1
|
Espona-Fiedler M, Patthey C, Lindblad S, Sarró I, Öhlund D. Overcoming therapy resistance in pancreatic cancer: New insights and future directions. Biochem Pharmacol 2024; 229:116492. [PMID: 39153553 DOI: 10.1016/j.bcp.2024.116492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Pancreatic adenocarcinoma (PDAC) is predicted to become the second leading cause of cancer deaths by 2030 and this is mostly due to therapy failure. Limited treatment options and resistance to standard-of-care (SoC) therapies makes PDAC one of the cancer types with poorest prognosis and survival rates [1,2]. Pancreatic tumors are renowned for their poor response to therapeutic interventions including targeted therapies, chemotherapy and radiotherapy. Herein, we review hallmarks of therapy resistance in PDAC and current strategies aiming to tackle escape mechanisms and to re-sensitize cancer cells to therapy. We will further provide insights on recent advances in the field of drug discovery, nanomedicine, and disease models that are setting the ground for future research.
Collapse
Affiliation(s)
- Margarita Espona-Fiedler
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå Universitet, Umeå, Sweden.
| | - Cedric Patthey
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå Universitet, Umeå, Sweden
| | - Stina Lindblad
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden
| | - Irina Sarró
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Universitat de Barcelona, Barcelona, Spain
| | - Daniel Öhlund
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå Universitet, Umeå, Sweden.
| |
Collapse
|
2
|
Vasilevska J, Cheng PF, Lehmann J, Ramelyte E, Gómez JM, Dimitriou F, Sella F, Ferretti D, Salas-Bastos A, Jordaan WS, Levesque MP, Dummer R, Sommer L. Monitoring melanoma patients on treatment reveals a distinct macrophage population driving targeted therapy resistance. Cell Rep Med 2024; 5:101611. [PMID: 38942020 PMCID: PMC11293307 DOI: 10.1016/j.xcrm.2024.101611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/09/2024] [Accepted: 05/20/2024] [Indexed: 06/30/2024]
Abstract
Resistance to targeted therapy remains a major clinical challenge in melanoma. To uncover resistance mechanisms, we perform single-cell RNA sequencing on fine-needle aspirates from resistant and responding tumors of patients undergoing BRAFi/MEKi treatment. Among the genes most prominently expressed in resistant tumors is POSTN, predicted to signal to a macrophage population associated with targeted therapy resistance (TTR). Accordingly, tumors from patients with fast disease progression after therapy exhibit high POSTN expression levels and high numbers of TTR macrophages. POSTN polarizes human macrophages toward a TTR phenotype and promotes resistance to targeted therapy in a melanoma mouse model, which is associated with a phenotype change in intratumoral macrophages. Finally, polarized TTR macrophages directly protect human melanoma cells from MEKi-induced killing via CD44 receptor expression on melanoma cells. Thus, interfering with the protective activity of TTR macrophages may offer a strategy to overcome resistance to targeted therapy in melanoma.
Collapse
Affiliation(s)
- Jelena Vasilevska
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Phil Fang Cheng
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Julia Lehmann
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Egle Ramelyte
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Julia Martínez Gómez
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Florentia Dimitriou
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Federica Sella
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Daria Ferretti
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | | | | | - Mitchell Paul Levesque
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Lukas Sommer
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
3
|
Ruffner MA, Shoda T, Lal M, Mrozek Z, Muir AB, Spergel JM, Dellon ES, Rothenberg ME. Persistent esophageal changes after histologic remission in eosinophilic esophagitis. J Allergy Clin Immunol 2024; 153:1063-1072. [PMID: 38154664 PMCID: PMC11151730 DOI: 10.1016/j.jaci.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Eosinophilic esophagitis (EoE) is characterized by persistent or relapsing allergic inflammation, and both clinical and histologic features of esophageal inflammation persist over time in most individuals. Mechanisms contributing to EoE relapse are not understood, and chronic EoE-directed therapy is therefore required to prevent long-term sequelae. OBJECTIVE We investigated whether EoE patients in histologic remission have persistent dysregulation of esophageal gene expression. METHODS Esophageal biopsy samples from 51 pediatric and 52 adult subjects with EoE in histopathologic remission (<15 eosinophils per high-power field [eos/hpf]) and control (48 pediatric and 167 adult) subjects from multiple institutions were subjected to molecular profiling by the EoE diagnostic panel, which comprises a set of 94 esophageal transcripts differentially expressed in active EoE. RESULTS Defining remission as <15 eos/hpf, we identified 51 and 32 differentially expressed genes in pediatric and adult EoE patients compared to control individuals, respectively (false discovery rate < 0.05). Using the stringent definition of remission (0 eos/hpf), the adult and pediatric cohorts continued to have 18 and 25 differentially expressed genes (false discovery rate < 0.05). Among 6 shared genes between adults and children, CDH26 was upregulated in both children and adults; immunohistochemistry demonstrated increased cadherin 26 staining in the epithelium of EoE patients in remission compared to non-EoE controls. In the adult cohort, POSTN expression correlated with the endoscopic reference system score (Spearman r = 0.35, P = .011), specifically correlating with the rings' endoscopic reference system subscore (r = 0.53, P = .004). CONCLUSION We have identified persistent EoE-associated esophageal gene expression in patients with disease in deep remission. These data suggest potential inflammation-induced epigenetic mechanisms may influence gene expression during remission in EoE and provide insight into possible mechanisms that underlie relapse in EoE.
Collapse
Affiliation(s)
- Melanie A Ruffner
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa; Division of Allergy & Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa.
| | - Tetsuo Shoda
- Department of Pediatrics, Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Megha Lal
- Division of Allergy & Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Zoe Mrozek
- Division of Allergy & Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Amanda B Muir
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa; Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Jonathan M Spergel
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa; Division of Allergy & Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Evan S Dellon
- Department of Medicine, Division of Gastroenterology and Hepatology, Center for Esophageal Diseases and Swallowing, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Marc E Rothenberg
- Department of Pediatrics, Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
4
|
Trier NH, Friis T. Production of Antibodies to Peptide Targets Using Hybridoma Technology. Methods Mol Biol 2024; 2821:135-156. [PMID: 38997486 DOI: 10.1007/978-1-0716-3914-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Hybridoma technology is a well-established and indispensable tool for generating high-quality monoclonal antibodies and has become one of the most common methods for monoclonal antibody production. In this process, antibody-producing B cells are isolated from mice following immunization of mice with a specific immunogen and fused with an immortal myeloma cell line to form antibody-producing hybridoma cell lines. Hybridoma-derived monoclonal antibodies not only serve as powerful research and diagnostic reagents but have also emerged as the most rapidly expanding class of therapeutic biologicals. In spite of the development of new high-throughput monoclonal antibody generation technologies, hybridoma technology still is applied for antibody production due to its ability to preserve innate functions of immune cells and to preserve natural cognate antibody paring information. In this chapter, an overview of hybridoma technology and the laboratory procedures used for hybridoma production and antibody screening of peptide-specific antibodies are presented.
Collapse
Affiliation(s)
| | - Tina Friis
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen S, Denmark
| |
Collapse
|
5
|
Eckersley A, Morais MR, Ozols M, Lennon R. Peptide location fingerprinting identifies structural alterations within basement membrane components in ageing kidney. Matrix Biol 2023; 121:167-178. [PMID: 37437747 DOI: 10.1016/j.matbio.2023.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
During ageing, the glomerular and tubular basement membranes (BM) of the kidney undergo a progressive decline in function that is underpinned by histological changes, including glomerulosclerosis and tubular interstitial fibrosis and atrophy. This BM-specific ageing is thought to result from damage accumulation to long-lived extracellular matrix (ECM) protein structures. Determining which BM proteins are susceptible to these structure-associated changes, and the possible mechanisms and downstream consequences, is critical to understand age-related kidney degeneration and to identify markers for therapeutic intervention. Peptide location fingerprinting (PLF) is an emerging proteomic mass spectrometry analysis technique capable of identifying ECM proteins with structure-associated differences that may occur by damage modifications in ageing. Here, we apply PLF as a bioinformatic screening tool to identify BM proteins with structure-associated differences between young and aged human glomerular and tubulointerstitial compartments. Several functional regions within key BM components displayed alterations in tryptic peptide yield, reflecting potential age-dependent shifts in molecular (e.g. laminin-binding regions in agrin) and cellular (e.g. integrin-binding regions in laminins 521 and 511) interactions, oxidation (e.g. collagen IV) and the fragmentation and release of matrikines (e.g. canstatin and endostatin from collagens IV and XVIII). Furthermore, we found that periostin and the collagen IV α2 chain exhibited structure-associated differences in ageing that were conserved between human kidney and previously analysed mouse lung, revealing BM components that harbour shared susceptibilities across species and organs.
Collapse
Affiliation(s)
- Alexander Eckersley
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| | - Mychel Rpt Morais
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Matiss Ozols
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Department of Human Genetics, Wellcome Sanger Institute, Genome Campus, Hinxton, UK; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
| | - Rachel Lennon
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
6
|
Hu J, Tan P, Ishihara M, Bayley NA, Schokrpur S, Reynoso JG, Zhang Y, Lim RJ, Dumitras C, Yang L, Dubinett SM, Jat PS, Van Snick J, Huang J, Chin AI, Prins RM, Graeber TG, Xu H, Wu L. Tumor heterogeneity in VHL drives metastasis in clear cell renal cell carcinoma. Signal Transduct Target Ther 2023; 8:155. [PMID: 37069149 PMCID: PMC10110583 DOI: 10.1038/s41392-023-01362-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 01/13/2023] [Accepted: 02/12/2023] [Indexed: 04/19/2023] Open
Abstract
Loss of function of the von Hippel-Lindau (VHL) tumor suppressor gene is a hallmark of clear cell renal cell carcinoma (ccRCC). The importance of heterogeneity in the loss of this tumor suppressor has been under reported. To study the impact of intratumoral VHL heterogeneity observed in human ccRCC, we engineered VHL gene deletion in four RCC models, including a new primary tumor cell line derived from an aggressive metastatic case. The VHL gene-deleted (VHL-KO) cells underwent epithelial-to-mesenchymal transition (EMT) and exhibited increased motility but diminished proliferation and tumorigenicity compared to the parental VHL-expressing (VHL+) cells. Renal tumors with either VHL+ or VHL-KO cells alone exhibit minimal metastatic potential. Combined tumors displayed rampant lung metastases, highlighting a novel cooperative metastatic mechanism. The poorly proliferative VHL-KO cells stimulated the proliferation, EMT, and motility of neighboring VHL+ cells. Periostin (POSTN), a soluble protein overexpressed and secreted by VHL non-expressing (VHL-) cells, promoted metastasis by enhancing the motility of VHL-WT cells and facilitating tumor cell vascular escape. Genetic deletion or antibody blockade of POSTN dramatically suppressed lung metastases in our preclinical models. This work supports a new strategy to halt the progression of ccRCC by disrupting the critical metastatic crosstalk between heterogeneous cell populations within a tumor.
Collapse
Affiliation(s)
- Junhui Hu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Ping Tan
- Department of Urology, West China Hospital, Chengdu, China
| | - Moe Ishihara
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Nicholas A Bayley
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Shiruyeh Schokrpur
- Department of Hematology and Oncology, University of California San Diego, San Diego, CA, 92103, USA
| | - Jeremy G Reynoso
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Yangjun Zhang
- Department of Biological Repositories, Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Raymond J Lim
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Camelia Dumitras
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Lu Yang
- Department of Urology, West China Hospital, Chengdu, China
| | - Steven M Dubinett
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Parmjit S Jat
- MRC Prion Unit at UCL, Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | | | - Jiaoti Huang
- Department of Pathology, Duke University, Durham, NC, USA
| | - Arnold I Chin
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Robert M Prins
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Hua Xu
- Department of Biological Repositories, Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Wuhan, China.
| | - Lily Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
7
|
Design, Production, Characterization, and Use of Peptide Antibodies. Antibodies (Basel) 2023; 12:antib12010006. [PMID: 36648890 PMCID: PMC9844468 DOI: 10.3390/antib12010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/10/2022] [Accepted: 12/26/2022] [Indexed: 01/15/2023] Open
Abstract
Antibodies are key reagents in diagnostics, therapeutics, and experimental biology, capable of detecting numerous targets [...].
Collapse
|
8
|
Dorafshan S, Razmi M, Safaei S, Gentilin E, Madjd Z, Ghods R. Periostin: biology and function in cancer. Cancer Cell Int 2022; 22:315. [PMID: 36224629 PMCID: PMC9555118 DOI: 10.1186/s12935-022-02714-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
Periostin (POSTN), a member of the matricellular protein family, is a secreted adhesion-related protein produced in the periosteum and periodontal ligaments. Matricellular proteins are a nonstructural family of extracellular matrix (ECM) proteins that regulate a wide range of biological processes in both normal and pathological conditions. Recent studies have demonstrated the key roles of these ECM proteins in the tumor microenvironment. Furthermore, periostin is an essential regulator of bone and tooth formation and maintenance, as well as cardiac development. Also, periostin interacts with multiple cell-surface receptors, especially integrins, and triggers signals that promote tumor growth. According to recent studies, these signals are implicated in cancer cell survival, epithelial-mesenchymal transition (EMT), invasion, and metastasis. In this review, we will summarize the most current data regarding periostin, its structure and isoforms, expressions, functions, and regulation in normal and cancerous tissues. Emphasis is placed on its association with cancer progression, and also future potential for periostin-targeted therapeutic approaches will be explored.
Collapse
Affiliation(s)
- Shima Dorafshan
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mahdieh Razmi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Sadegh Safaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Erica Gentilin
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, via G. Orus, 2b, 35129, Padua, Italy
| | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Roya Ghods
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
9
|
Li J, Hou W, Yang Y, Deng Q, Fu H, Yin Y, Duan K, Feng B, Guo T, Weng J. Micro/nano-topography promotes osteogenic differentiation of bone marrow stem cells by regulating periostin expression. Colloids Surf B Biointerfaces 2022; 218:112700. [PMID: 35907353 DOI: 10.1016/j.colsurfb.2022.112700] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 12/18/2022]
Abstract
Micro/nano-topography (MNT) is an important factor affecting cell response. Earlier studies using titania (TiO2) nanotube as a model of MNT found that they mediated the differentiation of BMSCs into osteoblasts, but the mechanisms are not fully understood. Surprisingly, Periostin (Postn), a secreted protein involved in extracellular matrix (ECM) construction and promoting osteogenic differentiation of bone marrow stem cells (BMSCs), was previously observed to significantly up-regulated on TiO2 nanotube. We proposed that Postn may act as a MNT signal transduction role. In this study, we investigated the effect of MNT on Postn, and the influence of Postn on osteogenic differentiation-related genes through focal adhesion and downstream signals. It was found that, titanium (Ti) plates carrying TiO2 nanotubes with diameters of ∼100 nm (TNT-100) significantly up-regulated the expression of Postn compared with flat Ti. Furthermore, Postn activated the downstream focal adhesion kinase (FAK) signal pathway and β-catenin into the nucleus by interacting with integrin αV. Surprisingly, TNT-100 up-regulated the transcription level of Wnt3a, which was independent of the up-regulation of Postn. This new Postn signaling pathway may provide more insights into the signal transduction mechanism of MNT and development of biomaterials with improved osteogenic properties.
Collapse
Affiliation(s)
- Jinsheng Li
- School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wenqing Hou
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Yali Yang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qing Deng
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Hong Fu
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Yiran Yin
- Sichuan Provincial Lab of Orthopaedic Engineering, Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ke Duan
- Sichuan Provincial Lab of Orthopaedic Engineering, Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Bo Feng
- School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tailin Guo
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jie Weng
- School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China; College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
10
|
Takai M, Ono J, Okamoto M, Fujimoto K, Kamei A, Nunomura S, Nanri Y, Ohta S, Hoshino T, Azuma A, Izuhara K. Establishment of a novel ELISA system for measuring periostin independently of formation of the IgA complex. Ann Clin Biochem 2022; 59:347-356. [PMID: 35610952 DOI: 10.1177/00045632221106068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Periostin, a matricellular protein that modulates cell functions having various pathophysiological roles, has the potential to be a useful biomarker for various diseases. We recently found that periostin forms a complex with IgA in human serum, which may affect the periostin measurement. METHODS We investigated (1) whether the formation of the periostin-IgA complex affects the original periostin ELISA system, decreasing the values of serum periostin? (2) bow each domain of periostin affects periostin measurement by the original periostin ELISA system? (3) whether we can establish a novel ELISA system that is not affected by formation of the IgA complex? RESULTS The periostin value at the reducing condition was significantly higher than that of the non-reducing condition, demonstrating that formation of the IgA complex affects periostin measurement. The monoclonal antibodies (mAbs) for periostin recognizing the EMI and R1 domains immunoprecipitated serum periostin in the reducing condition more than in the non-reducing condition, whereas the mAbs recognizing the R2 or R3 domain immunoprecipitated comparable amounts of serum periostin in the reducing and non-reducing conditions, suggesting the EMI and R1 domains contribute to formation of the complex with IgA. Using SS16A recognizing the R3 domain combined with SS17B recognizing the R4 domain, we established an ELISA system that was able to measure periostin independently of the IgA complex. CONCLUSIONS We have established a novel ELISA system that measures periostin independently of the IgA complex. This system is promising in identifying periostin as a biomarker for various diseases.
Collapse
Affiliation(s)
- Masayuki Takai
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan.,Shino-Test Corporation, Sagamihara, Japan
| | - Junya Ono
- Shino-Test Corporation, Sagamihara, Japan
| | - Masaki Okamoto
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine,26333Kurume University School of Medicine, Kurume, Japan
| | - Kiminori Fujimoto
- Department of Radiology and Center for Diagnostic Imaging, 26333Kurume University School of Medicine, Kurume, Japan
| | | | - Satoshi Nunomura
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Yasuhiro Nanri
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Shoichiro Ohta
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Tomoaki Hoshino
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine,26333Kurume University School of Medicine, Kurume, Japan
| | - Arata Azuma
- Department of Respirology, 157710Nippon Medical School Musashikosugi Hospital, Kawasaki, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| |
Collapse
|
11
|
Borecka P, Ciaputa R, Janus I, Bubak J, Piotrowska A, Ratajczak-Wielgomas K, Podhorska-OkolÓw M, DziĘgiel P, Nowak M. Expression of Periostin in Mammary Cancer Cells of Female Dogs. In Vivo 2021; 34:3255-3262. [PMID: 33144431 DOI: 10.21873/invivo.12162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND/AIM Periostin (POSTN) has a significant role in proliferation and migration of tumour cells as well as tumour progression. This study aimed to determinate POSTN expression in cancer cells in malignant and benign tumours of the mammary gland in female dogs. MATERIALS AND METHODS All together 83 cancers, 24 adenomas and 7 unchanged fragments of the mammary glands of bitches were investigated. Immunohistochemistry was performed using anti-POSTN, Ki-67 and HER2 antibodies. RESULTS POSTN expression was observed in cancer cells in 31.3% of malignancies and 12.5% of benign tumours. A significantly positive correlation between expression of POSTN in cancer cells and the degree of histological malignancy, expression of Ki-67 antigen and expression of POSTN in CAFs was found. CONCLUSION The obtained results suggest the possible participation of POSTN in the process of carcinogenesis and progression of mammary tumors in bitches.
Collapse
Affiliation(s)
- Paulina Borecka
- Department of Pathology, Division of Pathomorphology and Forensic Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Rafal Ciaputa
- Department of Pathology, Division of Pathomorphology and Forensic Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Izabela Janus
- Department of Pathology, Division of Pathomorphology and Forensic Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Joanna Bubak
- Department of Pathology, Division of Pathomorphology and Forensic Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | | | | | | | - Piotr DziĘgiel
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland.,Department of Physiotherapy, University School of Physical Education in Wroclaw, Wroclaw, Poland
| | - Marcin Nowak
- Department of Pathology, Division of Pathomorphology and Forensic Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
12
|
Lin JH, Lin IP, Ohyama Y, Mochida H, Kudo A, Kaku M, Mochida Y. FAM20C directly binds to and phosphorylates Periostin. Sci Rep 2020; 10:17155. [PMID: 33051588 PMCID: PMC7555550 DOI: 10.1038/s41598-020-74400-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/24/2020] [Indexed: 12/18/2022] Open
Abstract
It is widely accepted that FAM20C functions as a Golgi casein kinase and has large numbers of kinase substrates within the secretory pathway. It has been previously reported that FAM20C is required for maintenance of healthy periodontal tissues. However, there has been no report that any extracellular matrix molecules expressed in periodontal tissues are indeed substrates of FAM20C. In this study, we sought to identify the binding partner(s) of FAM20C. FAM20C wild-type (WT) and its kinase inactive form D478A proteins were generated. These proteins were electrophoresed and the Coomassie Brilliant Blue (CBB)-positive bands were analyzed to identify FAM20C-binding protein(s) by Mass Spectrometry (MS) analysis. Periostin was found by the analysis and the binding between FAM20C and Periostin was investigated in cell cultures and in vitro. We further determined the binding region(s) within Periostin responsible for FAM20C-binding. Immunolocalization of FAM20C and Periostin was examined using mouse periodontium tissues by immunohistochemical analysis. In vitro kinase assay was performed using Periostin and FAM20C proteins to see whether FAM20C phosphorylates Periostin in vitro. We identified Periostin as one of FAM20C-binding proteins by MS analysis. Periostin interacted with FAM20C in a kinase-activity independent manner and the binding was direct in vitro. We further identified the binding domain of FAM20C in Periostin, which was mapped within Fasciclin (Fas) I domain 1-4 of Periostin. Immunolocalization of FAM20C was observed in periodontal ligament (PDL) extracellular matrix where that of Periostin was also immunostained in murine periodontal tissues. FAM20C WT, but not D478A, phosphorylated Periostin in vitro. Consistent with the overlapped expression pattern of FAM20C and Periostin, our data demonstrate for the first time that Periostin is a direct FAM20C-binding partner and that FAM20C phosphorylates Periostin in vitro.
Collapse
Affiliation(s)
- Ju-Hsien Lin
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - I-Ping Lin
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
- Graduate Institute of Clinical Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yoshio Ohyama
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - Hanna Mochida
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - Akira Kudo
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Masaru Kaku
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoshiyuki Mochida
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA.
| |
Collapse
|
13
|
Kalita-de Croft P, Lim M, Chittoory H, de Luca XM, Kutasovic JR, Day BW, Al-Ejeh F, Simpson PT, McCart Reed AE, Lakhani SR, Saunus JM. Clinicopathologic significance of nuclear HER4 and phospho-YAP(S 127) in human breast cancers and matching brain metastases. Ther Adv Med Oncol 2020; 12:1758835920946259. [PMID: 33014146 PMCID: PMC7517995 DOI: 10.1177/1758835920946259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022] Open
Abstract
Background Human epidermal growth factor receptor-4 (HER4) and yes-associated protein-1 (YAP) are candidate therapeutic targets in oncology. YAP's transcriptional coactivation function is modulated by the HER4 intracellular domain (HER4-ICD) in vitro, but the clinical relevance of this has not been established. This study investigated the potential for targeting the HER4-YAP pathway in brain metastatic breast cancer. Methods We performed immuno-phenotypic profiling of pathway markers in a consecutive breast cancer series with 25 years of clinical follow up (n = 371), and patient-matched breast and metastatic brain tumours (n = 91; 30 pairs). Results Membrane localisation of phospho-HER4 [pHER4(Y1162)] was infrequent in primary breast cancer, but very frequent in brain metastases (5.9% versus 75% positive), where it was usually co-expressed with pHER3(Y1289) (p < 0.05). The presence of YAP in tumour cell nuclei was associated directly with nuclear pERK5(T218/Y210) (p = 0.003). However, relationships with disease-specific survival depended on oestrogen receptor (ER) status. Nuclear pYAP(S127) was associated with smaller, good prognostic ER+ breast tumours (log-rank hazard-ratio 0.53; p = 9.6E-03), but larger, poor prognostic triple-negative cancers (log-rank hazard-ratio 2.78; p = 1.7E-02), particularly when co-expressed with nuclear HER4-ICD (p = 0.02). This phenotype was associated with stemness and mitotic instability markers (vimentin, SOX9, ID1, SPAG5, TTK, geminin; p < 0.05). YAP expression in brain metastases was higher than matched primary tumours; specifically, nuclear pYAP(S127) in ER-negative cases (p < 0.05). Nuclear YAP was detected in ~70% of ER-negative, HER4-activated brain metastases. Discussion Our findings suggest that the canonical-mechanism where Hippo pathway-mediated phosphorylation of YAP ostensibly excludes it from the nucleus is dysfunctional in breast cancer. The data are consistent with pYAP(S127) having independent transcriptional functions, which may include transducing neuregulin signals in brain metastases. Consistent with mechanistic studies implicating it as an ER co-factor, nuclear pYAP(S127) associations with breast cancer clinical outcomes were dependent on ER status. Conclusion Preclinical studies investigating HER4 and nuclear YAP combination therapy strategies are warranted.
Collapse
Affiliation(s)
- Priyakshi Kalita-de Croft
- The University of Queensland Faculty of Medicine, UQ Centre for Clinical Research, Building 71/98 Royal Brisbane and Women's Hospital, Herston, Qld 4006, Australia
| | - Malcolm Lim
- The University of Queensland Faculty of Medicine, UQ Centre for Clinical Research, Herston, Qld, Australia
| | - Haarika Chittoory
- The University of Queensland Faculty of Medicine, UQ Centre for Clinical Research, Herston, Qld, Australia
| | - Xavier M de Luca
- The University of Queensland Faculty of Medicine, UQ Centre for Clinical Research, Herston, Qld, Australia
| | - Jamie R Kutasovic
- The University of Queensland Faculty of Medicine, UQ Centre for Clinical Research, Herston, Qld, Australia
| | - Bryan W Day
- QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Fares Al-Ejeh
- QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Peter T Simpson
- The University of Queensland Faculty of Medicine, UQ Centre for Clinical Research, Herston, Qld, Australia
| | - Amy E McCart Reed
- The University of Queensland Faculty of Medicine, UQ Centre for Clinical Research, Herston, Qld, Australia
| | - Sunil R Lakhani
- The University of Queensland Faculty of Medicine, UQ Centre for Clinical Research, Herston, Qld, Australia
| | - Jodi M Saunus
- The University of Queensland Faculty of Medicine, UQ Centre for Clinical Research, Herston, Qld, Australia
| |
Collapse
|
14
|
Nikoloudaki G, Creber K, Hamilton DW. Wound healing and fibrosis: a contrasting role for periostin in skin and the oral mucosa. Am J Physiol Cell Physiol 2020; 318:C1065-C1077. [PMID: 32267719 PMCID: PMC7311745 DOI: 10.1152/ajpcell.00035.2020] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 01/08/2023]
Abstract
Both skin and oral mucosa are characterized by the presence of keratinized epithelium in direct apposition to an underlying collagen-dense connective tissue. Despite significant overlap in structure and physiological function, skin and the oral mucosa exhibit significantly different healing profiles in response to injury. The oral mucosa has a propensity for rapid restoration of barrier function with minimal underlying fibrosis, but in contrast, skin is associated with slower healing and scar formation. Modulators of cell function, matricellular proteins have been shown to play significant roles in cutaneous healing, but their role in restoration of the oral mucosa is poorly defined. As will be discussed in this review, over the last 12 years our research group has been actively investigating the role of the profibrotic matricellular protein periostin in tissue homeostasis and fibrosis, as well as healing, in both skin and gingiva. In the skin, periostin is highly expressed in fibrotic scars and is upregulated during cutaneous wound repair, where it facilitates myofibroblast differentiation. In contrast, in gingival healing, periostin regulates extracellular matrix synthesis but does not appear to be associated with the transition of mesenchymal cells to a contractile phenotype. The significance of these findings will be discussed, with a focus on periostin as a potential therapeutic to augment healing of soft tissues or suppress fibrosis.
Collapse
Affiliation(s)
- Georgia Nikoloudaki
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Kendal Creber
- School of Biomedical Engineering, University of Western Ontario, London, Ontario, Canada
| | - Douglas W Hamilton
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
- School of Biomedical Engineering, University of Western Ontario, London, Ontario, Canada
- Division of Oral Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
15
|
Yao L, Song J, Meng XW, Ge JY, Du BX, Yu J, Ji FH. Periostin aggravates NLRP3 inflammasome-mediated pyroptosis in myocardial ischemia-reperfusion injury. Mol Cell Probes 2020; 53:101596. [PMID: 32461137 DOI: 10.1016/j.mcp.2020.101596] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/24/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
Abstract
Pyroptosis is a form of caspase-1-induced programmed cell death. This study aimed to investigate the effect of periostin (postn) on pyroptosis in myocardial ischemia-reperfusion injury (MIRI). To this end, the differentially expressed genes were obtained from the GSE4105 dataset using the "GEO2R" online tool. Protein-protein interaction networks were constructed using the Search Tool for the Retrieval of Interacting Genes (STRING) database, and Module and Go analysis were conducted using the Cytoscape 3.6 plugs-in MCODE and BINGO, respectively. The analysis showed that postn was a critical gene in the most significant module. Experimental results, including triphenyltetrazolium chloride staining, pathological analysis, TUNEL staining, western blotting, and RT-qPCR assays, showed that MIRI induced caspase-1-mediated pyroptosis by activating the NLRP3 inflammasome. Postn was significantly upregulated in the heart tissues of MIRI rats and in H9C2 cells following hypoxia/reoxygenation (H/R) treatment. In addition, knockdown of postn suppressed the caspase-1-mediated pyroptosis and H/R-mediated NLRP3 inflammasome activation, as evidenced by flow cytometry, CCK8, RT-qPCR, western blotting, and ELISA assays. In contrast, overexpression of postn promoted NLRP3 inflammasome-mediated pyroptosis of H/R-treated H9C2 cells. According to the results of rescue experiments, a caspase-1 inhibitor reduced the increase in NLRP3 inflammasome-mediated pyroptosis induced by overexpression of postn, and the pyroptosis-promoting function of postn overexpression in H/R treated H9C2 cells was reversed by inhibition of NLRP3. In conclusion, postn overexpression promoted the caspase-1-mediated pyroptosis during MIRI by activating the NLRP3.
Collapse
Affiliation(s)
- Lei Yao
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, PR China; Department of Anesthesiology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Jie Song
- Department of Anesthesiology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Xiao Wen Meng
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, PR China
| | - Jian Yun Ge
- Department of Anesthesiology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Bo Xiang Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Jun Yu
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, PR China
| | - Fu Hai Ji
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, PR China.
| |
Collapse
|
16
|
Peptides, Antibodies, Peptide Antibodies and More. Int J Mol Sci 2019; 20:ijms20246289. [PMID: 31847088 PMCID: PMC6941022 DOI: 10.3390/ijms20246289] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
The applications of peptides and antibodies to multiple targets have emerged as powerful tools in research, diagnostics, vaccine development, and therapeutics. Antibodies are unique since they, in theory, can be directed to any desired target, which illustrates their versatile nature and broad spectrum of use as illustrated by numerous applications of peptide antibodies. In recent years, due to the inherent limitations such as size and physical properties of antibodies, it has been attempted to generate new molecular compounds with equally high specificity and affinity, albeit with relatively low success. Based on this, peptides, antibodies, and peptide antibodies have established their importance and remain crucial reagents in molecular biology.
Collapse
|
17
|
Abstract
Since periostin is expressed and functioned in incredible diseases , clinical applications have been initiated to directly target periostin for inhibition or activation, or periostin expression is utilized to indicate the disease state or a marker for curing diseases, which will provide novel methods in clinical applications.
Collapse
|
18
|
Abstract
Accumulating evidence suggests that periostin is frequently upregulated in tissue injury, inflammation, fibrosis and tumor progression. Periostin expression in cancer cells can promote metastatic potential of colorectal cancer (CRC) via activating PI3K/Akt signaling pathway. Moreover, periostin is observed mainly in tumor stroma and cytoplasm of cancer cells, which may facilitate aggressiveness of CRC. In this review, we summarize information regarding periostin to emphasize its role as a prognostic marker of CRC.
Collapse
Affiliation(s)
- Xingming Deng
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Sheng Ao
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jianing Hou
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zhuofei Li
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yunpeng Lei
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Guoqing Lyu
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
19
|
Liu J, Zhang J, Xu F, Lin Z, Li Z, Liu H. Structural characterizations of human periostin dimerization and cysteinylation. FEBS Lett 2018; 592:1789-1803. [PMID: 29754429 DOI: 10.1002/1873-3468.13091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/20/2018] [Accepted: 05/02/2018] [Indexed: 01/20/2023]
Abstract
Human periostin plays a multifaceted role in remodeling the extracellular matrix milieu by interacting with other proteins and itself in both a heterophilic and homophilic manner. However, the structural mechanism for its extensive interactions has remained elusive. Here, we report the crystal structures of human periostin (EMI-Fas1I-IV ) and its Cys60Ala mutant. In combination with multi-angle light-scattering analysis and biochemical assays, the crystal structures reveal that periostin mainly exists as a dimer in solution and its homophilic interaction is mainly mediated by the EMI domain. Furthermore, Cys60 undergoes cysteinylation as confirmed by mass spectroscopy, and this site hardly affects the homophilic interaction. Also, the structures yield insights into how periostin forms heterophilic interactions with other proteins under physiological or pathological conditions.
Collapse
Affiliation(s)
- Jianmei Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Haidian District, Beijing, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Haidian District, Beijing, China
| | - Junying Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Haidian District, Beijing, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Haidian District, Beijing, China
| | - Fei Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Haidian District, Beijing, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Haidian District, Beijing, China
| | - Zhaohan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Haidian District, Beijing, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Haidian District, Beijing, China
| | - Zhiqiang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Haidian District, Beijing, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Haidian District, Beijing, China
| | - Heli Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Haidian District, Beijing, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Haidian District, Beijing, China
| |
Collapse
|
20
|
Raghavendra A, Kalita-de Croft P, Vargas AC, Smart CE, Simpson PT, Saunus JM, Lakhani SR. Expression of MAGE-A and NY-ESO-1 cancer/testis antigens is enriched in triple-negative invasive breast cancers. Histopathology 2018; 73:68-80. [PMID: 29465777 PMCID: PMC6635746 DOI: 10.1111/his.13498] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/17/2018] [Indexed: 12/12/2022]
Abstract
Aims A better understanding of the expression of cancer/testis antigens (CTAs) in breast cancer might enable the identification of new immunotherapy options, especially for triple‐negative (TN) tumours, which lack expression of the conventional therapeutic targets oestrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. The aim of this study was to quantify the expression of MAGE‐A and NY‐ESO‐1 CTAs in breast cancer, and relate this to known clinicopathological parameters. Methods and results We surveyed MAGE‐A and NY‐ESO‐1 expression in an unselected cohort of 367 breast tumours (of which 65 were TN), with accompanying clinical follow‐up data, by using immunohistochemical analysis of tissue microarrays. Relevant to their potential as vaccine targets in breast cancer, MAGE‐A was expressed in 13% of cases, and NY‐ESO‐1 in 3.8%, with the majority of tumours showing fairly homogeneous staining within individual tissue cores (~85% of cases with staining in >75% of tumour cells). Most NY‐ESO‐1‐positive cases also expressed MAGE‐A (P = 2.06 × 10−9), and both were strongly associated with the TN phenotype (P < 0.0001), with the most proliferative and poorly differentiated cases, in paticular, showing genomic instability. This was characterised by coexpression of c‐Kit and TTK, and overexpression of p53. Conclusions MAGE‐A and NY‐ESO‐1 are frequently expressed in TN breast cancer (~47% and 17% of TN cases, respectively), suggesting that targeting them could be feasible in this patient group. Expression is reasonably homogeneous in positive cases, suggesting that immunohistochemical analysis of tissue biopsies would be a reliable companion biomarker.
Collapse
Affiliation(s)
- Ashwini Raghavendra
- Faculty of Medicine, The University of Queensland, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,QIMR Berghofer Medical Research Institute, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Priyakshi Kalita-de Croft
- Faculty of Medicine, The University of Queensland, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,QIMR Berghofer Medical Research Institute, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Ana C Vargas
- Faculty of Medicine, The University of Queensland, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,QIMR Berghofer Medical Research Institute, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Chanel E Smart
- Faculty of Medicine, The University of Queensland, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,QIMR Berghofer Medical Research Institute, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Peter T Simpson
- Faculty of Medicine, The University of Queensland, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,QIMR Berghofer Medical Research Institute, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Jodi M Saunus
- Faculty of Medicine, The University of Queensland, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,QIMR Berghofer Medical Research Institute, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Sunil R Lakhani
- Faculty of Medicine, The University of Queensland, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,Pathology Queensland, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| |
Collapse
|
21
|
McCart Reed AE, Kutasovic JR, Nones K, Saunus JM, Da Silva L, Newell F, Kazakoff S, Melville L, Jayanthan J, Vargas AC, Reid LE, Beesley J, Chen XQ, Patch AM, Clouston D, Porter A, Evans E, Pearson JV, Chenevix-Trench G, Cummings MC, Waddell N, Lakhani SR, Simpson PT. Mixed ductal-lobular carcinomas: evidence for progression from ductal to lobular morphology. J Pathol 2018; 244:460-468. [PMID: 29344954 PMCID: PMC5873281 DOI: 10.1002/path.5040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/07/2018] [Accepted: 01/09/2018] [Indexed: 12/15/2022]
Abstract
Mixed ductal–lobular carcinomas (MDLs) show both ductal and lobular morphology, and constitute an archetypal example of intratumoural morphological heterogeneity. The mechanisms underlying the coexistence of these different morphological entities are poorly understood, although theories include that these components either represent ‘collision’ of independent tumours or evolve from a common ancestor. We performed comprehensive clinicopathological analysis of a cohort of 82 MDLs, and found that: (1) MDLs more frequently coexist with ductal carcinoma in situ (DCIS) than with lobular carcinoma in situ (LCIS); (2) the E‐cadherin–catenin complex was normal in the ductal component in 77.6% of tumours; and (3) in the lobular component, E‐cadherin was almost always aberrantly located in the cytoplasm, in contrast to invasive lobular carcinoma (ILC), where E‐cadherin is typically absent. Comparative genomic hybridization and multiregion whole exome sequencing of four representative cases revealed that all morphologically distinct components within an individual case were clonally related. The mutations identified varied between cases; those associated with a common clonal ancestry included BRCA2, TBX3, and TP53, whereas those associated with clonal divergence included CDH1 and ESR1. Together, these data support a model in which separate morphological components of MDLs arise from a common ancestor, and lobular morphology can arise via a ductal pathway of tumour progression. In MDLs that present with LCIS and DCIS, the clonal divergence probably occurs early, and is frequently associated with complete loss of E‐cadherin expression, as in ILC, whereas, in the majority of MDLs, which present with DCIS but not LCIS, direct clonal divergence from the ductal to the lobular phenotype occurs late in tumour evolution, and is associated with aberrant expression of E‐cadherin. The mechanisms driving the phenotypic change may involve E‐cadherin–catenin complex deregulation, but are yet to be fully elucidated, as there is significant intertumoural heterogeneity, and each case may have a unique molecular mechanism. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Amy E McCart Reed
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jamie R Kutasovic
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Katia Nones
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jodi M Saunus
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Leonard Da Silva
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Felicity Newell
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Lewis Melville
- Pathology Queensland, The Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Janani Jayanthan
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Ana Cristina Vargas
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Lynne E Reid
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | | | - Xiao Qing Chen
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | - Alan Porter
- The Wesley Breast Clinic, The Wesley Hospital, Brisbane, Australia
| | - Elizabeth Evans
- The Wesley Breast Clinic, The Wesley Hospital, Brisbane, Australia
| | - John V Pearson
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Margaret C Cummings
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Pathology Queensland, The Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Sunil R Lakhani
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Pathology Queensland, The Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Peter T Simpson
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
22
|
Terpos E, Ntanasis-Stathopoulos I, Gavriatopoulou M, Dimopoulos MA. Pathogenesis of bone disease in multiple myeloma: from bench to bedside. Blood Cancer J 2018; 8:7. [PMID: 29330358 PMCID: PMC5802524 DOI: 10.1038/s41408-017-0037-4] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/13/2017] [Accepted: 10/23/2017] [Indexed: 12/29/2022] Open
Abstract
Osteolytic bone disease is the hallmark of multiple myeloma, which deteriorates the quality of life of myeloma patients, and it affects dramatically their morbidity and mortality. The basis of the pathogenesis of myeloma-related bone disease is the uncoupling of the bone-remodeling process. The interaction between myeloma cells and the bone microenvironment ultimately leads to the activation of osteoclasts and suppression of osteoblasts, resulting in bone loss. Several intracellular and intercellular signaling cascades, including RANK/RANKL/OPG, Notch, Wnt, and numerous chemokines and interleukins are implicated in this complex process. During the last years, osteocytes have emerged as key regulators of bone loss in myeloma through direct interactions with the myeloma cells. The myeloma-induced crosstalk among the molecular pathways establishes a positive feedback that sustains myeloma cell survival and continuous bone destruction, even when a plateau phase of the disease has been achieved. Targeted therapies, based on the better knowledge of the biology, constitute a promising approach in the management of myeloma-related bone disease and several novel agents are currently under investigation. Herein, we provide an insight into the underlying pathogenesis of bone disease and discuss possible directions for future studies.
Collapse
Affiliation(s)
- Evangelos Terpos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
23
|
Kim BR, Kwon YW, Park GT, Choi EJ, Seo JK, Jang IH, Kim SC, Ko HC, Lee SC, Kim JH. Identification of a novel angiogenic peptide from periostin. PLoS One 2017; 12:e0187464. [PMID: 29095886 PMCID: PMC5667812 DOI: 10.1371/journal.pone.0187464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 10/22/2017] [Indexed: 12/11/2022] Open
Abstract
Angiogenic peptides have therapeutic potential for the treatment of chronic ischemic diseases. Periostin, an extracellular matrix protein expressed in injured tissues, promotes angiogenesis and tissue repair. We previously reported that in vivo administration of both recombinant full-length protein and the first FAS I domain of periostin alleviated peripheral artery occlusive disease by stimulating the migration of humane endothelial colony forming cells (ECFCs) and subsequent angiogenesis. In the present study, we ascertained the peptide sequence responsible for the periostin-induced angiogenesis. By serial deletion mapping of the first FAS I domain, we identified a peptide sequence (amino acids 142–151) of periostin for stimulation of chemotactic migration, adhesion, proliferation and endothelial tube formation of human ECFCs in vitro. Chemotactic migration of ECFCs induced by the periostin peptide was blocked by pre-incubation with an anti-β5 integrin neutralizing antibody. Treatment of ECFCs with the periostin peptide led to phosphorylation of both AKT and ERK, and pretreatment of ECFCs with the MEK-ERK pathway inhibitor U0126 or the PI3K-AKT pathway inhibitors, LY294002 or Wortmannin, blocked the periostin peptide-stimulated migration of ECFCs. These results suggest that the synthetic periostin peptide can be applied for stimulating angiogenic and therapeutic potentials of ECFCs.
Collapse
Affiliation(s)
- Ba Reun Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Yang Woo Kwon
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Gyu Tae Park
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Eun Jung Choi
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Jeong Kon Seo
- UNIST Central Research Facility, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Il Ho Jang
- Department of Oral Biochemistry and Molecular Biology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Seung-Chul Kim
- Department of Obstetrics and Gynecology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hyun-Chang Ko
- Department of Dermatology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Sang Chul Lee
- Functional Genomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
- * E-mail:
| |
Collapse
|
24
|
The Roles of Matricellular Proteins in Oncogenic Virus-Induced Cancers and Their Potential Utilities as Therapeutic Targets. Int J Mol Sci 2017; 18:ijms18102198. [PMID: 29065446 PMCID: PMC5666879 DOI: 10.3390/ijms18102198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022] Open
Abstract
Matricellular proteins differ from other classical extracellular matrix proteins; for instance, they are transiently expressed as soluble proteins rather than being constitutively expressed in pathological conditions, such as acute viral infections. Accumulating studies have revealed that matricellular proteins, including osteopontin and tenascin-C, both of which interact with integrin heterodimers, are involved in inflammatory diseases, autoimmune disorders, and cancers. The concentrations of these matricellular proteins are elevated in the plasma of patients with certain types of cancers, indicating that they play important roles in oncogenesis. Chronic viral infections are associated with certain cancers, which are distinct from non-viral cancers. Viral oncogenes play critical roles in the development and progression of such cancers. It is vital to investigate the mechanisms of tumorigenesis and, particularly, the mechanism by which viral proteins induce tumor progression. Viral proteins have been shown to influence not only the viral-infected cancer cells, but also the stromal cells and matricellular proteins that constitute the extracellular matrix that surrounds tumor tissues. In this review, we summarize the recent progress on the involvement of matricellular proteins in oncogenic virus-induced cancers to elucidate the mechanism of oncogenesis and consider the possible role of matricellular proteins as therapeutic targets in virus-induced cancers.
Collapse
|
25
|
Hernández-Pérez S, Cabrera E, Salido E, Lim M, Reid L, Lakhani SR, Khanna KK, Saunus JM, Freire R. DUB3 and USP7 de-ubiquitinating enzymes control replication inhibitor Geminin: molecular characterization and associations with breast cancer. Oncogene 2017; 36:4802-4809. [PMID: 28288134 DOI: 10.1038/onc.2017.21] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/15/2016] [Accepted: 01/02/2017] [Indexed: 12/11/2022]
Abstract
Correct control of DNA replication is crucial to maintain genomic stability in dividing cells. Inappropriate re-licensing of replicated origins is associated with chromosomal instability (CIN), a hallmark of cancer progression that at the same time provides potential opportunities for therapeutic intervention. Geminin is a critical inhibitor of the DNA replication licensing factor Cdt1. To properly achieve its functions, Geminin levels are tightly regulated through the cell cycle by ubiquitin-dependent proteasomal degradation, but the de-ubiquitinating enzymes (DUBs) involved had not been identified. Here we report that DUB3 and USP7 control human Geminin. Overexpression of either DUB3 or USP7 increases Geminin levels through reduced ubiquitination. Conversely, depletion of DUB3 or USP7 reduces Geminin levels, and DUB3 knockdown increases re-replication events, analogous to the effect of Geminin depletion. In exploring potential clinical implications, we found that USP7 and Geminin are strongly correlated in a cohort of invasive breast cancers (P<1.01E-08). As expected, Geminin expression is highly prognostic. Interestingly, we found a non-monotonic relationship between USP7 and breast cancer-specific survival, with both very low or high levels of USP7 associated with poor outcome, independent of estrogen receptor status. Altogether, our data identify DUB3 and USP7 as factors that regulate DNA replication by controlling Geminin protein stability, and suggest that USP7 may be involved in Geminin dysregulation during breast cancer progression.
Collapse
Affiliation(s)
- S Hernández-Pérez
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, La Laguna, Spain
| | - E Cabrera
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, La Laguna, Spain
| | - E Salido
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, La Laguna, Spain
| | - M Lim
- The University of Queensland, UQ Centre for Clinical Research, Herston, QLD, Australia.,QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - L Reid
- The University of Queensland, UQ Centre for Clinical Research, Herston, QLD, Australia.,QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - S R Lakhani
- The University of Queensland, UQ Centre for Clinical Research, Herston, QLD, Australia.,Pathology Queensland, The Royal Brisbane and Women's Hospital, Herston, QLD, Australia.,The University of Queensland, School of Medicine, Herston, QLD, Australia
| | - K K Khanna
- Signal Transduction Laboratory, QIMR Berghofer Institute of Medical Research, Brisbane, QLD, Australia
| | - J M Saunus
- The University of Queensland, UQ Centre for Clinical Research, Herston, QLD, Australia.,QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - R Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, La Laguna, Spain
| |
Collapse
|
26
|
Abstract
Peptide antibodies, with their high specificities and affinities, are invaluable reagents for peptide and protein recognition in biological specimens. Depending on the application and the assay, in which the peptide antibody is to used, several factors influence successful antibody production, including peptide selection and antibody screening. Peptide antibodies have been used in clinical laboratory diagnostics with great success for decades, primarily because they can be produced to multiple targets, recognizing native wildtype proteins, denatured proteins, and newly generated epitopes. Especially mutation-specific peptide antibodies have become important as diagnostic tools in the detection of various cancers. In addition to their use as diagnostic tools in malignant and premalignant conditions, peptide antibodies are applied in all other areas of clinical laboratory diagnostics, including endocrinology, hematology, neurodegenerative diseases, cardiovascular diseases, infectious diseases, and amyloidoses.
Collapse
|
27
|
Liu Y, Gao F, Song W. Periostin contributes to arsenic trioxide resistance in hepatocellular carcinoma cells under hypoxia. Biomed Pharmacother 2017; 88:342-348. [PMID: 28119236 DOI: 10.1016/j.biopha.2017.01.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 01/23/2023] Open
Abstract
Hypoxia has been suggested to induce chemoresistance in tumor cells. In this study, we aimed to test the hypothesis that hypoxia-inducible factor-1alpha (HIF-1α)/periostin axis might promote arsenic trioxide resistance in hepatocellular carcinoma (HCC) cells under hypoxia. HCC cells were exposed to hypoxia and measured for periostin expression. Loss-of-function studies were done to assess the role of periostin in arsenic trioxide resistance. In vivo xenograft mouse studies were performed to determine the effect of periostin silencing on HCC susceptibility to arsenic trioxide. It was found that periostin expression was significantly increased in SMMC7721 and Hep3B HCC cells after hypoxic treatment. Depletion of HIF-1α blocked the upregulation of periostin induced by hypoxia. HCC cells under hypoxia displayed more resistant to arsenic trioxide than those under normoxia. Interestingly, downregulation of periostin re-sensitized hypoxic SMMC7721 and Hep3B cells to arsenic trioxide, which was accompanied by increased apoptosis. Luciferase reporter assay revealed that periostin overexpression enhanced HIF-1α-dependent transcriptional activity and induced the expression of vascular endothelial growth factor, Mcl-1, and Bcl-xL in SMMC7721 cells. Administration of arsenic trioxide resulted in a significant inhibition of SMMC7721 tumor growth. Notably, downregulation of periostin significantly enhanced the anticancer effect of arsenic trioxide against SMMC7721 tumors and reduced the percentage of Ki-67-positive proliferating cells. Taken together, periostin contributes to arsenic trioxide resistance in HCC under hypoxic microenvironment, which is likely associated with promotion of HIF-1α-dependent activation of survival genes. Targeting periostin may represent a promising strategy to improve arsenic trioxide-based anticancer therapy against HCC.
Collapse
Affiliation(s)
- Yujin Liu
- Department of Interventional Radiology, Yueyang Hospital of Integrated Traditional Chinese & Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Feng Gao
- Department of Interventional Radiology, Yueyang Hospital of Integrated Traditional Chinese & Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weixiang Song
- Department of Interventional Radiology, Yueyang Hospital of Integrated Traditional Chinese & Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
28
|
Burgess JT, Bolderson E, Saunus JM, Zhang SD, Reid LE, McNicol AM, Lakhani SR, Cuff K, Richard K, Richard DJ, O'Byrne KJ. SASH1 mediates sensitivity of breast cancer cells to chloropyramine and is associated with prognosis in breast cancer. Oncotarget 2016; 7:72807-72818. [PMID: 27637080 PMCID: PMC5341945 DOI: 10.18632/oncotarget.12020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/02/2016] [Indexed: 11/25/2022] Open
Abstract
Expression of the SASH1 protein is reduced in a range of human cancers and has been implicated in apoptotic cancer cell death. This study investigated whether increasing SASH1 expression could be a useful therapeutic strategy in breast cancer. Ectopic SASH1 expression increased apoptosis in 7/8 breast cancer cell lines. Subsequent in silico connectivity screening demonstrated that the clinically approved antihistamine drug, chloropyramine, increased SASH1 mRNA levels. Chloropyramine has previously been shown to have anti-tumour activity in breast cancer in part through modulation of FAK signalling, a pathway also regulated by SASH1. This study demonstrated that chloropyramine increased SASH1 protein levels in breast cancer cells. Consistent with this the agent reduced cell confluency in 7/8 cell lines treated irrespective of their ER status but not apoptosis incompetent MCF7 cells. In contrast SASH1 siRNA-transfected breast cancer cells exhibited reduced chloropyramine sensitivity. The prognostic significance of SASH1 expression was also investigated in two breast cancer cohorts. Expression was associated with favourable outcome in ER-positive cases, but only those of low histological grade/proliferative status. Conversely, we found a very strong inverse association in HER2+ disease irrespective of ER status, and in triple-negative, basal-like cases. Overall, the data suggest that SASH1 is prognostic in breast cancer and could have subtype-dependent effects on breast cancer progression. Pharmacologic induction of SASH1 by chloropyramine treatment of breast cancer warrants further preclinical and clinical investigation.
Collapse
Affiliation(s)
- Joshua T. Burgess
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology, Brisbane, Australia
| | - Emma Bolderson
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology, Brisbane, Australia
- Princess Alexandra Hospital, Woolloongabba, Brisbane, Queensland, Australia
| | - Jodi M. Saunus
- The University of Queensland (UQ), UQ Centre for Clinical Research, Herston, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Shu-Dong Zhang
- Northern Ireland Centre for Stratified Medicine, University of Ulster, Altnagelvin Hospital Campus, Londonderry, UK
- Center for Cancer Research and Cell Biology, Queen's University Belfast, United Kingdom
| | - Lynne E. Reid
- The University of Queensland (UQ), UQ Centre for Clinical Research, Herston, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Anne Marie McNicol
- The University of Queensland (UQ), UQ Centre for Clinical Research, Herston, Queensland, Australia
| | - Sunil R. Lakhani
- The University of Queensland (UQ), UQ Centre for Clinical Research, Herston, Queensland, Australia
- Pathology Queensland, Royal Brisbane Women's Hospital, Herston, Queensland, Australia
- UQ School of Medicine, Herston, Queensland, Australia
| | - Katharine Cuff
- Princess Alexandra Hospital, Woolloongabba, Brisbane, Queensland, Australia
| | - Kerry Richard
- UQ School of Medicine, Herston, Queensland, Australia
- Conjoint Endocrine Laboratory, Pathology Queensland, Queensland Health, Herston, Australia
| | - Derek J. Richard
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology, Brisbane, Australia
- Translational Cell Imaging Queensland, Translational Research Institute, Queensland, Australia
| | - Kenneth J. O'Byrne
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology, Brisbane, Australia
- Princess Alexandra Hospital, Woolloongabba, Brisbane, Queensland, Australia
- Translational Cell Imaging Queensland, Translational Research Institute, Queensland, Australia
| |
Collapse
|