freshly isolated from acute myeloid leukemia (AML) patients in primary culture. Injection of the human promyelocytic leukemia cell line NB4 into SCID mice resulted in the death of all mice due to leukemia. Administration of cotylenin A significantly prolonged the survival of mice inoculated with NB4 cells. In an in vivo analysis, cotylenin A induced the differentiation of leukemia cells in a retinoid-resistant leukemia model. Cotylenin A may be useful for differentiation therapy of retinoid-resistant leukemia.
Collapse
Affiliation(s)
- Yoshio Honma
- Department of Chemotherapy, Saitama Cancer Center Research Institute, 818 Komuro Ina, Saitama 362-0806, Japan.
| | | | | | | |
Collapse
|
6
|
Sasakawa Y, Naoe Y, Inoue T, Sasakawa T, Matsuo M, Manda T, Mutoh S. Effects of FK228, a novel histone deacetylase inhibitor, on human lymphoma U-937 cells in vitro and in vivo. Biochem Pharmacol 2002; 64:1079-90. [PMID: 12234611 DOI: 10.1016/s0006-2952(02)01261-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
FK228 [(E)-(1S,4S,10S,21R)-7-[(Z)-ethylidene]-4,21-diisopropyl-2-oxa-12,13-dithia-5,8,20,23-tetraazabicyclo-[8,7,6]-tricos-16-ene-3,6,9,19,22-pentanone; FR901228, depsipeptide] is a novel histone deacetylase inhibitor that shows therapeutic efficacy in Phase I trials of patients with malignant lymphoma. However, its mechanism of action has not been characterized. In this study, we examined the in vitro and in vivo effects of FK228 on human lymphoma U-937 cells. FK228 very strongly inhibited the growth of U-937 cells with an IC(50) value of 5.92 nM. In a scid mouse lymphoma model, mice treated with FK228 once or twice a week survived longer than control mice, with median survival times of 30.5 (0.56 mg/kg) and 33 days (0.32 mg/kg), respectively (vs. 20 days in control mice). Remarkably, 2 out of 12 mice treated with FK228 (0.56 mg/kg once or twice a week) survived past the observation period of 60 days. The apoptotic population of U-937 cells time-dependently increased to 37.7% after 48 hr of treatment with FK228. In addition, FK228 induced G1 and G2/M arrest and the differentiation of U-937 cells to the CD11b(+)/CD14(+) phenotype. Expression of p21(WAF1/Cip1) and gelsolin mRNA increased up to 654- and 152-fold, respectively, after 24hr of treatment with FK228. FK228 caused histone acetylation in p21(WAF1/Cip1) promoter regions, including the Sp1-binding sites. In conclusion, (i) FK228 prolonged the survival time of scid mice in a lymphoma model, and (ii) the beneficial effects of FK228 on human lymphoma may be exerted through the induction of apoptosis, cell cycle arrest, and differentiation via the modulation of gene expression by histone acetylation.
Collapse
Affiliation(s)
- Yuka Sasakawa
- Medicinal Biology Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., 2-1-6, Kashima, Yodogawa-Ku, Osaka 532-8514, Japan.
| | | | | | | | | | | | | |
Collapse
|
7
|
Drummond MW, Holyoake TL. Tyrosine kinase inhibitors in the treatment of chronic myeloid leukaemia: so far so good? Blood Rev 2001; 15:85-95. [PMID: 11409908 DOI: 10.1054/blre.2001.0152] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chronic myeloid leukaemia (CML) is characterized by marked expansion of the myeloid series, and is thought to arise as a direct result of the bcr-abl fusion-gene. The BCR-ABL oncoprotein is a constitutively active protein tyrosine kinase (PTK), which results in altered cell signalling and is responsible for the changes that characterize the malignant cells of CML. It has been shown that the increased tyrosine kinase activity of BCR-ABL is a requirement for transformation and is, therefore, a legitimate target for pharmacological inhibition. Several compounds have now been identified as relatively selective inhibitors of BCR-ABL, including members of the tyrphostin family, herbimycin A and most importantly the 2-phenylaminopyrimidine ST1571. Having established the efficacy of this agent in vitro, phase I trials using an oral formulation were commenced in the USA in mid 1998. Early data from an interferon-alpha (IFN) resistant/refractory or intolerant cohort demonstrated good patient tolerance and effective haematological control at doses above 300 mg. More promising was its ability to induce cytogenetic responses in this pretreated group of patients. Phase II data, albeit far from complete, appear to confirm its efficacy even in the context of advanced disease and phase III clinical trials are currently underway in many countries. Recent laboratory evidence, however, suggests that the development of drug resistance is a possibility (via amplification of the bcr-abl fusion gene, overexpression of P-glycoprotein or binding of ST1571 to alpha1 acid glycoprotein) and that combination therapy including ST1571 should be considered.
Collapse
Affiliation(s)
- M W Drummond
- Academic Transfusion Medicine Unit, University Department of Medicine, Glasgow Royal Infirmary, Glasgow, UK.
| | | |
Collapse
|
8
|
Kano Y, Akutsu M, Tsunoda S, Mano H, Sato Y, Honma Y, Furukawa Y. In vitro cytotoxic effects of a tyrosine kinase inhibitor STI571 in combination with commonly used antileukemic agents. Blood 2001; 97:1999-2007. [PMID: 11264164 DOI: 10.1182/blood.v97.7.1999] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The BCR/ABL tyrosine kinase has been implicated in the pathogenesis of chronic myelogenous leukemia (CML) and Philadelphia chromosome-positive (Ph(+)) acute lymphoblastic leukemia (ALL). STI571 is a novel anticancer agent that selectively inhibits the BCR/ABL tyrosine kinase. The cytotoxic effects of STI571 were studied in combination with antileukemic agents against Ph(+) leukemia cell lines, KU812, K-562, TCC-S, and TCC-Y. The cells were exposed to STI571 and to other agents simultaneously for 5 or 7 days. Cell growth inhibition was determined by MTT assay. The cytotoxic effects in combinations at the inhibitory concentration of 80% level were evaluated by the isobologram. STI571 produced synergistic effects with recombinant and natural alpha-interferons in 2 of 3 and 3 of 3 cell lines, respectively. STI571 produced additive effects with hydroxyurea, cytarabine, homoharringtonine, doxorubicin, and etoposide in all 4 cell lines. STI571 with 4-hydroperoxy-cyclophosphamide, methotrexate, or vincristine produced additive, antagonistic, and synergistic effects in 3 of 4 cell lines, respectively. These findings suggest that the simultaneous administration of STI571 with other agents except methotrexate would be advantageous for cytotoxic effects against Ph(+) leukemias. Among them, the simultaneous administration of STI571 and alpha-interferons or vincristine would be highly effective against Ph(+) leukemias and these combinations would be worthy of clinical trials. In contrast, the simultaneous administration of STI571 with methotrexate would have little therapeutic efficacy. Although there are gaps between in vitro studies and clinical trials, the present findings provide useful information for the establishment of clinical protocols involving STI571. (Blood. 2001;97:1999-2007)
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Benzamides
- Cytarabine/pharmacology
- Dose-Response Relationship, Drug
- Drug Interactions
- Drug Resistance, Neoplasm
- Drug Screening Assays, Antitumor
- Drug Synergism
- Enzyme Inhibitors/pharmacology
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Harringtonines/pharmacology
- Homoharringtonine
- Humans
- Hydroxyurea/pharmacology
- Imatinib Mesylate
- Interferon-alpha/pharmacology
- Leukemia/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Methotrexate/pharmacology
- Microbial Sensitivity Tests
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasms/pathology
- Piperazines/pharmacology
- Pyrimidines/pharmacology
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/enzymology
- Vincristine/pharmacology
Collapse
Affiliation(s)
- Y Kano
- Division of Hematology and Medical Oncology, Tochigi Cancer Center, Tochigi, Japan.
| | | | | | | | | | | | | |
Collapse
|
9
|
Honma Y, Niitsu N. Vidarabine and 2-deoxycoformycin as antileukemic agents against monocytic leukemia. Leuk Lymphoma 2000; 39:57-66. [PMID: 10975384 DOI: 10.3109/10428190009053539] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although 2'-deoxycoformycin (dCF) has been reported in clinical trials to be less effective against myeloid than lymphoid malignancies, it may be useful for treating monocytic leukemia with the aid of 2'-deoxyadenosine (dAd) analogs. In the presence of 10 microM dAd, the concentration of dCF required to inhibit the viability of monocytoid leukemia cells was much lower than that required on normal or non-monocytoid malignant cells in primary culture. Among the dAd analogs, 9-beta-D-arabinofuranosyladenine (AraA) was also effective in combination with dCF. Although dCF alone slightly but significantly prolonged the survival of mice inoculated with U937 monocytic leukemia cells, combined treatment with dCF and AraA markedly prolonged the survival. These results suggest that the combination of dCF and AraA may be useful for the clinical treatment of acute monocytic leukemia.
Collapse
Affiliation(s)
- Y Honma
- Saitama Cancer Center Research Institute, Ina, Japan.
| | | |
Collapse
|
10
|
Zhao M, Kiyoi H, Yamamoto Y, Ito M, Towatari M, Omura S, Kitamura T, Ueda R, Saito H, Naoe T. In vivo treatment of mutant FLT3-transformed murine leukemia with a tyrosine kinase inhibitor. Leukemia 2000; 14:374-8. [PMID: 10720129 DOI: 10.1038/sj.leu.2401680] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Somatic mutation of the FLT3 gene, in which the juxtamembrane domain has an internal tandem duplication, is found in 20% of human acute myeloid leukemias and causes constitutive tyrosine phosphorylation of the products. In this study, we observed that the transfection of mutant FLT3 gene into an IL3-dependent murine cell line, 32D, abrogated the IL3-dependency. Subcutaneous injection of the transformed 32D cells caused leukemia in addition to subcutaneous tumors in C3H/HeJ mice. To develop a FLT3-targeted therapy, we examined tyrosine kinase inhibitors for in vitro growth suppression of the transformed 32D cells. A tyrosine kinase inhibitor, herbimycin A, remarkably inhibited the growth of the transformed 32D cells at 0.1 microM, at which concentration it was ineffective in parental 32D cells. Herbimycin A suppressed the constitutive tyrosine phosphorylation of the mutant FLT3 but not the phosphorylation of the ligand-stimulated wild-type FLT3. In mice transplanted with the transformed 32D cells, the administration of herbimycin A prolonged the latency of disease or completely prevented leukemia, depending on the number of cells inoculated and schedule of drug administration. These results suggest that mutant FLT3 is a promising target for tyrosine kinase inhibitors in the treatment of leukemia.
Collapse
Affiliation(s)
- M Zhao
- Department of Infectious Diseases, Nagoya University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wu Y, Yu L, McMahon R, Rossi JJ, Forman SJ, Snyder DS. Inhibition of bcr-abl oncogene expression by novel deoxyribozymes (DNAzymes). Hum Gene Ther 1999; 10:2847-57. [PMID: 10584930 DOI: 10.1089/10430349950016573] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Deoxyribozymes, or DNA enzymes (DNAzymes), are novel nucleic acids that have the ability to bind to specific sequences of RNA, and to cleave the target site catalytically. DNAzymes are smaller and more efficient enzymatically than ribozymes (RZs), which are catalytic nucleic acids synthesized from ribonucleotides. We have designed three DNAzymes that specifically target the two variants of the p210 bcr-abl gene (splice 1, b3a2; splice 2, b2a2) and the p190 variant (ela2). The cleavage sites for these DNAzymes are located 5 nucleotides (nt) 5' from the fusion site for b3a2, and only 1 nt 5' from the fusion sites for b2a2 and e1a2. We have shown in cell-free in vitro cleavage assays that these DNAzymes efficiently cleave their respective substrates. Mutated DNAzymes, in which only one critical base has been altered, do not cleave these targets. We have used a serum-resistant cytofectin (GS 2888; Gilead) to transfect the DNAzymes into target K562 cells, which express p210bcr-abl. In short-term transfection assays, the DNAzymes specifically inhibited p210bcr-abl protein expression by K562 cells by about 40%, and inhibited cell growth by more than 50% in a 6-day liquid culture assay. We have also transfected freshly isolated CD34+ bone marrow cells from patients with CML with the DNAzymes, which specifically inhibited the growth of bcr-abl-positive CFU-Mix colonies by 53-80%. The potential advantages of anti-bcr-abl DNAzymes over RZs include the following: DNAzymes are much less expensive to synthesize; they are more resistant to serum; and the anti-b2a2 DNAzyme cleaves at a site only 1 nt away from the fusion site, whereas its hammerhead RZ counterpart cleaves this target at a site 8 nt 3' to the fusion site, well within abl exon 2. DNAzymes are novel RNA-cleaving molecules that may significantly improve our ability to inhibit bcr-abl oncogene expression in Ph-positive target cells.
Collapse
MESH Headings
- Alternative Splicing
- Antigens, CD34/immunology
- Cell-Free System
- DNA, Catalytic
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/immunology
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression
- Gene Targeting
- Hematopoietic Stem Cell Transplantation
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Liposomes
- Nucleic Acid Conformation
- RNA, Messenger/metabolism
- Substrate Specificity
- Transfection
- Transplantation, Autologous
Collapse
Affiliation(s)
- Y Wu
- Division of Hematology/Bone Marrow Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | | | | |
Collapse
|
12
|
Uckun FM, Nachman JB, Sather HN, Sensel MG, Kraft P, Steinherz PG, Lange B, Hutchinson R, Reaman GH, Gaynon PS, Heerema NA. Poor treatment outcome of Philadelphia chromosome-positive pediatric acute lymphoblastic leukemia despite intensive chemotherapy. Leuk Lymphoma 1999; 33:101-6. [PMID: 10194126 DOI: 10.3109/10428199909093730] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Children with Philadelphia (Ph) chromosome positive (+) acute lymphoblastic leukemia (ALL) represent a subgroup at very high risk for treatment failure. This study included 1322 children enrolled between 1988 and 1994 on CCG risk-adjusted studies for ALL who had centrally reviewed cytogenetic data. Thirty patients had a t(9;22) and are referred to as Ph+; 1292 were Ph-. 23 of these 30 patients were treated on the CCG-1882 high risk ALL protocol. The event-free survival (EFS) outcome in CCG-1882 was significantly worse for Ph+ compared with Ph- patients, with 4-year estimates of 11.3% (SD = 9.8%) and 73.4% (SD = 2.3%), respectively (p < 0.0001).
Collapse
Affiliation(s)
- F M Uckun
- Children's Cancer Group ALL Biology Reference Laboratory and Parker Hughes Cancer Center, Hughes Institute, St. Paul, MN 55113, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tohda S, Sakashita C, Fukuda T, Murakami N, Nara N. Establishment of a double Philadelphia chromosome-positive acute lymphoblastic leukemia-derived cell line, TMD5: effects of cytokines and differentiation inducers on growth of the cells. Leuk Res 1999; 23:255-61. [PMID: 10071078 DOI: 10.1016/s0145-2126(98)00172-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A double Philadelphia chromosome (Ph)-positive leukemia cell line with common-B cell phenotype, designated TMD5, was established from the blast cells of a patient with double Ph-positive acute lymphoblastic leukemia. TMD5 cells expressed 190 kDa BCR/ABL chimeric protein and 145 kDa ABL protein. The cells proliferated without added growth factors. Autocrine growth mechanism was not recognized. The addition of growth factors such as G-CSF, GM-CSF, IL-3, IL-6, or Stem Cell Factor did not affect the growth. Herbimycin A suppressed the growth of TMD5 cells at the low concentration that did not affect Ph-negative cells. It suppressed tyrosine phosphorylation of intracellular proteins in TMD5 cells. Dexamethasone and dibutyryl cyclic AMP also suppressed the growth. They, however, did not affect the phosphorylation significantly. Neither all-trans retinoic acid nor interferon-alpha affected the growth. TMD5 cells, characterized minutely here and rare in that they have double Ph chromosomes, will be a useful tool for the study of Ph-positive leukemia.
Collapse
Affiliation(s)
- S Tohda
- Department of Laboratory Medicine, Tokyo Medical and Dental University, Japan
| | | | | | | | | |
Collapse
|
14
|
Uckun FM, Nachman JB, Sather HN, Sensel MG, Kraft P, Steinherz PG, Lange B, Hutchinson R, Reaman GH, Gaynon PS, Heerema NA. Clinical significance of Philadelphia chromosome positive pediatric acute lymphoblastic leukemia in the context of contemporary intensive therapies. Cancer 1998. [DOI: 10.1002/(sici)1097-0142(19981101)83:9<2030::aid-cncr21>3.0.co;2-q] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
The Kinetics and Extent of Engraftment of Chronic Myelogenous Leukemia Cells in Non-Obese Diabetic/Severe Combined Immunodeficiency Mice Reflect the Phase of the Donor’s Disease: An In Vivo Model of Chronic Myelogenous Leukemia Biology. Blood 1998. [DOI: 10.1182/blood.v92.4.1390] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
In vitro studies have provided little consensus on the kinetic abnormality underlying the myeloid expansion of chronic myelogenous leukemia (CML). Transplantation of human CML cells into non-obese diabetic mice with severe immunodeficiency disease (NOD/SCID mice) may therefore be a useful model. A CML cell line (BV173) and peripheral blood cells collected from CML patients in chronic phase (CP), accelerated phase (AP), or blastic phase (BP) were injected into preirradiated NOD/SCID mice. Animals were killed at serial intervals; cell suspensions and/or tissue sections from different organs were studied by immunohistochemistry and/or flow cytometry using antihuman CD45 monoclonal antibodies (MoAbs), and by fluorescence in situ hybridization (FISH) for the BCR-ABL fusion gene. One hour after injection, cells were sequestered in the lungs and liver, but 2 weeks later they were no longer detectable in either site. Similar short-term kinetics were observed using51Cr-labeled cells. The first signs of engraftment for BV173, AP, and BP cells were detected in the bone marrow (BM) at 4 weeks. At 8 weeks the median percentages of human cells in murine marrow were 4% (range, 1 to 9) for CP, 11% (range, 5 to 36) for AP, 38.5% (range, 18 to 79) for BP, and 54% (range, 31 to 69) for BV173. CP cells progressively infiltrated BM (21%) and spleen (6%) by 18 to 20 weeks; no animals injected with the cell line or BP cells survived beyond 12 weeks. The rate of increase in human cell numbers was higher for BP (7.3%/week) as compared with CP (0.9%/week) and AP (0.5%/week). FISH analysis with BCR and ABL probes showed that some of the human cells engrafting after injection of CP cells lacked a BCR-ABL gene and were presumably normal. We conclude that CML cells proliferate in NOD/SCID mice with kinetics that recapitulate the phase of the donor’s disease, thus providing an in vivo model of CML biology.
© 1998 by The American Society of Hematology.
Collapse
|
16
|
The Kinetics and Extent of Engraftment of Chronic Myelogenous Leukemia Cells in Non-Obese Diabetic/Severe Combined Immunodeficiency Mice Reflect the Phase of the Donor’s Disease: An In Vivo Model of Chronic Myelogenous Leukemia Biology. Blood 1998. [DOI: 10.1182/blood.v92.4.1390.416k09_1390_1396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vitro studies have provided little consensus on the kinetic abnormality underlying the myeloid expansion of chronic myelogenous leukemia (CML). Transplantation of human CML cells into non-obese diabetic mice with severe immunodeficiency disease (NOD/SCID mice) may therefore be a useful model. A CML cell line (BV173) and peripheral blood cells collected from CML patients in chronic phase (CP), accelerated phase (AP), or blastic phase (BP) were injected into preirradiated NOD/SCID mice. Animals were killed at serial intervals; cell suspensions and/or tissue sections from different organs were studied by immunohistochemistry and/or flow cytometry using antihuman CD45 monoclonal antibodies (MoAbs), and by fluorescence in situ hybridization (FISH) for the BCR-ABL fusion gene. One hour after injection, cells were sequestered in the lungs and liver, but 2 weeks later they were no longer detectable in either site. Similar short-term kinetics were observed using51Cr-labeled cells. The first signs of engraftment for BV173, AP, and BP cells were detected in the bone marrow (BM) at 4 weeks. At 8 weeks the median percentages of human cells in murine marrow were 4% (range, 1 to 9) for CP, 11% (range, 5 to 36) for AP, 38.5% (range, 18 to 79) for BP, and 54% (range, 31 to 69) for BV173. CP cells progressively infiltrated BM (21%) and spleen (6%) by 18 to 20 weeks; no animals injected with the cell line or BP cells survived beyond 12 weeks. The rate of increase in human cell numbers was higher for BP (7.3%/week) as compared with CP (0.9%/week) and AP (0.5%/week). FISH analysis with BCR and ABL probes showed that some of the human cells engrafting after injection of CP cells lacked a BCR-ABL gene and were presumably normal. We conclude that CML cells proliferate in NOD/SCID mice with kinetics that recapitulate the phase of the donor’s disease, thus providing an in vivo model of CML biology.
© 1998 by The American Society of Hematology.
Collapse
|
17
|
Makishima M, Yamamoto-Yamaguchi Y, Honma Y. 19-Allylaminoherbimycin A, an analog of herbimycin A that is stable against treatment with thiol compounds or granulocyte-macrophage colony-stimulating factor in human leukemia cells. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1272:199-205. [PMID: 8541353 DOI: 10.1016/0925-4439(95)00096-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Herbimycin A, a benzoquinonoid ansamycin antibiotic, reduces intracellular phosphorylation by some protein tyrosine kinases and inhibits the proliferation of malignant cells which express high tyrosine kinase activity. Herbimycin A inhibited the proliferation of human monoblastic leukemia U937 cells, but this inhibition was abrogated by the addition of granulocyte-macrophage colony-stimulating factor (GM-CSF). On the other hand, a derivative of herbimycin A, 19-allylaminoherbimycin A, inhibited the proliferation of such cells without interference by the addition of GM-CSF. Phosphorylation of MAP kinase and c-myc expression induced by GM-CSF in U937 cells were inhibited by both herbimycin A and 19-allylaminoherbimycin A. The time courses of growth inhibition showed that the growth-inhibitory activity of herbimycin A in U937 cells was initially potent, but gradually decreased in the presence of GM-CSF. Thiol compounds, glutathione (GSH) and 2-mercaptoethanol, abrogated the inhibition of the growth of U937 cells by herbimycin A, but not by 19-allylaminoherbimycin A, like GM-CSF. Intracellular GSH content in U937 cells was increased by treatment with GM-CSF, and decreased with herbimycin A, but returned to the control level with the addition of GM-CSF to herbimycin A. In thin-layer chromatography, after in vitro incubation with herbimycin A and GSH, nothing could be detected at the position of intact herbimycin A, while 19-allylaminoherbimycin A was stably detected. These findings suggest that changes in the intracellular concentration of GSH play a role in the abrogation of the inhibition of U937 cell growth by herbimycin A. In the presence of GSH, 19-allylaminoherbimycin A inhibited the proliferation of U937 cells and Philadelphia chromosome-positive K562 cells more effectively than herbimycin A. Since GSH plays a role in detoxicating several anticancer drugs, 19-allylaminoherbimycin A may have therapeutic advantages over herbimycin A against some types of leukemia.
Collapse
Affiliation(s)
- M Makishima
- Department of Chemotherapy, Saitama Cancer Center Research Institute, Japan
| | | | | |
Collapse
|