1
|
Li S, Liu Y, Sui X, Zhuo Y, Siqi H, Sijia Z, Hui Z, Dihua L, Dapeng Z, Lei Y. Novel Tubeimoside I liposomal drug delivery system in combination with gemcitabine for the treatment of pancreatic cancer. Nanomedicine (Lond) 2024; 19:1977-1993. [PMID: 39225145 PMCID: PMC11485868 DOI: 10.1080/17435889.2024.2382076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Aim: To evaluate the anti-pancreatic cancer effect of novel Tubeimoside I multifunctional liposomes combined with gemcitabine.Methods: Liposomes were prepared through the thin film hydration method, with evaluations conducted on parameters including encapsulation efficiency (EE%), particle size, polydispersity index (PDI), zeta potential (ZP), storage stability, and release over a 7-day period. The cellular uptake rate, therapeutic efficacy in vitro and in vivo and the role of immune microenvironment modulation were evaluated.Results: The novel Tubeimoside I multifunctional liposomal exhibited good stability, significant anti-cancer activity, and immune microenvironment remodeling effects. Furthermore, it showed a safety profile.Conclusion: This study underscores the potential of Novel Tubeimoside I multifunctional liposomal as a promising treatment option for pancreatic cancer.
Collapse
Affiliation(s)
- Shuhui Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuansheng Liu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300000, China
| | - Xiaojun Sui
- Tianjin Key Laboratory of Organ Injury and ITCWM Repair Associated with Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China
- Graduate School ofTianjin Medical University, Tianjin, 300270, China
| | - Yuzhen Zhuo
- Tianjin Key Laboratory of Organ Injury and ITCWM Repair Associated with Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China
| | - He Siqi
- Graduate School ofTianjin Medical University, Tianjin, 300270, China
| | - Zhang Sijia
- Graduate School ofTianjin Medical University, Tianjin, 300270, China
| | - Zhang Hui
- Tianjin Key Laboratory of Organ Injury and ITCWM Repair Associated with Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China
| | - Li Dihua
- Tianjin Key Laboratory of Organ Injury and ITCWM Repair Associated with Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China
| | - Zhang Dapeng
- Tianjin Key Laboratory of Organ Injury and ITCWM Repair Associated with Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China
| | - Yang Lei
- Tianjin Key Laboratory of Organ Injury and ITCWM Repair Associated with Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China
| |
Collapse
|
2
|
Li Y, Tang L, Dang G, Ma M, Tang X. Scinderin Promotes Hydrogen Peroxide-induced Lens Epithelial Cell Injury in Age-related Cataract. Curr Mol Med 2024; 24:1426-1436. [PMID: 37936437 DOI: 10.2174/0115665240250050231030110542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Scinderin (SCIN) is a calcium-dependent protein implicated in cell growth and apoptosis by regulating actin cleavage and capping. In this study, we investigated the role of SCIN in hydrogen peroxide-induced lens epithelial cell (LEC) injury related to age-related cataract (ARC). METHODS Anterior lens capsules from ARC patients were collected to examine SCIN expression levels. Immortalized human LEC cell line SRA01/04 and lens capsules freshly isolated from mice were induced by H2O2 to mimic the oxidative stress in ARC. The role of SCIN was investigated by gain-of-function (overexpression) and loss-offunction (knockdown) experiments. Flow cytometry (FCM) and Western-blot (WB) assays were performed to investigate the effect of SCIN on apoptosis. The oxidative stress (OS) was examined by detecting malondialdehyde (MDA) level, superoxide dismutase (SOD) and catalase (CAT) activity. The interaction between SCIN mRNA and miR-489-3p was predicted by StarBase and miRDB databases and validated by luciferase reporter activity assay. RESULTS SCIN was significantly elevated in cataract samples, and the expression levels were positively correlated with the nuclear sclerosis grades. SCIN overexpression promoted OS and apoptosis in H2O2-induced SRA01/04 cells, while SCIN silencing showed the opposite effect. We further showed that miR-489-3p was a negative regulator of SCIN. miR-489-3p overexpression suppressed apoptosis and OS in H2O2-induced SRA01/04 cells by targeting SCIN. CONCLUSION Our study identified SCIN as an upregulated gene in ARC, which is negatively regulated by miR-489-3p. Targeting miR-489-3p/SCIN axis could attenuate OS-induced apoptosis in LECs.
Collapse
Affiliation(s)
- Yan Li
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital Northwest University, Xi'an 710004 China
| | - Li Tang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital Northwest University, Xi'an 710004 China
| | - Guanxing Dang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital Northwest University, Xi'an 710004 China
| | - Mengyuan Ma
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital Northwest University, Xi'an 710004 China
| | - Xingfang Tang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital Northwest University, Xi'an 710004 China
| |
Collapse
|
3
|
Song J, Kim D, Lee S, Jung J, Joo JWJ, Jang W. Integrative transcriptome-wide analysis of atopic dermatitis for drug repositioning. Commun Biol 2022; 5:615. [PMID: 35729261 PMCID: PMC9213508 DOI: 10.1038/s42003-022-03564-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD) is one of the most common inflammatory skin diseases, which significantly impact the quality of life. Transcriptome-wide association study (TWAS) was conducted to estimate both transcriptomic and genomic features of AD and detected significant associations between 31 expression quantitative loci and 25 genes. Our results replicated well-known genetic markers for AD, as well as 4 novel associated genes. Next, transcriptome meta-analysis was conducted with 5 studies retrieved from public databases and identified 5 additional novel susceptibility genes for AD. Applying the connectivity map to the results from TWAS and meta-analysis, robustly enriched perturbations were identified and their chemical or functional properties were analyzed. Here, we report the first research on integrative approaches for an AD, combining TWAS and transcriptome meta-analysis. Together, our findings could provide a comprehensive understanding of the pathophysiologic mechanisms of AD and suggest potential drug candidates as alternative treatment options. Integrative genomic and transcriptomic analyses on publicly available data-sets together with in silico drug repositioning identifies alternative therapeutic options to treat atopic dermatitis.
Collapse
Affiliation(s)
- Jaeseung Song
- Department of Life Sciences, Dongguk University-Seoul, 04620, Seoul, Republic of Korea
| | - Daeun Kim
- Department of Life Sciences, Dongguk University-Seoul, 04620, Seoul, Republic of Korea
| | - Sora Lee
- Department of Life Sciences, Dongguk University-Seoul, 04620, Seoul, Republic of Korea
| | - Junghyun Jung
- Department of Life Sciences, Dongguk University-Seoul, 04620, Seoul, Republic of Korea.,Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90089, USA
| | - Jong Wha J Joo
- Department of Computer Science and Engineering, Dongguk University-Seoul, 04620, Seoul, Republic of Korea
| | - Wonhee Jang
- Department of Life Sciences, Dongguk University-Seoul, 04620, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Huang Y, Du X, Chen X, Chen C, Wang H, Yang Y, Teng L. MiR-301a-5p/SCIN promotes gastric cancer progression via regulating STAT3 and NF-κB signaling. J Cancer 2021; 12:5394-5403. [PMID: 34405002 PMCID: PMC8364655 DOI: 10.7150/jca.59747] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/29/2021] [Indexed: 01/12/2023] Open
Abstract
Objective: Gastric cancer (GC) is a type of highly malignant cancer. Although the diagnostic and therapeutic methods are innovating, the outcome of GC patients is still poor. Therefore, our research was carried out to explore potential molecular mechanism in the diagnosis of GC. Materials and methods: Bioinformatics analyses were used to obtain microRNA and target mRNA of interest. The expression level of miR-301a-5p and Scinderin (SCIN) mRNA were detected by quantitative real-time PCR (qRT-PCR). Western blot assay was used to investigate SCIN protein level. Cell Counting Kit-8 assay (CCK-8) and colony formation assay were used to investigate cell proliferation ability. Transwell assay was employed to examine cell motility. The interaction between miR-301a-5p and SCIN mRNA was verified by dual-luciferase reporter assay. Results: The qRT-PCR analysis revealed that the expression of miR-301a-5p was higher in gastric cancer tissues than para-cancer tissues (P<0.05). Cox regression analysis showed upregulated miR-301a-5p was associated with larger tumor size (P=0.036) and more advanced TNM stage (P=0.048). The Kaplan-Meier analysis showed a correlation between increased miR-301a-5p expression and shorter overall survival (OS)(P=0.018). By using bioinformatic analysis, SCIN was predicted as one of the targets of miR-301a-5p. Overexpressing miR-301a-5p promoted proliferation and motility of GC cells while knockdown of SCIN exhibited the same performance. Further, we verified the alteration of miR-301a-5p and SCIN expression level could affect the epithelial-mesenchymal transition (EMT) progression on GC cells via STAT3 and NF-κB signaling. Conclusion: Highly expressed miR-301a-5p was associated with aggressiveness of GC. Upregulation of miR-301a-5p promoted malignant phenotype of GC by targeting SCIN. The present results indicated miR-301a-5p might be a promising molecule in the prognosis of GC.
Collapse
Affiliation(s)
- Yingying Huang
- Department of oncological surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University.,Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Xiaoxiao Du
- Department of oncological surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Xiangliu Chen
- Department of oncological surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Chuanzhi Chen
- Department of oncological surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Haiyong Wang
- Department of oncological surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Yan Yang
- Department of oncological surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Lisong Teng
- Department of oncological surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University
| |
Collapse
|
5
|
Mangantig E, MacGregor S, Iles MM, Scolyer RA, Cust AE, Hayward NK, Montgomery GW, Duffy DL, Thompson JF, Henders A, Bowdler L, Rowe C, Cadby G, Mann GJ, Whiteman DC, Long GV, Ward SV, Khosrotehrani K, Barrett JH, Law MH. Germline variants are associated with increased primary melanoma tumor thickness at diagnosis. Hum Mol Genet 2020; 29:3578-3587. [PMID: 33410475 PMCID: PMC7788289 DOI: 10.1093/hmg/ddaa222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/29/2020] [Accepted: 10/08/2020] [Indexed: 11/13/2022] Open
Abstract
Germline genetic variants have been identified, which predispose individuals and families to develop melanoma. Tumor thickness is the strongest predictor of outcome for clinically localized primary melanoma patients. We sought to determine whether there is a heritable genetic contribution to variation in tumor thickness. If confirmed, this will justify the search for specific genetic variants influencing tumor thickness. To address this, we estimated the proportion of variation in tumor thickness attributable to genome-wide genetic variation (variant-based heritability) using unrelated patients with measured primary cutaneous melanoma thickness. As a secondary analysis, we conducted a genome-wide association study (GWAS) of tumor thickness. The analyses utilized 10 604 individuals with primary cutaneous melanoma drawn from nine GWAS datasets from eight cohorts recruited from the general population, primary care and melanoma treatment centers. Following quality control and filtering to unrelated individuals with study phenotypes, 8125 patients were used in the primary analysis to test whether tumor thickness is heritable. An expanded set of 8505 individuals (47.6% female) were analyzed for the secondary GWAS meta-analysis. Analyses were adjusted for participant age, sex, cohort and ancestry. We found that 26.6% (SE 11.9%, P = 0.0128) of variation in tumor thickness is attributable to genome-wide genetic variation. While requiring replication, a chromosome 11 locus was associated (P < 5 × 10−8) with tumor thickness. Our work indicates that sufficiently large datasets will enable the discovery of genetic variants associated with greater tumor thickness, and this will lead to the identification of host biological processes influencing melanoma growth and invasion.
Collapse
Affiliation(s)
- Ernest Mangantig
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Pulau Pinang, Malaysia
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
| | - Mark M Iles
- Leeds Institute for Data Analytics, University of Leeds, Leeds LS2 9JT, UK
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, 2065, Australia.,Department of Tissue Oncology and Diagnostic Pathology, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2050, Australia.,Department of Tissue Oncology and Diagnostic Pathology, New South Wales Health Pathology, Sydney, New South Wales, 2000, Australia
| | - Anne E Cust
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, 2065, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2050, Australia.,School of Public Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Nicholas K Hayward
- Oncogenomics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
| | - Grant W Montgomery
- Molecular Biology, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - David L Duffy
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
| | - John F Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, 2065, Australia.,Department of Tissue Oncology and Diagnostic Pathology, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2050, Australia
| | - Anjali Henders
- Molecular Biology, The University of Queensland, Brisbane, Queensland, 4102, Australia.,Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
| | - Lisa Bowdler
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
| | - Casey Rowe
- Experimental Dermatology Group, Diamantina Institute, The University of Queensland, Brisbane, Queensland, 4102, Australia.,Department of Dermatology, Princess Alexandra Hospital, Brisbane, Queensland, 4102, Australia
| | - Gemma Cadby
- School of Population and Global Health, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Graham J Mann
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, 2065, Australia.,Centre for Cancer Research, Westmead Institute for Medical Research, University of Sydney, New South Wales, 2145, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - David C Whiteman
- Cancer Control, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, 2065, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2050, Australia.,Department of Medical Oncology, Mater Hospital, North Sydney, NSW, 2060, Australia.,Department of Medical Oncology, Royal North Shore Hospital, St Leonards, New South Wales, 2065, Australia
| | - Sarah V Ward
- School of Population and Global Health, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Kiarash Khosrotehrani
- Experimental Dermatology Group, Diamantina Institute, The University of Queensland, Brisbane, Queensland, 4102, Australia.,Department of Dermatology, Princess Alexandra Hospital, Brisbane, Queensland, 4102, Australia
| | - Jennifer H Barrett
- Leeds Institute for Data Analytics, University of Leeds, Leeds LS2 9JT, UK
| | - Matthew H Law
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
| |
Collapse
|
6
|
Huang R, Mao M, Lu Y, Yu Q, Liao L. A novel immune-related genes prognosis biomarker for melanoma: associated with tumor microenvironment. Aging (Albany NY) 2020; 12:6966-6980. [PMID: 32310824 PMCID: PMC7202520 DOI: 10.18632/aging.103054] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/29/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Melanoma is a cancer of the skin with potential to spread to other organs and is responsible for most deaths due to skin cancer. It is imperative to identify immune biomarkers for early melanoma diagnosis and treatment. RESULTS 63 immune-related genes of the total 1039 unique IRGs retrieved were associated with overall survival of melanoma. A multi-IRGs classifier constructed using eight IRGs showed a powerful predictive ability. The classifier had better predictive power compared with the current clinical data. GSEA analysis showed multiple signaling differences between high and low risk score group. Furthermore, biomarker was associated with multiple immune cells and immune infiltration in tumor microenvironment. CONCLUSIONS The immune-related genes prognosis biomarker is an effective potential prognostic classifier in the immunotherapies and surveillance of melanoma. METHODS Melanoma samples of genes were retrieved from TCGA and GEO databases while the immune-related genes (IRGs) were retrieved from the ImmPort database. WGCNA, Cox regression analysis and LASSO analysis were used to classify melanoma prognosis. ESTIMATE and CIBERSORT algorithms were used to explore the relationship between risk score and tumor immune microenvironment. GSEA analysis was performed to explore the biological signaling pathway.
Collapse
Affiliation(s)
- Rongzhi Huang
- The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, The Guangxi Zhuang Autonomous Region, China
| | - Min Mao
- The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, The Guangxi Zhuang Autonomous Region, China
| | - Yunxin Lu
- The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, The Guangxi Zhuang Autonomous Region, China
| | - Qingliang Yu
- The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, The Guangxi Zhuang Autonomous Region, China
| | - Liang Liao
- The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, The Guangxi Zhuang Autonomous Region, China.,Department of Traumatic Orthopedics and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, The Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
7
|
Li WQ, Cho E, Wu S, Li S, Matthews NH, Qureshi AA. Host Characteristics and Risk of Incident Melanoma by Breslow Thickness. Cancer Epidemiol Biomarkers Prev 2019; 28:217-224. [PMID: 30341099 PMCID: PMC6324995 DOI: 10.1158/1055-9965.epi-18-0607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/10/2018] [Accepted: 10/04/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Several host characteristics, including pigmentary traits (hair color, sunburn susceptibility and tanning ability), number of common nevi (moles), and family history of melanoma, have been associated with risk of melanoma. METHODS We prospectively examined the associations between host characteristics and risk of incident melanoma by Breslow thickness (≤1 mm, thin melanoma; or >1 mm, "thicker melanoma") based on the Nurses' Health Study (NHS, n = 86,380 women), NHS II (n = 104,100 women), and Health Professionals Follow-up Study (HPFS, n = 46,934 men). RESULTS During 22-30 years' follow-up, a total of 1,813 incident melanoma cases were identified with information on Breslow thickness, 1,392 (76.8%) of which had thin melanoma. No significant differences were observed for thin and thicker melanoma in associations with hair color, sunburn susceptibility, and tanning ability. However, we found significant differences for the association with family history of melanoma, with a higher risk estimate for thicker melanoma [HR = 2.55; 95% confidence interval (CI): 1.91-3.42] than thin melanoma (HR = 1.59; 95% CI: 1.21-2.08; P heterogeneity = 0.02). Interestingly, women and men displayed differential associations between nevi count and risk of melanoma by Breslow thickness, with the association appearing stronger for thicker melanoma than thin melanoma in men (P heterogeneity = 0.01), but not in women. CONCLUSIONS Individuals with family history of melanoma may be more likely to develop thicker melanoma. Men with high number of common nevi may tend to develop thicker melanoma, which was not found for women. IMPACT The findings further stress the risk of thicker melanoma for individuals with a family history of melanoma and men with a high nevi count.
Collapse
Affiliation(s)
- Wen-Qing Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China.
- Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, Rhode Island
- Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island
| | - Eunyoung Cho
- Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, Rhode Island
- Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shaowei Wu
- Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, Rhode Island
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Suyun Li
- School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Natalie H Matthews
- Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Abrar A Qureshi
- Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, Rhode Island
- Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
Duffy DL, Zhu G, Li X, Sanna M, Iles MM, Jacobs LC, Evans DM, Yazar S, Beesley J, Law MH, Kraft P, Visconti A, Taylor JC, Liu F, Wright MJ, Henders AK, Bowdler L, Glass D, Ikram MA, Uitterlinden AG, Madden PA, Heath AC, Nelson EC, Green AC, Chanock S, Barrett JH, Brown MA, Hayward NK, MacGregor S, Sturm RA, Hewitt AW, Kayser M, Hunter DJ, Newton Bishop JA, Spector TD, Montgomery GW, Mackey DA, Smith GD, Nijsten TE, Bishop DT, Bataille V, Falchi M, Han J, Martin NG. Novel pleiotropic risk loci for melanoma and nevus density implicate multiple biological pathways. Nat Commun 2018; 9:4774. [PMID: 30429480 PMCID: PMC6235897 DOI: 10.1038/s41467-018-06649-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/13/2018] [Indexed: 11/09/2022] Open
Abstract
The total number of acquired melanocytic nevi on the skin is strongly correlated with melanoma risk. Here we report a meta-analysis of 11 nevus GWAS from Australia, Netherlands, UK, and USA comprising 52,506 individuals. We confirm known loci including MTAP, PLA2G6, and IRF4, and detect novel SNPs in KITLG and a region of 9q32. In a bivariate analysis combining the nevus results with a recent melanoma GWAS meta-analysis (12,874 cases, 23,203 controls), SNPs near GPRC5A, CYP1B1, PPARGC1B, HDAC4, FAM208B, DOCK8, and SYNE2 reached global significance, and other loci, including MIR146A and OBFC1, reached a suggestive level. Overall, we conclude that most nevus genes affect melanoma risk (KITLG an exception), while many melanoma risk loci do not alter nevus count. For example, variants in TERC and OBFC1 affect both traits, but other telomere length maintenance genes seem to affect melanoma risk only. Our findings implicate multiple pathways in nevogenesis.
Collapse
Affiliation(s)
- David L Duffy
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | - Gu Zhu
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Xin Li
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, 63110, USA
| | - Marianna Sanna
- Department of Twin Research & Genetic Epidemiology, St Thomas Hospital Campus, Kings College, London, UK
| | - Mark M Iles
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Leonie C Jacobs
- Department of Dermatology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - David M Evans
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Seyhan Yazar
- Centre for Ophthalmology and Vision Science, University of Western Australia and the Lions Eye Institute, Perth, Australia
| | | | - Matthew H Law
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Alessia Visconti
- Department of Twin Research & Genetic Epidemiology, St Thomas Hospital Campus, Kings College, London, UK
| | - John C Taylor
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Fan Liu
- Department of Genetic Identification, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | | | - Anjali K Henders
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Lisa Bowdler
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Dan Glass
- Department of Twin Research & Genetic Epidemiology, St Thomas Hospital Campus, Kings College, London, UK
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Pamela A Madden
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Andrew C Heath
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Elliot C Nelson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Adele C Green
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Molecular Oncology Group, CRUK Manchester Institute, University of Manchester, Manchester, UK
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jennifer H Barrett
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Matthew A Brown
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | | | | | - Richard A Sturm
- Dermatology Research Centre, University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Alex W Hewitt
- Centre for Ophthalmology and Vision Science, University of Western Australia and the Lions Eye Institute, Perth, Australia
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - David J Hunter
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Julia A Newton Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Timothy D Spector
- Department of Twin Research & Genetic Epidemiology, St Thomas Hospital Campus, Kings College, London, UK
| | - Grant W Montgomery
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - David A Mackey
- Centre for Ophthalmology and Vision Science, University of Western Australia and the Lions Eye Institute, Perth, Australia
| | | | - Tamar E Nijsten
- Department of Dermatology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - D Timothy Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Veronique Bataille
- Department of Twin Research & Genetic Epidemiology, St Thomas Hospital Campus, Kings College, London, UK
| | - Mario Falchi
- Department of Twin Research & Genetic Epidemiology, St Thomas Hospital Campus, Kings College, London, UK
| | - Jiali Han
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, 63110, USA
| | | |
Collapse
|
9
|
Margaritte-Jeannin P, Babron MC, Laprise C, Lavielle N, Sarnowski C, Brossard M, Moffatt M, Gagné-Ouellet V, Etcheto A, Lathrop M, Just J, Cookson WO, Bouzigon E, Demenais F, Dizier MH. The COL5A3 and MMP9 genes interact in eczema susceptibility. Clin Exp Allergy 2017; 48:297-305. [PMID: 29168291 DOI: 10.1111/cea.13064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/10/2017] [Accepted: 11/07/2017] [Indexed: 01/31/2023]
Abstract
BACKGROUND Genetic studies of eczema have identified many genes, which explain only 14% of the heritability. Missing heritability may be partly due to ignored gene-gene (G-G) interactions. OBJECTIVE Our aim was to detect new interacting genes involved in eczema. METHODS The search for G-G interaction in eczema was conducted using a two-step approach, which included as a first step, a biological selection of genes, which are involved either in the skin or epidermis development or in the collagen metabolism, and as a second step, an interaction analysis of the selected genes. Analyses were carried out at both SNP and gene levels in three asthma-ascertained family samples: the discovery dataset of 388 EGEA (Epidemiological study on the Genetics and Environment of Asthma) families and the two replication datasets of 253 SLSJ (Saguenay-Lac-Saint-Jean) families and 207 MRCA (Medical Research Council) families. RESULTS One pair of SNPs, rs2287807 in COL5A3 and rs17576 in MMP9, that were detected in EGEA at P ≤ 10-5 showed significant interaction by meta-analysis of EGEA, SLSJ and MRCA samples (P = 1.1 × 10-8 under the significant threshold of 10-7 ). Gene-based analysis confirmed strong interaction between COL5A3 and MMP9 (P = 4 × 10-8 under the significant threshold of 4 × 10-6 ) by meta-analysis of the three datasets. When stratifying the data on asthma, this interaction remained in both groups of asthmatic and non-asthmatic subjects. CONCLUSION This study identified significant interaction between two new genes, COL5A3 and MMP9, which may be accounted for by a degradation of COL5A3 by MMP9 influencing eczema susceptibility. Further confirmation of this interaction as well as functional studies is needed to better understand the role of these genes in eczema.
Collapse
Affiliation(s)
- P Margaritte-Jeannin
- Inserm, UMR-946, Genetic Variation and Human Diseases unit, Université Paris-Diderot, Paris, France.,Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Univ Paris Diderot, Paris, France
| | - M-C Babron
- Inserm, UMR-946, Genetic Variation and Human Diseases unit, Université Paris-Diderot, Paris, France.,Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Univ Paris Diderot, Paris, France
| | - C Laprise
- Université du Québec, Chicoutimi, Canada
| | - N Lavielle
- Inserm, UMR-946, Genetic Variation and Human Diseases unit, Université Paris-Diderot, Paris, France.,Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Univ Paris Diderot, Paris, France
| | - C Sarnowski
- Inserm, UMR-946, Genetic Variation and Human Diseases unit, Université Paris-Diderot, Paris, France.,Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Univ Paris Diderot, Paris, France
| | - M Brossard
- Inserm, UMR-946, Genetic Variation and Human Diseases unit, Université Paris-Diderot, Paris, France.,Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Univ Paris Diderot, Paris, France
| | - M Moffatt
- National Heart Lung Institute, Imperial College, London, UK
| | | | - A Etcheto
- Rheumatology Department, Cochin Hospital, AP-HP, INSERM U1153, Sorbonne Paris-Cité, Paris Descartes University, Paris, France
| | - M Lathrop
- Mc Gill University and Genome Quebec's Innovation Centre, Montréal, Canada
| | - J Just
- Service d'Allergologie Pédiatrique, Centre de l'Asthme et des Allergies, Hôpital d'Enfants Armand-Trousseau-UPMC Paris 06, Paris, France
| | - W O Cookson
- National Heart Lung Institute, Imperial College, London, UK
| | - E Bouzigon
- Inserm, UMR-946, Genetic Variation and Human Diseases unit, Université Paris-Diderot, Paris, France.,Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Univ Paris Diderot, Paris, France
| | - F Demenais
- Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Univ Paris Diderot, Paris, France
| | - M-H Dizier
- Inserm, UMR-946, Genetic Variation and Human Diseases unit, Université Paris-Diderot, Paris, France.,Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Univ Paris Diderot, Paris, France
| |
Collapse
|
10
|
Xu Y, Wang Y, Liu H, Shi Q, Zhu D, Amos CI, Fang S, Lee JE, Hyslop T, Li X, Han J, Wei Q. Genetic variants in the metzincin metallopeptidase family genes predict melanoma survival. Mol Carcinog 2017; 57:22-31. [PMID: 28796414 DOI: 10.1002/mc.22716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/08/2017] [Indexed: 12/31/2022]
Abstract
Metzincins are key molecules in the degradation of the extracellular matrix and play an important role in cellular processes such as cell migration, adhesion, and cell fusion of malignant tumors, including cutaneous melanoma (CM). We hypothesized that genetic variants of the metzincin metallopeptidase family genes would be associated with CM-specific survival (CMSS). To test this hypothesis, we first performed Cox proportional hazards regression analysis to evaluate the associations between genetic variants of 75 metzincin metallopeptidase family genes and CMSS using the dataset from the genome-wide association study (GWAS) from The University of Texas MD Anderson Cancer Center (MDACC) which included 858 non-Hispanic white patients with CM, and then validated using the dataset from the Harvard GWAS study which had 409 non-Hispanic white patients with invasive CM. Four independent SNPs (MMP16 rs10090371 C>A, ADAMTS3 rs788935 T>C, TLL2 rs10882807 T>C and MMP9 rs3918251 A>G) were identified as predictors of CMSS, with a variant-allele attributed hazards ratio (HR) of 1.73 (1.32-2.29, 9.68E-05), 1.46 (1.15-1.85, 0.002), 1.68 (1.31-2.14, 3.32E-05) and 0.67 (0.51-0.87, 0.003), respectively, in the meta-analysis of these two GWAS studies. Combined analysis of risk genotypes of these four SNPs revealed a decreased CMSS in a dose-response manner as the number of risk genotypes increased (Ptrend < 0.001). An improvement was observed in the prediction model (area under the curve [AUC] = 81.4% vs. 78.6%), when these risk genotypes were added to the model containing non-genotyping variables. Our findings suggest that these genetic variants may be promising prognostic biomarkers for CMSS.
Collapse
Affiliation(s)
- Yinghui Xu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China.,Department of Medicine, Duke University School of Medicine, Durham, North Carolina.,Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Yanru Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China.,Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Hongliang Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China.,Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Qiong Shi
- Department of Dermatology, Xijing Hospital, Xi'an, Shanxi, China
| | - Dakai Zhu
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Christopher I Amos
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Shenying Fang
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Terry Hyslop
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China.,Department of Biostatistics and Bioinformatics, Duke University and Duke Clinical Research Institute, Durham, North Carolina
| | - Xin Li
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Jiali Han
- Department of Epidemiology, Fairbanks School of Public Health, and Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana
| | - Qingyi Wei
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China.,Department of Medicine, Duke University School of Medicine, Durham, North Carolina.,Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|