1
|
Mohammadinasr M, Montazersaheb S, Hosseini V, Kahroba H, Talebi M, Molavi O, Ayromlou H, Hejazi MS. Epstein-Barr virus-encoded BART9 and BART15 miRNAs are elevated in exosomes of cerebrospinal fluid from relapsing-remitting multiple sclerosis patients. Cytokine 2024; 179:156624. [PMID: 38692184 DOI: 10.1016/j.cyto.2024.156624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/05/2024] [Accepted: 04/20/2024] [Indexed: 05/03/2024]
Abstract
Epstein-Barr virus (EBV) infection is approved as the main environmental trigger of multiple sclerosis (MS). In this path, we quantified ebv-miR-BART9-3p and ebv-miR-BART15 in exosomes of cerebrospinal fluid (CSF) of untreated relapsing-remitting MS (RRMS) patients in comparison with the control group. Interestingly, patients displayed significant upregulation of ebv-miR-BART9-3p (18.4-fold) and ebv-miR-BART15 (3.1-fold) expression in CSF exosomes. Moreover, the expression levels of hsa-miR-21-5p and hsa-miR-146a-5p were found to be significantly elevated in the CSF samples obtained from the patient group compared to those obtained from the HC group. The levels of Interferon-gamma (IFN-γ), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-17 (IL-17), interleukin-23 (IL-23), transforming growth factor beta (TGF-β), and tumor necrosis factor-alpha (TNF-α) were observed to be significantly elevated in the serum and CSF exosomes of the patients. The highest increase was observed in TGF-β (8.5-fold), followed by IL-23 (3.9-fold) in CSF exosomes. These findings are in agreement with the association between EBV infection and inflammatory cytokines induction. Furthermore, the ratios of TGF-β: TNF-α and TGF-β: IFN-γ attained values of 4 to 16.4 and 1.3 to 3.6, respectively, in the CSF exosomes of the patients, in comparison to those of the control group. These findings show EBV activity in RRMS patients is different from that of healthy ones. Elevation of ebv-miR-BART9-3p, ebv-miR-BART15, and inflammatory cytokines expression in CSF exosomes in RRMS patients provides a substantial link between EBV activity and the onset of the disease, as well as the transition from EBV infection to MS.
Collapse
Affiliation(s)
- Mina Mohammadinasr
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Vahid Hosseini
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Houman Kahroba
- Department of Toxicogenomics, GROW School of Oncology and Development Biology, Maastricht University, Maastricht, The Netherlands; Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium.
| | - Mahnaz Talebi
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ommoleila Molavi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hormoz Ayromlou
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Leopizzi M, Mundo L, Messina E, Campolo F, Lazzi S, Angeloni A, Marchese C, Leoncini L, Giordano C, Slack F, Trivedi P, Anastasiadou E. Epstein-Barr virus-encoded EBNA2 downregulates ICOSL by inducing miR-24 in B-cell lymphoma. Blood 2024; 143:429-443. [PMID: 37847858 PMCID: PMC10862363 DOI: 10.1182/blood.2023021346] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023] Open
Abstract
ABSTRACT Hematological malignancies such as Burkitt lymphoma (BL), Hodgkin lymphoma (HL), and diffuse large B-cell lymphoma (DLBCL) cause significant morbidity in humans. A substantial number of these lymphomas, particularly HL and DLBCLs have poorer prognosis because of their association with Epstein-Barr virus (EBV). Our earlier studies have shown that EBV-encoded nuclear antigen (EBNA2) upregulates programmed cell death ligand 1 in DLBCL and BLs by downregulating microRNA-34a. Here, we investigated whether EBNA2 affects the inducible costimulator (ICOS) ligand (ICOSL), a molecule required for efficient recognition of tumor cells by T cells through the engagement of ICOS on the latter. In virus-infected and EBNA2-transfected B-lymphoma cells, ICOSL expression was reduced. Our investigation of the molecular mechanisms revealed that this was due to an increase in microRNA-24 (miR-24) by EBNA2. By using ICOSL 3' untranslated region-luciferase reporter system, we validated that ICOSL is an authentic miR-24 target. Transfection of anti-miR-24 molecules in EBNA2-expressing lymphoma cells reconstituted ICOSL expression and increased tumor immunogenicity in mixed lymphocyte reactions. Because miR-24 is known to target c-MYC, an oncoprotein positively regulated by EBNA2, we analyzed its expression in anti-miR-24 transfected lymphoma cells. Indeed, the reduction of miR-24 in EBNA2-expressing DLBCL further elevated c-MYC and increased apoptosis. Consistent with the in vitro data, EBNA2-positive DLBCL biopsies expressed low ICOSL and high miR-24. We suggest that EBV evades host immune responses through EBNA2 by inducing miR-24 to reduce ICOSL expression, and for simultaneous rheostatic maintenance of proproliferative c-MYC levels. Overall, these data identify miR-24 as a potential therapeutically relevant target in EBV-associated lymphomas.
Collapse
Affiliation(s)
- Martina Leopizzi
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Lucia Mundo
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Elena Messina
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Federica Campolo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Stefano Lazzi
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Lorenzo Leoncini
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Carla Giordano
- Department of Radiology, Oncology and Pathology, Sapienza University, Rome, Italy
| | - Frank Slack
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Pankaj Trivedi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Eleni Anastasiadou
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
3
|
Liu H, Tang L, Li Y, Xie W, Zhang L, Tang H, Xiao T, Yang H, Gu W, Wang H, Chen P. Nasopharyngeal carcinoma: current views on the tumor microenvironment's impact on drug resistance and clinical outcomes. Mol Cancer 2024; 23:20. [PMID: 38254110 PMCID: PMC10802008 DOI: 10.1186/s12943-023-01928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
The incidence of nasopharyngeal carcinoma (NPC) exhibits significant variations across different ethnic groups and geographical regions, with Southeast Asia and North Africa being endemic areas. Of note, Epstein-Barr virus (EBV) infection is closely associated with almost all of the undifferentiated NPC cases. Over the past three decades, radiation therapy and chemotherapy have formed the cornerstone of NPC treatment. However, recent advancements in immunotherapy have introduced a range of promising approaches for managing NPC. In light of these developments, it has become evident that a deeper understanding of the tumor microenvironment (TME) is crucial. The TME serves a dual function, acting as a promoter of tumorigenesis while also orchestrating immunosuppression, thereby facilitating cancer progression and enabling immune evasion. Consequently, a comprehensive comprehension of the TME and its intricate involvement in the initiation, progression, and metastasis of NPC is imperative for the development of effective anticancer drugs. Moreover, given the complexity of TME and the inter-patient heterogeneity, personalized treatment should be designed to maximize therapeutic efficacy and circumvent drug resistance. This review aims to provide an in-depth exploration of the TME within the context of EBV-induced NPC, with a particular emphasis on its pivotal role in regulating intercellular communication and shaping treatment responses. Additionally, the review offers a concise summary of drug resistance mechanisms and potential strategies for their reversal, specifically in relation to chemoradiation therapy, targeted therapy, and immunotherapy. Furthermore, recent advances in clinical trials pertaining to NPC are also discussed.
Collapse
Affiliation(s)
- Huai Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Ling Tang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yanxian Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Wenji Xie
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Ling Zhang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Tengfei Xiao
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Hongmin Yang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Wangning Gu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Hui Wang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Pan Chen
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
4
|
Xiao S, Lin Y, Fu J, Weng X, Cao Q, Kuang Z, Yun J, Zhang M, Huang Y. Epstein-Barr Virus-Positive Plasma Cell Neoplasms in Immunocompetent Patients: A Clinicopathological Study of 15 Cases from South China and Literature Review. Am J Surg Pathol 2024; 48:16-26. [PMID: 38117285 DOI: 10.1097/pas.0000000000002140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Epstein-Barr virus (EBV)-positive plasma cell neoplasms (PCNs) in immunocompetent patients are a rare entity, the clinicopathological and prognostic features of which have not been well characterized. Fifteen cases of EBV-positive PCN arising in immunocompetent patients from south China were retrospectively analyzed, and an additional 44 cases from the literature were reviewed. The overall EBV-positive rate defined by EBV-encoded small RNAs (EBERs) in-situ hybridization of PCNs was 12.3% (15/122), and it was significantly higher in plasmacytoma (17.1%, 13/76) than in plasma cell myeloma/multiple myeloma (4.3%, 2/46; P=0.031). The age of the patients ranged from 17 to 79 years, with a median age of 56 years. There was a large preponderance of men, with a male-to-female ratio of 4:1. Solitary plasmacytoma of bone (23.8%, 5/21) had comparable EBV-encoded small RNAs-positive rates with extramedullary plasmacytoma arising in the upper respiratory tract (19.5%, 8/41; P=0.949). Anaplastic and classic cytologic appearance was observed in 61.5% (8/13) and 38.5% (5/13) of EBV-positive plasmacytomas, respectively. Cases with an anaplastic cytologic appearance had a significantly higher Ki-67 proliferation index than those with a classic cytologic appearance (median: 55% vs. 10%, P=0.001). In the combined cohorts, anaplastic/plasmablastic cytologic appearance was significantly more common in extramedullary plasmacytoma arising in the upper respiratory tract (72.0%, 18/25) than outside the upper respiratory tract (11.1%, 1/9; P=0.006). Among the 59 cases of EBV-positive PCN, survival data of 34 cases were available for analysis, including 30 cases of plasmacytoma and 4 cases of plasma cell myeloma/multiple myeloma. There was no statistically significant difference in overall survival between patients with EBV-positive plasmacytomas in the combined cohorts and EBV-negative plasmacytomas in the present cohort. The prevalence of EBV in PCN in immunocompetent patients varies according to histologic subtype and tumor location. Compared with EBV-negative cases, EBV-positive plasmacytomas tend to have an anaplastic/plasmablastic cytologic appearance. No significant impact of EBV infection on clinical outcomes is observed in the limited number of reported cases.
Collapse
Affiliation(s)
- Shanshan Xiao
- Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center
- Department of Pathology, First Affiliated Hospital of Guangzhou University of Chinese Medicine
| | - Yansong Lin
- Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center
| | - Jia Fu
- Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center
| | - Xin Weng
- Department of Pathology, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong, China
| | - Qinghua Cao
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University
| | - Zhongsheng Kuang
- Department of Pathology, First Affiliated Hospital of Guangzhou University of Chinese Medicine
| | - Jingping Yun
- Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center
| | - Meifang Zhang
- Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center
| | - Yuhua Huang
- Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center
| |
Collapse
|
5
|
Pandey N, Rastogi M, Singh SK. Chandipura virus dysregulates the expression of hsa-miR-21-5p to activate NF-κB in human microglial cells. J Biomed Sci 2021; 28:52. [PMID: 34233673 PMCID: PMC8265105 DOI: 10.1186/s12929-021-00748-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022] Open
Abstract
Background Chandipura virus (CHPV) is a negative single-stranded RNA virus of the Rhabdoviridae family. CHPV infection has been reported in Central and Western India. CHPV causes acute encephalitis with a case fatality rate of 70 % and mostly affects children below 15 years of age. CHPV infection in brain leads to neuronal apoptosis and activation of the microglial cells. The microRNAs (miRNAs) are small endogenous non-coding RNA that regulate the gene expression. Viral infections perturb the expression pattern of cellular miRNAs, which may in turn affect the expression pattern of downstream genes. This study aims to investigate hsa-miR-21-5p mediated regulation of PTEN, AKT, NF-ĸBp65, IL-6, TNF-α, and IL-1β, in human microglial cells during CHPV infection. Methods To understand the role of hsa-miR-21-5p in CHPV infection, the human microglial cells were infected with CHPV (MOI-0.1). Real-time PCR, western blotting, Luciferase assay, over-expression and knockdown techniques were used to understand the role of hsa-miR-21-5p in the regulation of PTEN, AKT and, NF-ĸBp65, IL-6, TNF-α, and IL-1β in this study. Results The hsa-miR-21-5p was found to be upregulated during CHPV infection in human microglial cells. This led to the downregulation of PTEN which promoted the phosphorylation of AKT and NF-ĸBp65. Over-expression of hsa-miR-21-5p led to the decreased expression of PTEN and promoted further phosphorylation of AKT and NF-ĸBp65 in human microglial cells. However, the inhibition of hsa-miR-21-5p using hsa-miR-21-5p inhibitor restored the expression. Conclusions This study supports the role of hsa-miR-21-5p in the regulation of pro-inflammatory genes in CHPV infected human microglial cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-021-00748-0.
Collapse
Affiliation(s)
- Neha Pandey
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, 221005, Varanasi, India
| | - Meghana Rastogi
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, 221005, Varanasi, India
| | - Sunit K Singh
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, 221005, Varanasi, India.
| |
Collapse
|
6
|
Abstract
Antigen recognition by the B cell receptor (BCR) is a physiological trigger for reactivation of Epstein-Barr virus (EBV) and can be recapitulated in vitro by cross-linking of surface immunoglobulins. Previously, we identified a subset of EBV microRNAs (miRNAs) that attenuate BCR signal transduction and subsequently dampen lytic reactivation in B cells. The roles of host miRNAs in the EBV lytic cycle are not completely understood. Here, we profiled the small RNAs in reactivated Burkitt lymphoma cells and identified several miRNAs, such as miR-141, that are induced upon BCR cross-linking. Notably, EBV encodes a viral miRNA, miR-BART9, with sequence homology to miR-141. To better understand the functions of these two miRNAs, we examined their molecular targets and experimentally validated multiple candidates commonly regulated by both miRNAs. Targets included B cell transcription factors and known regulators of EBV immediate-early genes, leading us to hypothesize that these miRNAs modulate kinetics of the lytic cascade in B cells. Through functional assays, we identified roles for miR-141 and EBV miR-BART9 and one specific target, FOXO3, in progression of the lytic cycle. Our data support a model whereby EBV exploits BCR-responsive miR-141 and further mimics activity of this miRNA family via a viral miRNA to promote productive lytic replication. IMPORTANCE EBV is a human pathogen associated with several malignancies. A key aspect of lifelong virus persistence is the ability to switch between latent and lytic replication modes. The mechanisms governing latency, reactivation, and progression of the lytic cycle are only partly understood. This study reveals that specific miRNAs can act to support the EBV lytic phase following BCR-mediated reactivation triggers. Furthermore, this study identifies a role for FOXO3, commonly suppressed by both host and viral miRNAs, in modulating progression of the EBV lytic cycle.
Collapse
|
7
|
He G, Ding J, Zhang Y, Cai M, Yang J, Cho WC, Zheng Y. microRNA-21: a key modulator in oncogenic viral infections. RNA Biol 2021; 18:809-817. [PMID: 33499700 DOI: 10.1080/15476286.2021.1880756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Oncogenic viruses are associated with approximately 15% of human cancers. In viral infections, microRNAs play an important role in host-pathogen interactions. miR-21 is a highly conserved non-coding RNA that not only regulates the development of oncogenic viral diseases, but also responds to the regulation of intracellular signal pathways. Oncogenic viruses, including HBV, HCV, HPV, and EBV, co-evolve with their hosts and cause persistent infections. The upregulation of host miR-21 manipulates key cellular pathways to evade host immune responses and then promote viral replication. Thus, a better understanding of the role of miR-21 in viral infections may help us to develop effective genetically-engineered oncolytic virus-based therapies against cancer.
Collapse
Affiliation(s)
- Guitian He
- State Key Laboratory of Veterinary Etiological Biology' and 'Key Laboratory of Veterinary Parasitology of Gansu Province, CAAS, Lanzhou, China
| | - Juntao Ding
- College of Life Science and Technology, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yong'e Zhang
- State Key Laboratory of Veterinary Etiological Biology' and 'Key Laboratory of Veterinary Parasitology of Gansu Province, CAAS, Lanzhou, China
| | - Mengting Cai
- State Key Laboratory of Veterinary Etiological Biology' and 'Key Laboratory of Veterinary Parasitology of Gansu Province, CAAS, Lanzhou, China
| | - Jing Yang
- State Key Laboratory of Veterinary Etiological Biology' and 'Key Laboratory of Veterinary Parasitology of Gansu Province, CAAS, Lanzhou, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology' and 'Key Laboratory of Veterinary Parasitology of Gansu Province, CAAS, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou China
| |
Collapse
|
8
|
Anastasiadou E, Seto AG, Beatty X, Hermreck M, Gilles ME, Stroopinsky D, Pinter-Brown LC, Pestano L, Marchese C, Avigan D, Trivedi P, Escolar DM, Jackson AL, Slack FJ. Cobomarsen, an Oligonucleotide Inhibitor of miR-155, Slows DLBCL Tumor Cell Growth In Vitro and In Vivo. Clin Cancer Res 2020; 27:1139-1149. [PMID: 33208342 DOI: 10.1158/1078-0432.ccr-20-3139] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/18/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE miRNA-155 is an oncogenic miRNA highly expressed in B-cell malignancies, particularly in the non-germinal center B-cell or activated B-cell subtype of diffuse large B-cell lymphoma (ABC-DLBCL), where it is considered a potential diagnostic and prognostic biomarker. Thus, miR-155 inhibition represents an important therapeutic strategy for B-cell lymphomas. In this study, we tested the efficacy and pharmacodynamic activity of an oligonucleotide inhibitor of miR-155, cobomarsen, in ABC-DLBCL cell lines and in corresponding xenograft mouse models. In addition, we assessed the therapeutic efficacy and safety of cobomarsen in a patient diagnosed with aggressive ABC-DLBCL. EXPERIMENTAL DESIGN Preclinical studies included the delivery of cobomarsen to highly miR-155-expressing ABC-DLBCL cell lines to assess any phenotypic changes, as well as intravenous injections of cobomarsen in NSG mice carrying ABC-DLBCL xenografts, to study tumor growth and pharmacodynamics of the compound over time. To begin to test its safety and therapeutic efficacy, a patient was recruited who underwent five cycles of cobomarsen treatment. RESULTS Cobomarsen decreased cell proliferation and induced apoptosis in ABC-DLBCL cell lines. Intravenous administration of cobomarsen in a xenograft NSG mouse model of ABC-DLBCL reduced tumor volume, triggered apoptosis, and derepressed direct miR-155 target genes. Finally, the compound reduced and stabilized tumor growth without any toxic effects for the patient. CONCLUSIONS Our findings support the potential therapeutic application of cobomarsen in ABC-DLBCL and other types of lymphoma with elevated miR-155 expression.
Collapse
Affiliation(s)
- Eleni Anastasiadou
- HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.,Department of Experimental Medicine, Sapienza University of Rome, Italy
| | | | - Xuan Beatty
- miRagen Therapeutics, Inc, Boulder, Colorado
| | | | - Maud-Emmanuelle Gilles
- HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Dina Stroopinsky
- Department of Hematology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Lauren C Pinter-Brown
- Department of Internal Medicine, Division of Hematology/Oncology, University of California, Irvine, California
| | | | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - David Avigan
- Department of Hematology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Pankaj Trivedi
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | | | | | - Frank J Slack
- HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
9
|
Centofanti F, Santoro M, Marini M, Visconti VV, Rinaldi AM, Celi M, D’Arcangelo G, Novelli G, Orlandi A, Tancredi V, Tarantino U, Botta A. Identification of Aberrantly-Expressed Long Non-Coding RNAs in Osteoblastic Cells from Osteoporotic Patients. Biomedicines 2020; 8:E65. [PMID: 32204466 PMCID: PMC7148473 DOI: 10.3390/biomedicines8030065] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis (OP) is a multifactorial disease influenced by genetic, epigenetic, and environmental factors. One of the main causes of the bone homeostasis alteration is inflammation resulting in excessive bone resorption. Long non-coding RNAs (lncRNAs), have a crucial role in regulating many important biological processes in bone, including inflammation. We designed our study to identify lncRNAs misregulated in osteoblast primary cultures derived from OP patients (n = 4), and controls (CTRs, n = 4) with the aim of predicting possible RNA and/or protein targets implicated in this multifactorial disease. We focused on 84 lncRNAs regulating the expression of pro-inflammatory and anti-inflammatory genes and miRNAs. In silico analysis was utilized to predict the interaction of lncRNAs with miRNAs, mRNAs, and proteins targets. Six lncRNAs were significantly down-regulated in OP patients compared to controls: CEP83-AS1, RP11-84C13.1, CTC-487M23.5, GAS5, NCBP2-AS2, and SDCBP2-AS1. Bioinformatic analyses identified HDCA2, PTX3, and FGF2 proteins as downstream targets of CTC-487M23.5, GAS5, and RP11-84C13.1 lncRNAs mediated by the interaction with miRNAs implicated in OP pathogenesis, including miR-21-5p. Altogether, these data open a new regulatory mechanism of gene expression in bone homeostasis and could direct the development of future therapeutic approaches.
Collapse
Affiliation(s)
- Federica Centofanti
- Department of Biomedicine and Prevention, Anatomic Pathology Section, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (A.O.)
| | | | - Mario Marini
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.M.); (A.M.R.); (G.D.); (V.T.)
- Center of Space Biomedicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Virginia Veronica Visconti
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome “Tor Vergata”, 00133 Rome, Italy; (V.V.V.); (G.N.)
| | - Anna Maria Rinaldi
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.M.); (A.M.R.); (G.D.); (V.T.)
- Center of Space Biomedicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Monica Celi
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata”, 00133 Rome, Italy;
| | - Giovanna D’Arcangelo
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.M.); (A.M.R.); (G.D.); (V.T.)
- Center of Space Biomedicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome “Tor Vergata”, 00133 Rome, Italy; (V.V.V.); (G.N.)
- IRCCS Neuromed, Unit of Medical Genetics, Via Atinense 18, 86077 Pozzilli, Italy
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, Anatomic Pathology Section, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (A.O.)
| | - Virginia Tancredi
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.M.); (A.M.R.); (G.D.); (V.T.)
- Center of Space Biomedicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata”, 00133 Rome, Italy;
- Department of Orthopedics and Traumatology, PTV Foundation, 00133 Rome, Italy
| | - Annalisa Botta
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome “Tor Vergata”, 00133 Rome, Italy; (V.V.V.); (G.N.)
| |
Collapse
|
10
|
Moss LI, Tompkins VS, Moss WN. Differential expression analysis comparing EBV uninfected to infected human cell lines identifies induced non-micro small non-coding RNAs. Noncoding RNA Res 2020; 5:32-36. [PMID: 32154466 PMCID: PMC7052066 DOI: 10.1016/j.ncrna.2020.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 11/29/2022] Open
Abstract
Epstein–Barr virus (EBV) is a ubiquitous human herpes virus, which is implicated in cancer and various autoimmune diseases. This study profiles non-micro small non-coding RNA expression changes induced by latent EBV infection. Using small RNA-Seq, 346 non-micro small RNAs were identified as being significantly differentially expressed between EBV(+) BJAB-B1 and EBV(−) BJAB cell lines. Select small RNA expression changes were experimentally validated in the BJAB-B1 cell line as well as the EBV-infected Raji and Jijoye cell lines. This latter analysis recapitulated the previously identified induction of vault RNA1, while also finding novel evidence for the deregulation of several tRNAs and a snoRNA.
Collapse
Affiliation(s)
- Lumbini I Moss
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Van S Tompkins
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Walter N Moss
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
11
|
Hatton O, Smith MM, Alexander M, Mandell M, Sherman C, Stesney MW, Hui ST, Dohrn G, Medrano J, Ringwalt K, Harris-Arnold A, Maloney EM, Krams SM, Martinez OM. Epstein-Barr Virus Latent Membrane Protein 1 Regulates Host B Cell MicroRNA-155 and Its Target FOXO3a via PI3K p110α Activation. Front Microbiol 2019; 10:2692. [PMID: 32038504 PMCID: PMC6988802 DOI: 10.3389/fmicb.2019.02692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022] Open
Abstract
Epstein-Barr Virus (EBV) is associated with potentially fatal lymphoproliferations such as post-transplant lymphoproliferative disorder (PTLD), a serious complication of transplantation. The viral mechanisms underlying the development and maintenance of EBV+ B cell lymphomas remain elusive but represent attractive therapeutic targets. EBV modulates the expression of host microRNAs (miRs), non-coding RNAs that regulate gene expression, to promote survival of EBV+ B cell lymphomas. Here, we examined how the primary oncogene of EBV, latent membrane protein 1 (LMP1), regulates host miRs using an established model of inducible LMP1 signaling. LMP1 derived from the B95.8 lab strain or PTLD induced expression of the oncogene miR-155. However, PTLD variant LMP1 lost the ability to upregulate the tumor suppressor miR-193. Small molecule inhibitors (SMI) of p38 MAPK, NF-κB, and PI3K p110α inhibited upregulation of miR-155 by B95.8 LMP1; no individual SMI significantly reduced upregulation of miR-155 by PTLD variant LMP1. miR-155 was significantly elevated in EBV+ B cell lymphoma cell lines and associated exosomes and inversely correlated with expression of the miR-155 target FOXO3a in cell lines. Finally, LMP1 reduced expression of FOXO3a, which was rescued by a PI3K p110α SMI. Our data indicate that tumor variant LMP1 differentially regulates host B cell miR expression, suggesting viral genotype as an important consideration for the treatment of EBV+ B cell lymphomas. Notably, we demonstrate a novel mechanism in which LMP1 supports the regulation of miR-155 and its target FOXO3a in B cells through activation of PI3K p110α. This mechanism expands on the previously established mechanisms by which LMP1 regulates miR-155 and FOXO3a and may represent both rational therapeutic targets and biomarkers for EBV+ B cell lymphomas.
Collapse
Affiliation(s)
- Olivia Hatton
- Department of Molecular Biology, Colorado College, Colorado Springs, CO, United States
| | - Madeline M Smith
- Department of Molecular Biology, Colorado College, Colorado Springs, CO, United States
| | - Madison Alexander
- Department of Molecular Biology, Colorado College, Colorado Springs, CO, United States
| | - Melanie Mandell
- Department of Molecular Biology, Colorado College, Colorado Springs, CO, United States
| | - Carissa Sherman
- Department of Molecular Biology, Colorado College, Colorado Springs, CO, United States
| | - Madeline W Stesney
- Department of Molecular Biology, Colorado College, Colorado Springs, CO, United States
| | - Sin Ting Hui
- Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Gillian Dohrn
- Department of Molecular Biology, Colorado College, Colorado Springs, CO, United States
| | - Joselinne Medrano
- Department of Molecular Biology, Colorado College, Colorado Springs, CO, United States
| | - Kurt Ringwalt
- Department of Molecular Biology, Colorado College, Colorado Springs, CO, United States
| | - Aleishia Harris-Arnold
- Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Stanford Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Eden M Maloney
- Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Stanford Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Sheri M Krams
- Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Stanford Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Olivia M Martinez
- Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Stanford Immunology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
12
|
Yang Y, Qin X, Meng X, Zhu X, Zhang X, Li Y, Zhang Z. MicroRNA Expression Profile in Peripheral Blood Lymphocytes of Sheep Vaccinated with Nigeria 75/1 Peste Des Petits Ruminants Virus. Viruses 2019; 11:v11111025. [PMID: 31694166 PMCID: PMC6893480 DOI: 10.3390/v11111025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Peste des petits ruminants (PPR) is one of the highly contagious transboundary viral diseases of small ruminants. Host microRNA (miRNA) expression patterns may change in response to virus infection, and it mainly works as a post-transcriptional moderator in gene expression and affects viral pathogenesis and replication. In this study, the change of miRNA expression profile in peripheral blood lymphocyte (PBMC) from sheep inoculated with PPR vaccine virus in vivo as well as primary sheep testicular (ST) cells inoculated with PPR vaccine virus in vitro were determined via deep sequencing technology. In PBMC cells, 373 and 115 differentially expressed miRNAs (DEmiRNAs) were identified 3 days and 5 days post inoculated (dpi), respectively. While, 575 DEmiRNAs were identified when comparing miRNA profiles on 5 dpi with 3 dpi. Some of the DEmiRNAs were found to change significantly via time-course during PPR vaccine virus inoculated. Similarly, in ST cells, 136 DEmiRNAs were identified at 3 dpi in comparison with mock-inoculation. A total of 12 DEmiRNAs were validated by real-time quantitative PCR (RT-qPCR). The oar-miR-150, oar-miR-370-3p and oar-miR-411b-3p were found common differentially expressed in both PPR vaccine virus-inoculated PBMC cells and ST cells. Targets prediction and functional analysis of the DEmiRNAs uncovered mainly gathering in antigen processing and presentation pathways, protein processing in endoplasmic reticulum pathways and cell adhesion molecules pathways. Our study supplies information about the DEmiRNAs in PPR vaccine virus-inoculated PBMC cells and ST cells, and provides clues for further understanding the function of miRNAs in PPR vaccine virus replication.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanmin Li
- Correspondence: ; Tel.: +86-0931-8374622
| | | |
Collapse
|
13
|
Impact of HVT Vaccination on Splenic miRNA Expression in Marek's Disease Virus Infections. Genes (Basel) 2019; 10:genes10020115. [PMID: 30764490 PMCID: PMC6409792 DOI: 10.3390/genes10020115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 02/06/2023] Open
Abstract
Marek’s Disease is a lymphoproliferative disease of chickens caused by Marek’s Disease Virus. Similar to other herpesviruses, Marek’s Disease Virus (MDV) encodes its own small non-coding regulatory RNAs termed microRNAs (miRNAs). We previously found that the expression profile of these viral miRNAs is affected by vaccination with Herpesvirus of Turkeys (HVT). To further characterize miRNA-mediated gene regulation in MDV infections, in the current study we examine the impact of HVT vaccination on cellular miRNA expression in MDV-infected specific-pathogen-free (SPF) chickens. We used small RNA-seq to identify 24 cellular miRNAs that exhibited altered splenic expression in MDV infected chickens (42 dpi) compared to age-matched uninfected birds. We then used Real Time-quantitative PCR (RT-qPCR) to develop expression profiles of a select group of these host miRNAs in chickens receiving the HVT vaccine and in vaccinated chickens subsequently infected with MDV. As was seen with viral miRNA, host miRNAs had unique splenic expression profiles between chickens infected with HVT, MDV, or co-infected birds. We also discovered a group of transcription factors, using a yeast one-hybrid screen, which regulates immune responses and cell growth pathways and also likely regulates the expression of these cellular miRNAs. Overall, this study suggests cellular miRNAs are likely a critical component of both protection from and progression of Marek’s Disease.
Collapse
|
14
|
Bilbao-Arribas M, Abendaño N, Varela-Martínez E, Reina R, de Andrés D, Jugo BM. Expression analysis of lung miRNAs responding to ovine VM virus infection by RNA-seq. BMC Genomics 2019; 20:62. [PMID: 30658565 PMCID: PMC6339376 DOI: 10.1186/s12864-018-5416-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/26/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are short endogenous, single-stranded, noncoding small RNA molecules of approximately 22 nucleotides in length. They regulate gene expression posttranscriptionally by silencing mRNA expression, thus orchestrating many physiological processes. The Small Ruminant Lentiviruses (SRLV) group includes the Visna Maedi Virus (VMV) and Caprine Arthritis Encephalitis (CAEV) viruses, which cause a disease in sheep and goats characterized by pneumonia, mastitis, arthritis and encephalitis. Their main target cells are from the monocyte/macrophage lineage. To date, there are no studies on the role of miRNAs in this viral disease. RESULTS Using RNA-seq technology and bioinformatics analysis, the expression levels of miRNAs during different clinical stages of infection were studied. A total of 212 miRNAs were identified, of which 46 were conserved sequences in other species but found for the first time in sheep, and 12 were completely novel. Differential expression analysis comparing the uninfected and seropositive groups showed changes in several miRNAs; however, no significant differences were detected between seropositive asymptomatic and diseased sheep. The robust increase in the expression level of oar-miR-21 is consistent with its increased expression in other viral diseases. Furthermore, the target prediction of the dysregulated miRNAs revealed that they control genes involved in proliferation-related signalling pathways, such as the PI3K-Akt, AMPK and ErbB pathways. CONCLUSIONS To the best of our knowledge, this is the first study reporting miRNA profiling in sheep in response to SRLV infection. The known functions of oar-miR-21 as a regulator of inflammation and proliferation appear to be a possible cause of the lesions caused in the sheep's lungs. This miRNA could be an indicator for the severity of the lung lesions, or a putative target for therapeutic intervention.
Collapse
Affiliation(s)
- Martin Bilbao-Arribas
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48080, Bilbao, Spain
| | - Naiara Abendaño
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48080, Bilbao, Spain
| | - Endika Varela-Martínez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48080, Bilbao, Spain
| | - Ramsés Reina
- Institute of Agrobiotechnology (CSIC-UPNA-Government of Navarra), Avenida de Pamplona 123, 31192 Mutilva, Navarra, Spain
| | - Damián de Andrés
- Institute of Agrobiotechnology (CSIC-UPNA-Government of Navarra), Avenida de Pamplona 123, 31192 Mutilva, Navarra, Spain
| | - Begoña M Jugo
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48080, Bilbao, Spain.
| |
Collapse
|
15
|
Emerging microRNAs in cancer diagnosis, progression, and immune surveillance. Cancer Lett 2018; 438:126-132. [DOI: 10.1016/j.canlet.2018.09.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 12/19/2022]
|
16
|
Trivedi P, Slack FJ, Anastasiadou E. Epstein-Barr virus: From kisses to cancer, an ingenious immune evader. Oncotarget 2018; 9:36411-36412. [PMID: 30559926 PMCID: PMC6284857 DOI: 10.18632/oncotarget.26381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/13/2018] [Indexed: 12/28/2022] Open
Affiliation(s)
- Pankaj Trivedi
- Harvard Medical School Initiative for RNA Medicine, BIDMC, Harvard Medical School, Boston, MA, USA
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Frank J Slack
- Harvard Medical School Initiative for RNA Medicine, BIDMC, Harvard Medical School, Boston, MA, USA
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Eleni Anastasiadou
- Harvard Medical School Initiative for RNA Medicine, BIDMC, Harvard Medical School, Boston, MA, USA
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
17
|
Sun L, Meckes DG. Methodological Approaches to Study Extracellular Vesicle miRNAs in Epstein⁻Barr Virus-Associated Cancers. Int J Mol Sci 2018; 19:ijms19092810. [PMID: 30231493 PMCID: PMC6164614 DOI: 10.3390/ijms19092810] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 02/07/2023] Open
Abstract
Epstein Barr-virus (EBV) was the first virus identified to be associated with human cancer in 1964 and is found ubiquitously throughout the world's population. It is now established that EBV contributes to the development and progression of multiple human cancers of both lymphoid and epithelial cell origins. EBV encoded miRNAs play an important role in tumor proliferation, angiogenesis, immune escape, tissue invasion, and metastasis. Recently, EBV miRNAs have been found to be released from infected cancer cells in extracellular vesicles (EVs) and regulate gene expression in neighboring uninfected cells present in the tumor microenvironment and possibly at distal sites. As EVs are abundant in many biological fluids, the viral and cellular miRNAs present within EBV-modified EVs may serve as noninvasion markers for cancer diagnosis and prognosis. In this review, we discuss recent advances in EV isolation and miRNA detection, and provide a complete workflow for EV purification from plasma and deep-sequencing for biomarker discovery.
Collapse
Affiliation(s)
- Li Sun
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA.
| | - David G Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA.
| |
Collapse
|
18
|
Li L, Ma BBY, Chan ATC, Chan FKL, Murray P, Tao Q. Epstein-Barr Virus-Induced Epigenetic Pathogenesis of Viral-Associated Lymphoepithelioma-Like Carcinomas and Natural Killer/T-Cell Lymphomas. Pathogens 2018; 7:pathogens7030063. [PMID: 30022006 PMCID: PMC6161003 DOI: 10.3390/pathogens7030063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022] Open
Abstract
Cancer genome studies of Epstein-Barr virus (EBV)-associated tumors, including lymphoepithelioma-like carcinomas (LELC) of nasopharyngeal (NPC), gastric (EBVaGC) and lung tissues, and natural killer (NK)/T-cell lymphoma (NKTCL), reveal a unique feature of genomic alterations with fewer gene mutations detected than other common cancers. It is known now that epigenetic alterations play a critical role in the pathogenesis of EBV-associated tumors. As an oncogenic virus, EBV establishes its latent and lytic infections in B-lymphoid and epithelial cells, utilizing hijacked cellular epigenetic machinery. EBV-encoded oncoproteins modulate cellular epigenetic machinery to reprogram viral and host epigenomes, especially in the early stage of infection, using host epigenetic regulators. The genome-wide epigenetic alterations further inactivate a series of tumor suppressor genes (TSG) and disrupt key cellular signaling pathways, contributing to EBV-associated cancer initiation and progression. Profiling of genome-wide CpG methylation changes (CpG methylome) have revealed a unique epigenotype of global high-grade methylation of TSGs in EBV-associated tumors. Here, we have summarized recent advances of epigenetic alterations in EBV-associated tumors (LELCs and NKTCL), highlighting the importance of epigenetic etiology in EBV-associated tumorigenesis. Epigenetic study of these EBV-associated tumors will discover valuable biomarkers for their early detection and prognosis prediction, and also develop effective epigenetic therapeutics for these cancers.
Collapse
Affiliation(s)
- Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Brigette B Y Ma
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Anthony T C Chan
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Francis K L Chan
- Institute of Digestive Disease and State Key Laboratory of Digestive Diseases, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
| | - Paul Murray
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
19
|
The Nefarious Nexus of Noncoding RNAs in Cancer. Int J Mol Sci 2018; 19:ijms19072072. [PMID: 30018188 PMCID: PMC6073630 DOI: 10.3390/ijms19072072] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023] Open
Abstract
The past decade has witnessed enormous progress, and has seen the noncoding RNAs (ncRNAs) turn from the so-called dark matter RNA to critical functional molecules, influencing most physiological processes in development and disease contexts. Many ncRNAs interact with each other and are part of networks that influence the cell transcriptome and proteome and consequently the outcome of biological processes. The regulatory circuits controlled by ncRNAs have become increasingly more relevant in cancer. Further understanding of these complex network interactions and how ncRNAs are regulated, is paving the way for the identification of better therapeutic strategies in cancer.
Collapse
|
20
|
Menotti L, Avitabile E, Gatta V, Malatesta P, Petrovic B, Campadelli-Fiume G. HSV as A Platform for the Generation of Retargeted, Armed, and Reporter-Expressing Oncolytic Viruses. Viruses 2018; 10:E352. [PMID: 29966356 PMCID: PMC6070899 DOI: 10.3390/v10070352] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/28/2022] Open
Abstract
Previously, we engineered oncolytic herpes simplex viruses (o-HSVs) retargeted to the HER2 (epidermal growth factor receptor 2) tumor cell specific receptor by the insertion of a single chain antibody (scFv) to HER2 in gD, gH, or gB. Here, the insertion of scFvs to three additional cancer targets—EGFR (epidermal growth factor receptor), EGFRvIII, and PSMA (prostate specific membrane antigen)—in gD Δ6–38 enabled the generation of specifically retargeted o-HSVs. Viable recombinants resulted from the insertion of an scFv in place of aa 6–38, but not in place of aa 61–218. Hence, only the gD N-terminus accepted all tested scFv inserts. Additionally, the insertion of mIL12 in the US1-US2 intergenic region of the HER2- or EGFRvIII-retargeted o-HSVs, and the further insertion of Gaussia Luciferase, gave rise to viable recombinants capable of secreting the cytokine and the reporter. Lastly, we engineered two known mutations in gB; they increased the ability of an HER2-retargeted recombinant to spread among murine cells. Altogether, current data show that the o-HSV carrying the aa 6–38 deletion in gD serves as a platform for the specific retargeting of o-HSV tropism to a number of human cancer targets, and the retargeted o-HSVs serve as simultaneous vectors for two molecules.
Collapse
Affiliation(s)
- Laura Menotti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy.
| | - Elisa Avitabile
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy.
| | - Valentina Gatta
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy.
| | - Paolo Malatesta
- Department of Experimental Medicine, University of Genoa, Genoa 16132, Italy.
- Ospedale Policlinico San Martino-IRCCS per l'Oncologia, Genoa 16132, Italy.
| | - Biljana Petrovic
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy.
| | - Gabriella Campadelli-Fiume
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy.
| |
Collapse
|
21
|
Anastasiadou E, Stroopinsky D, Alimperti S, Jiao AL, Pyzer AR, Cippitelli C, Pepe G, Severa M, Rosenblatt J, Etna MP, Rieger S, Kempkes B, Coccia EM, Sui SJH, Chen CS, Uccini S, Avigan D, Faggioni A, Trivedi P, Slack FJ. Epstein-Barr virus-encoded EBNA2 alters immune checkpoint PD-L1 expression by downregulating miR-34a in B-cell lymphomas. Leukemia 2018; 33:132-147. [PMID: 29946193 PMCID: PMC6327052 DOI: 10.1038/s41375-018-0178-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 04/27/2018] [Accepted: 05/11/2018] [Indexed: 12/13/2022]
Abstract
Cancer cells subvert host immune surveillance by altering immune checkpoint (IC) proteins. Some Epstein−Barr virus (EBV)-associated tumors have higher Programmed Cell Death Ligand, PD-L1 expression. However, it is not known how EBV alters ICs in the context of its preferred host, the B lymphocyte and in derived lymphomas. Here, we found that latency III-expressing Burkitt lymphoma (BL), diffuse large B-cell lymphomas (DLBCL) or their EBNA2-transfected derivatives express high PD-L1. In a DLBCL model, EBNA2 but not LMP1 is sufficient to induce PD-L1. Latency III-expressing DLBCL biopsies showed high levels of PD-L1. The PD-L1 targeting oncosuppressor microRNA miR-34a was downregulated in EBNA2-transfected lymphoma cells. We identified early B-cell factor 1 (EBF1) as a repressor of miR-34a transcription. Short hairpin RNA (shRNA)-mediated knockdown of EBF1 was sufficient to induce miR-34a transcription, which in turn reduced PD-L1. MiR-34a reconstitution in EBNA2-transfected DLBCL reduced PD-L1 expression and increased its immunogenicity in mixed lymphocyte reactions (MLR) and in three-dimensional biomimetic microfluidic chips. Given the importance of PD-L1 inhibition in immunotherapy and miR-34a dysregulation in cancers, our findings may have important implications for combinatorial immunotherapy, which include IC inhibiting antibodies and miR-34a, for EBV-associated cancers.
Collapse
Affiliation(s)
- Eleni Anastasiadou
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dina Stroopinsky
- Department of Hematology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Stella Alimperti
- The Wyss Institute for Biological Inspired Engineering at Harvard, Harvard University, Boston, MA, USA
| | - Alan L Jiao
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Athalia R Pyzer
- Department of Hematology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Claudia Cippitelli
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - Giuseppina Pepe
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - Martina Severa
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Jacalyn Rosenblatt
- Department of Hematology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Marilena P Etna
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Simone Rieger
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Marchioninistraße 25, 81377, Munich, Germany
| | - Bettina Kempkes
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Marchioninistraße 25, 81377, Munich, Germany
| | - Eliana M Coccia
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Shannan J Ho Sui
- Bioinformatics Core, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Christopher S Chen
- The Wyss Institute for Biological Inspired Engineering at Harvard, Harvard University, Boston, MA, USA
| | - Stefania Uccini
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - David Avigan
- Department of Hematology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alberto Faggioni
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 0161, Rome, Italy
| | - Pankaj Trivedi
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 0161, Rome, Italy.
| | - Frank J Slack
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Dragomir M, Mafra ACP, Dias SMG, Vasilescu C, Calin GA. Using microRNA Networks to Understand Cancer. Int J Mol Sci 2018; 19:ijms19071871. [PMID: 29949872 PMCID: PMC6073868 DOI: 10.3390/ijms19071871] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 01/24/2023] Open
Abstract
Human cancers are characterized by deregulated expression of multiple microRNAs (miRNAs), involved in essential pathways that confer the malignant cells their tumorigenic potential. Each miRNA can regulate hundreds of messenger RNAs (mRNAs), while various miRNAs can control the same mRNA. Additionally, many miRNAs regulate and are regulated by other species of non-coding RNAs, such as circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs). For this reason, it is extremely difficult to predict, study, and analyze the precise role of a single miRNA involved in human cancer, considering the complexity of its connections. Focusing on a single miRNA molecule represents a limited approach. Additional information could come from network analysis, which has become a common tool in the biological field to better understand molecular interactions. In this review, we focus on the main types of networks (monopartite, association networks and bipartite) used for analyzing biological data related to miRNA function. We briefly present the important steps to take when generating networks, illustrating the theory with published examples and with future perspectives of how this approach can help to better select miRNAs that can be therapeutically targeted in cancer.
Collapse
Affiliation(s)
- Mihnea Dragomir
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 1950, Houston, TX 77030, USA.
- Department of Surgery, Fundeni Hospital, University of Medicine and Pharmacy Carol Davila, Sos. Fundeni nr. 258, Sector 2, 022328 Bucharest, Romania.
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, Str. Gh. Marinescu 23, 400012 Cluj-Napoca, Romania.
| | - Ana Carolina P Mafra
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 1950, Houston, TX 77030, USA.
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Rua Giuseppe Maximo Scolfaro 10000, Campinas, SP 13083-970, Brazil.
- Department of Genetics, Evolution and Bioagents, Institute of Biology, P.O. Box 6109, University of Campinas-UNICAMP, Campinas, SP 13083-970, Brazil.
| | - Sandra M G Dias
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Rua Giuseppe Maximo Scolfaro 10000, Campinas, SP 13083-970, Brazil.
- Department of Genetics, Evolution and Bioagents, Institute of Biology, P.O. Box 6109, University of Campinas-UNICAMP, Campinas, SP 13083-970, Brazil.
| | - Catalin Vasilescu
- Department of Surgery, Fundeni Hospital, University of Medicine and Pharmacy Carol Davila, Sos. Fundeni nr. 258, Sector 2, 022328 Bucharest, Romania.
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 1950, Houston, TX 77030, USA.
- Center for RNA Inference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 1950, Houston, TX 77030, USA.
| |
Collapse
|
23
|
Navari M, Etebari M, Ibrahimi M, Leoncini L, Piccaluga PP. Pathobiologic Roles of Epstein-Barr Virus-Encoded MicroRNAs in Human Lymphomas. Int J Mol Sci 2018; 19:E1168. [PMID: 29649101 PMCID: PMC5979337 DOI: 10.3390/ijms19041168] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
Epstein-Barr virus (EBV) is a human γ-herpesvirus implicated in several human malignancies, including a wide range of lymphomas. Several molecules encoded by EBV in its latent state are believed to be related to EBV-induced lymphomagenesis, among which microRNAs-small RNAs with a posttranscriptional regulating role-are of great importance. The genome of EBV encodes 44 mature microRNAs belonging to two different classes, including BamHI-A rightward transcript (BART) and Bam HI fragment H rightward open reading frame 1 (BHRF1), with different expression levels in different EBV latency types. These microRNAs might contribute to the pathogenetic effects exerted by EBV through targeting self mRNAs and host mRNAs and interfering with several important cellular mechanisms such as immunosurveillance, cell proliferation, and apoptosis. In addition, EBV microRNAs can regulate the surrounding microenvironment of the infected cells through exosomal transportation. Moreover, these small molecules could be potentially used as molecular markers. In this review, we try to present an updated and extensive view of the role of EBV-encoded miRNAs in human lymphomas.
Collapse
Affiliation(s)
- Mohsen Navari
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh 9516915169, Iran.
- Department of Experimental, Diagnostic, and Experimental Medicine, Bologna University School of Medicine, 40126 Bologna, Italy.
| | - Maryam Etebari
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh 9516915169, Iran.
- Department of Experimental, Diagnostic, and Experimental Medicine, Bologna University School of Medicine, 40126 Bologna, Italy.
| | - Mostafa Ibrahimi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran.
| | - Lorenzo Leoncini
- Section of Pathology, Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy.
| | - Pier Paolo Piccaluga
- Department of Experimental, Diagnostic, and Experimental Medicine, Bologna University School of Medicine, 40126 Bologna, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy.
- Department of Pathology, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya.
| |
Collapse
|
24
|
Abstract
As masters of genome-wide regulation, miRNAs represent a key component in the complex architecture of cellular processes. Over the last decade, it has become increasingly apparent that miRNAs have many important roles in the development of disease and cancer. Recently, however, their role in viral and bacterial gene regulation as well as host gene regulation during disease progression has become a field of interest. Due to their small size, miRNAs are the ideal mechanism for bacteria and viruses that have limited room in their genomes, as a single miRNA can target up to ~30 genes. Currently, only a limited number of miRNA and miRNA-like RNAs have been found in bacteria and viruses, a number that is sure to increase rapidly in the future. The interactions of these small noncoding RNAs in such primitive species have wide-reaching effects, from increasing viral and bacterial proliferation, better responses to stress, increased virulence, to manipulation of host immune responses to provide a more ideal environment for these pathogens to thrive. Here, we explore those roles to obtain a better grasp of just how complicated disease truly is.
Collapse
|
25
|
Kaul V, Weinberg KI, Boyd SD, Bernstein D, Esquivel CO, Martinez OM, Krams SM. Dynamics of Viral and Host Immune Cell MicroRNA Expression during Acute Infectious Mononucleosis. Front Microbiol 2018; 8:2666. [PMID: 29379474 PMCID: PMC5775229 DOI: 10.3389/fmicb.2017.02666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/21/2017] [Indexed: 11/13/2022] Open
Abstract
Epstein–Barr virus (EBV) is the etiological agent of acute infectious mononucleosis (IM). Since acute IM is a self-resolving disease with most patients regaining health in 1–3 weeks there have been few studies examining molecular signatures in early acute stages of the disease. MicroRNAs (miRNAs) have been shown, however, to influence immune cell function and consequently the generation of antibody responses in IM. In this study, we performed a comprehensive analysis of differentially expressed miRNAs in early stage uncomplicated acute IM. miRNAs were profiled from patient peripheral blood obtained at the time of IM diagnosis and at subsequent time points, and pathway analysis performed to identify important immune and cell signaling pathways. We identified 215 differentially regulated miRNAs at the most acute stage of infection when the patients initially sought medical help. The number of differentially expressed miRNAs decreased to 148 and 68 at 1 and 2 months post-primary infection, with no significantly changed miRNAs identified at 7 months post-infection. Interferon signaling, T and B cell signaling and antigen presentation were the top pathways influenced by the miRNAs associated with IM. Thus, a dynamic and regulated expression profile of miRNA accompanies the early acute immune response, and resolution of infection, in IM.
Collapse
Affiliation(s)
- Vandana Kaul
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA, United States
| | - Kenneth I Weinberg
- Division of Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Scott D Boyd
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Daniel Bernstein
- Division of Cardiology, Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Carlos O Esquivel
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA, United States
| | - Olivia M Martinez
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA, United States.,Stanford Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Sheri M Krams
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA, United States.,Stanford Immunology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
26
|
Kupcinskas J. Small Molecules in Rare Tumors: Emerging Role of MicroRNAs in GIST. Int J Mol Sci 2018; 19:E397. [PMID: 29385688 PMCID: PMC5855619 DOI: 10.3390/ijms19020397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of gastrointestinal tract. GISTs have very different clinical phenotypes and underlying molecular characteristics that are not yet completely understood. microRNAs (miRNAs) have been shown to participate in carcinogenesis pathways through post-transcriptional regulation of gene expression in different tumors. Over the last years emerging evidence has highlighted the role of miRNAs in GISTs. This review provides an overview of original research papers that analyze miRNA deregulation patterns, functional role, diagnostic, therapeutic and prognostic implications in GIST as well as provides directions for further research in the field.
Collapse
Affiliation(s)
- Juozas Kupcinskas
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, Eiveniu str. 2, LT-50009 Kaunas, Lithuania.
- Department of Gastroenterology, Academy of Medicine, Lithuanian University of Health Sciences, Eiveniu str. 2, LT-50009 Kaunas, Lithuania.
| |
Collapse
|
27
|
Etna MP, Sinigaglia A, Grassi A, Giacomini E, Romagnoli A, Pardini M, Severa M, Cruciani M, Rizzo F, Anastasiadou E, Di Camillo B, Barzon L, Fimia GM, Manganelli R, Coccia EM. Mycobacterium tuberculosis-induced miR-155 subverts autophagy by targeting ATG3 in human dendritic cells. PLoS Pathog 2018; 14:e1006790. [PMID: 29300789 PMCID: PMC5771628 DOI: 10.1371/journal.ppat.1006790] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/17/2018] [Accepted: 12/05/2017] [Indexed: 12/30/2022] Open
Abstract
Autophagy is a primordial eukaryotic pathway, which provides the immune system with multiple mechanisms for the elimination of invading pathogens including Mycobacterium tuberculosis (Mtb). As a consequence, Mtb has evolved different strategies to hijack the autophagy process. Given the crucial role of human primary dendritic cells (DC) in host immunity control, we characterized Mtb-DC interplay by studying the contribution of cellular microRNAs (miRNAs) in the post-transcriptional regulation of autophagy related genes. From the expression profile of de-regulated miRNAs obtained in Mtb-infected human DC, we identified 7 miRNAs whose expression was previously found to be altered in specimens of TB patients. Among them, gene ontology analysis showed that miR-155, miR-155* and miR-146a target mRNAs with a significant enrichment in biological processes linked to autophagy. Interestingly, miR-155 was significantly stimulated by live and virulent Mtb and enriched in polysome-associated RNA fraction, where actively translated mRNAs reside. The putative pair interaction among the E2 conjugating enzyme involved in LC3-lipidation and autophagosome formation-ATG3-and miR-155 arose by target prediction analysis, was confirmed by both luciferase reporter assay and Atg3 immunoblotting analysis of miR-155-transfected DC, which showed also a consistent Atg3 protein and LC3 lipidated form reduction. Late in infection, when miR-155 expression peaked, both the level of Atg3 and the number of LC3 puncta per cell (autophagosomes) decreased dramatically. In accordance, miR-155 silencing rescued autophagosome number in Mtb infected DC and enhanced autolysosome fusion, thereby supporting a previously unidentified role of the miR-155 as inhibitor of ATG3 expression. Taken together, our findings suggest how Mtb can manipulate cellular miRNA expression to regulate Atg3 for its own survival, and highlight the importance to develop novel therapeutic strategies against tuberculosis that would boost autophagy. Mycobacterium tuberculosis (Mtb) is one of the most successful pathogens in human history and remains the second leading cause of death from an infectious agent worldwide. The major reason of Mtb success relies on its ability to evade host immunity. Autophagy, a cellular mechanism involved in intracellular pathogen elimination, is one of the pathways hijacked by Mtb to elude the control of dendritic cells (DC), major cellular effectors of immune response. Recently, it has become clear that Mtb infection not only alters cellular gene expression, but also controls the level of small RNA molecules, namely microRNAs (miRNAs), which function as negative regulators of mRNA translation into protein. In the present study, we observed that the infection of human DC with Mtb leads to a strong induction of host miR-155, a critical regulator of host immune response. By mean of miR-155 induction, Mtb reduces Atg3 protein content, a crucial enzyme needed for the initial phase of the autophagic process. Interestingly, miR-155 silencing during Mtb infection restores Atg3 level and rescues autophagy. These findings contribute to better elucidate Mtb-triggered escape mechanisms and highlight the importance to develop host-directed therapies to combat tuberculosis based on autophagy boosting.
Collapse
Affiliation(s)
- Marilena P. Etna
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Angela Grassi
- Department of Information Engineering, University of Padova, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Elena Giacomini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Manuela Pardini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Martina Severa
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Melania Cruciani
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Fabiana Rizzo
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Eleni Anastasiadou
- Department of Pathology, Institute for RNA Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, Padua, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | - Gian Maria Fimia
- National Institute for Infectious Diseases "L. Spallanzani”, Rome, Italy
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
| | | | - Eliana M. Coccia
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
- * E-mail:
| |
Collapse
|
28
|
Genetic and epigenetic regulation of arrhythmogenic cardiomyopathy. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2064-2069. [PMID: 28454914 DOI: 10.1016/j.bbadis.2017.04.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/11/2017] [Accepted: 04/22/2017] [Indexed: 12/26/2022]
Abstract
Arrhythmogenic cardiomyopathy (AC) is most commonly characterized as a disease of the intercalated disc that promotes abnormal cardiac conduction. Previously, arrhythmogenic cardiomyopathy was frequently referred to as arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D); however, genotype-phenotype studies have defined a broader phenotypic spectrum; with the identification of left-dominant and biventricular subtypes. Molecular insight into AC has primarily focused on mutations in desmosomal proteins and the downstream signaling pathways; however, desmosomal gene mutations can only be identified in approximately 50% of patients with AC. Animal and cellular studies have shown that in addition to abnormal biomechanical properties from changes in desmosome function, crosstalk from the desmosome to the nucleus, gap junctions, and ion channels are implicated in the pathobiology of AC. In this review, we highlight some of the newly identified genetic and epigenetic mechanisms that may lead to the development of AC including the role of the Hippo pathway and microRNAs. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure - edited by Jun Ren & Megan Yingmei Zhang.
Collapse
|
29
|
Kanokudom S, Vilaivan T, Wikan N, Thepparit C, Smith DR, Assavalapsakul W. miR-21 promotes dengue virus serotype 2 replication in HepG2 cells. Antiviral Res 2017; 142:169-177. [PMID: 28365456 DOI: 10.1016/j.antiviral.2017.03.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/09/2017] [Accepted: 03/27/2017] [Indexed: 11/19/2022]
Abstract
Infection with the mosquito transmitted dengue virus (DENV) remains a significant worldwide public health problem. While the majority of infections are asymptomatic, infection can result in a range of symptoms. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression through repression or degradation of mRNAs. To understand the contribution of miRNAs to DENV 2 replication, we screened a number of candidate miRNAs for variations in expression levels during DENV 2 infection of HepG2 (liver) cells. Seven miRNAs were identified as differentially expressed, and one, miR-21, was differentially expressed at all time points examined. Interestingly, miR-21 was also differentially regulated in DENV 2 infection under conditions of antibody dependent enhancement of infection, and in direct Zika virus infection, but not in DENV 4 infection. The role of miR-21 during DENV infection was further examined by treating HepG2 cells with an anti-miR-21 (AMO-21) before DENV infection. The results showed a significant reduction in DENV 2 production, clearly suggesting that miR-21 plays a key role in DENV 2 replication. To further confirm the role of miR-21 in DENV infection, a peptide nucleic acid-21 (PNA-21) construct with a nucleotide sequence complementary to AMO-21, was co-administered with AMO-21 as an AMO-21/PNA-21 complex followed by DENV 2 infection. The results showed that AMO-21 significantly reduced DENV 2 titer, PNA-21 significantly increased DENV 2 titer and the combined AMO-21/PNA-21 showed no difference from non-treated infection controls. Taken together, the results show that miR-21 promotes DENV 2 replication, and this mechanism could serve as a possible therapeutic intervention point.
Collapse
Affiliation(s)
- Sitthichai Kanokudom
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Nitwara Wikan
- Institute of Molecular Biosciences, Mahidol University, Nakornpathom, 73170, Thailand
| | - Chutima Thepparit
- Institute of Molecular Biosciences, Mahidol University, Nakornpathom, 73170, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Nakornpathom, 73170, Thailand
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
30
|
Sakamoto K, Sekizuka T, Uehara T, Hishima T, Mine S, Fukumoto H, Sato Y, Hasegawa H, Kuroda M, Katano H. Next-generation sequencing of miRNAs in clinical samples of Epstein-Barr virus-associated B-cell lymphomas. Cancer Med 2017; 6:605-618. [PMID: 28181423 PMCID: PMC5345668 DOI: 10.1002/cam4.1006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/17/2016] [Accepted: 12/13/2016] [Indexed: 12/16/2022] Open
Abstract
Epstein-Barr virus (EBV) encodes 49 microRNAs (miRNAs) in the BART and BHRF1 regions of its genome. Although expression profiles of EBV-encoded miRNAs have been reported for EBV-positive cell lines and nasopharyngeal carcinoma, to date there is little information about total miRNA expression, including cellular and viral miRNAs, in the primary tumors of EBV-associated B-lymphoproliferative disorders. In this study, next-generation sequencing and quantitative real-time reverse transcription-PCR were used to determine the expression profiles of miRNAs in EBV-infected cell lines and EBV-associated B-cell lymphomas, including AIDS-related diffuse large B-cell lymphoma (DLBCL), pyothorax-associated lymphoma, methotrexate-associated lymphoproliferative disorder, EBV-positive DLBCL of the elderly, and Hodgkin lymphoma. Next-generation sequencing revealed that EBV-encoded miRNAs accounted for up to 34% of total annotated miRNAs in these cases. Expression of three miR-BHRF1s was significantly higher in AIDS-related DLBCL and pyothorax-associated lymphoma compared with methotrexate-associated lymphoproliferative disorder and EBV-positive DLBCL of the elderly, suggesting the association of miR-BHRF1s expression with latency III EBV infection. Heat map/clustering analysis of expression of all miRNAs, including cellular and EBV miRNAs, by next-generation sequencing demonstrated that each EBV tumor, except methotrexate-associated lymphoproliferative disorder, formed an isolated cluster. Principal component analysis based on the EBV-encoded miRNA expression showed that each EBV tumor formed a distinguished cluster, but AIDS-related DLBCL and pyothorax-associated lymphoma formed larger clusters than other tumors. These data suggest that expression of miRNAs, including EBV-encoded miRNAs, is associated with the tumor type and status of virus infection in these tumors.
Collapse
Affiliation(s)
- Kouta Sakamoto
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Taeko Uehara
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Tsunekazu Hishima
- Department of Pathology, Tokyo Metropolitan Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8613, Japan
| | - Sohtaro Mine
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Hitomi Fukumoto
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| |
Collapse
|
31
|
MiR-744 functions as a proto-oncogene in nasopharyngeal carcinoma progression and metastasis via transcriptional control of ARHGAP5. Oncotarget 2016; 6:13164-75. [PMID: 25961434 PMCID: PMC4537006 DOI: 10.18632/oncotarget.3754] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 04/06/2015] [Indexed: 12/19/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a highly invasive and metastasis-prone epithelial cancer. The paucity of effective treatment strategies for recurrent and metastatic NPC is the major cause for stagnating survival rate of NPC. Therefore, it's urgent to understand the molecular mechanisms underlying NPC progression and identify novel avenues for targeted therapy. It has emerged recently that microRNAs are potential pro-tumorigenic or tumor-suppressive factors that participate in oncogenesis. In this study, we found that miR-744 expression was upregulated in NPC specimens compared to nasopharyngeal epithelium (NPE) tissue, and miR- 744 upregulation was significantly associated with TNM stage, tumorigenesis and metastasis. Functional studies revealed that miR-744 acts as a novel tumor promotor in NPC. Moreover, we determined that miR-744 targets ARHGAP5 (Rho GTPase activating protein 5), a protumorigenic gene, by directly interacting with its promoter and thereby regulating its expression at transcriptional level. Reintroduction of ARHGAP5 resembled the effects of miR-744 and silencing of ARHGAP5 clearly abrogated miR-744-induced enhancement of cell migration and invasion. High level of ARHGAP5 was positively correlated with that of miR-744 and with advanced stages of NPC, as well as with lymph node metastasis. Taken together, these data reveal for the first time that miR-744 exerts its proto-oncogenic function by directly targeting ARHGAP5 promoter. This newly identified miR-744/ARHGAP5 pathway provides further insight into the progression and metastasis of NPC and indicates potential novel therapeutic targets for NPC.
Collapse
|