1
|
Modica C, Cortese M, Bersani F, Lombardi AM, Napoli F, Righi L, Taulli R, Basilico C, Vigna E. Genetic Ablation of the MET Oncogene Defines a Crucial Role of the HGF/MET Axis in Cell-Autonomous Functions Driving Tumor Dissemination. Cancers (Basel) 2023; 15:2742. [PMID: 37345079 DOI: 10.3390/cancers15102742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
Cancer cell dissemination is sustained by cell-autonomous and non-cell-autonomous functions. To disentangle the role of HGF (Hepatocyte Growth Factor) and MET ligand/receptor axis in this complex process, we genetically knocked out the MET gene in cancer cells in which MET is not the oncogenic driver. In this way, we evaluated the contribution of the HGF/MET axis to cancer cell dissemination independently of its direct activities in cells of the tumor microenvironment. The lack of MET expression in MET-/- cells has been proved by molecular characterization. From a functional point of view, HGF stimulation of MET-/- cancer cells was ineffective in eliciting intracellular signaling and in sustaining biological functions predictive of malignancy in vitro (i.e., anchorage-independent growth, invasion, and survival in the absence of matrix adhesion). Cancer cell dissemination was assessed in vivo, evaluating: (i) the ability of MET-/- lung carcinoma cells to colonize the lungs following intravenous injection and (ii) the spontaneous dissemination to distant organs of MET-/- pancreatic carcinoma cells upon orthotopic injection. In both experimental models, MET ablation affects the time of onset, the number, and the size of metastatic lesions. These results define a crucial contribution of the HGF/MET axis to cell-autonomous functions driving the metastatic process.
Collapse
Affiliation(s)
- Chiara Modica
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, TO, Italy
| | - Marco Cortese
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, TO, Italy
- Department of Oncology, University of Torino, 10043 Orbassano, TO, Italy
| | - Francesca Bersani
- Department of Oncology, University of Torino, 10043 Orbassano, TO, Italy
| | | | - Francesca Napoli
- Department of Oncology, University of Torino, 10043 Orbassano, TO, Italy
| | - Luisella Righi
- Department of Oncology, University of Torino, 10043 Orbassano, TO, Italy
| | - Riccardo Taulli
- Department of Oncology, University of Torino, 10043 Orbassano, TO, Italy
| | | | - Elisa Vigna
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, TO, Italy
- Department of Oncology, University of Torino, 10043 Orbassano, TO, Italy
| |
Collapse
|
2
|
Chiriaco C, Donini C, Cortese M, Ughetto S, Modica C, Martinelli I, Proment A, Vitali L, Fontani L, Casucci M, Comoglio PM, Giordano S, Sangiolo D, Leuci V, Vigna E. Efficacy of CAR-T immunotherapy in MET overexpressing tumors not eligible for anti-MET targeted therapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:309. [PMID: 36271379 PMCID: PMC9585715 DOI: 10.1186/s13046-022-02479-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/30/2022] [Indexed: 11/07/2022]
Abstract
Background Aberrant activation of the MET receptor in cancer is sustained by genetic alterations or, more frequently, by transcriptional upregulations. A fraction of MET-amplified or mutated tumors are sensible to MET targeting agents, but their responsiveness is typically short-lasting, as secondary resistance eventually occurs. Since in the absence of genetic alterations MET is usually not a tumor driver, MET overexpressing tumors are not/poorly responsive to MET targeted therapies. Consequently, the vast majority of tumors exhibiting MET activation still represent an unmet medical need. Methods Here we propose an immunotherapy strategy based on T lymphocytes expressing a Chimeric Antigen Receptor (CAR) targeting MET overexpressing tumors of different histotypes. We engineered two different MET-CAR constructs and tested MET-CAR-T cell cytotoxic activity against different MET overexpressing models, including tumor cell lines, primary cancer cells, organoids, and xenografts in immune-deficient mice. Results We proved that MET-CAR-T exerted a specific cytotoxic activity against MET expressing cells. Cell killing was proportional to the level of MET expressed on the cell surface. While CAR-T cytotoxicity was minimal versus cells carrying MET at physiological levels, essentially sparing normal cells, the activity versus MET overexpressing tumors was robust, significantly controlling tumor cell growth in vitro and in vivo. Notably, MET-CAR-T cells were also able to brake acquired resistance to MET targeting agents in MET amplified cancer cells carrying secondary mutations in downstream signal transducers. Conclusions We set and validated at the pre-clinical level a MET-CAR immunotherapy strategy potentially beneficial for cancers not eligible for MET targeted therapy with inhibitory molecules, including those exhibiting primary or secondary resistance. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02479-y.
Collapse
Affiliation(s)
- Cristina Chiriaco
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,Present address: Anemocyte S.r.l., 21040 Gerenzano, VA Italy
| | - Chiara Donini
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| | - Marco Cortese
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| | - Stefano Ughetto
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy ,Present address: Bios-Therapy, Physiological System for Health S.p.A, 52037 Sansepolcro, AR Italy
| | - Chiara Modica
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.10776.370000 0004 1762 5517Present address: Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| | - Ilaria Martinelli
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy
| | - Alessia Proment
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| | - Letizia Vitali
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| | - Lara Fontani
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy
| | - Monica Casucci
- grid.18887.3e0000000417581884Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Maria Comoglio
- grid.7678.e0000 0004 1757 7797IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
| | - Silvia Giordano
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| | - Dario Sangiolo
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| | - Valeria Leuci
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy
| | - Elisa Vigna
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| |
Collapse
|
3
|
HGF/MET Axis Induces Tumor Secretion of Tenascin-C and Promotes Stromal Rewiring in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13143519. [PMID: 34298732 PMCID: PMC8305254 DOI: 10.3390/cancers13143519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/30/2021] [Accepted: 07/10/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary It has been previously shown that activation of the MET receptor by its ligand, the hepatocyte growth factor (HGF), modulates the tumor-stroma cross-talk in models of pancreatic cancer. We now wish to cast light on the molecular mechanisms by which this ligand/receptor pair sustains the interaction between cancer cells and the tumor microenviroment. To this end, we compared data obtained by large-scale analysis of gene expression in pancreatic cancer cells grown in the presence of HGF versus cells grown in the presence of HGF and treated with specific inhibitors of HGF/MET signaling. By clustering differentially expressed genes according to functional groups, we identified candidate genes involved in the process. Among these, tenascin C was selected due to its activity in sustaining the malignant phenotype. Our results highlight a new role for tenascin C, which could represent the operative arm through which MET promotes activation of the stromal compartment in pancreatic cancer. Abstract Pancreatic ductal adenocarcinoma is an aggressive tumor characterized by the presence of an abundant stromal compartment contributing significantly to the malignant phenotype. Pancreatic stellate cells are peculiar fibroblasts present in the stroma and represent the predominant source of extracellular matrix proteins, pro-inflammatory cytokines, and growth factors, including hepatocyte growth factor (HGF). Exploiting a co-culture system of human pancreatic stellate cells and cancer cells, we demonstrated that fibroblast activation was reduced upon HGF/MET axis inhibition. To unveil the signaling pathways sustaining stroma modulation orchestrated by MET activation in the tumor, we analyzed the gene expression profile in pancreatic cancer cells stimulated with HGF and treated with HGF/MET inhibitors. Transcriptome analysis showed that, among all the genes modulated by HGF, a subset of 125 genes was restored to the basal level following treatment with the inhibitors. By examining these genes via ingenuity pathway analysis, tenascin C emerged as a promising candidate linking MET signaling and tumor microenvironment. MET-dependent tenascin C modulation in pancreatic cancer cells was validated at RNA and protein levels both in vitro and in vivo. In conclusion, this work identifies tenascin C as a gene modulated by MET activation, suggesting a role in MET-mediated tumor-stroma interplay occurring during pancreatic tumor progression.
Collapse
|
4
|
Moosavi F, Giovannetti E, Peters GJ, Firuzi O. Combination of HGF/MET-targeting agents and other therapeutic strategies in cancer. Crit Rev Oncol Hematol 2021; 160:103234. [PMID: 33497758 DOI: 10.1016/j.critrevonc.2021.103234] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/29/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023] Open
Abstract
MET receptor has emerged as a druggable target across several human cancers. Agents targeting MET and its ligand hepatocyte growth factor (HGF) including small molecules such as crizotinib, tivantinib and cabozantinib or antibodies including rilotumumab and onartuzumab have proven their values in different tumors. Recently, capmatinib was approved for treatment of metastatic lung cancer with MET exon 14 skipping. In this review, we critically examine the current evidence on how HGF/MET combination therapies may take advantage of synergistic effects, overcome primary or acquired drug resistance, target tumor microenvironment, modulate drug metabolism or tackle pharmacokinetic issues. Preclinical and clinical studies on the combination of HGF/MET-targeted agents with conventional chemotherapeutics or molecularly targeted treatments (including EGFR, VEGFR, HER2, RAF/MEK, and PI3K/Akt targeting agents) and also the value of biomarkers are examined. Our deeper understanding of molecular mechanisms underlying successful pharmacological combinations is crucial to find the best personalized treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Soluble Receptors Affecting Stroke Outcomes: Potential Biomarkers and Therapeutic Tools. Int J Mol Sci 2021; 22:ijms22031108. [PMID: 33498620 PMCID: PMC7865279 DOI: 10.3390/ijms22031108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Soluble receptors are widely understood to be freestanding moieties formed via cleavage from their membrane-bound counterparts. They have unique structures, are found among various receptor families, and have intriguing mechanisms of generation and release. Soluble receptors’ ability to exhibit pleiotropic action by receptor modulation or by exhibiting a dual role in cytoprotection and neuroinflammation is concentration dependent and has continually mystified researchers. Here, we have compiled findings from preclinical and clinical studies to provide insights into the role of soluble/decoy receptors, focusing on the soluble cluster of differentiation 36, the soluble cluster of differentiation 163, and soluble lipoprotein-related protein 1 (sCD36, sCD163, and sLRP1, respectively) and the functions they could likely serve in the management of stroke, as they would notably regulate the bioavailability of the hemoglobin and heme after red blood cell lysis. The key roles that these soluble receptors play in inflammation, oxidative stress, and the related pharmacotherapeutic potential in improving stroke outcomes are described. The precise pleiotropic physiological functions of soluble receptors remain unclear, and further scientific investigation/validation is required to establish their respective role in diagnosis and therapy.
Collapse
|
6
|
Modica C, Basilico C, Chiriaco C, Borrelli N, Comoglio PM, Vigna E. A receptor-antibody hybrid hampering MET-driven metastatic spread. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:32. [PMID: 33446252 PMCID: PMC7807714 DOI: 10.1186/s13046-020-01822-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Background The receptor encoded by the MET oncogene and its ligand Hepatocyte Growth Factor (HGF) are at the core of the invasive-metastatic behavior. In a number of instances genetic alterations result in ligand-independent onset of malignancy (MET addiction). More frequently, ligand stimulation of wild-type MET contributes to progression toward metastasis (MET expedience). Thus, while MET inhibitors alone are effective in the first case, combination therapy with ligand inhibitors is required in the second condition. Methods In this paper, we generated hybrid molecules gathering HGF and MET inhibitory properties. This has been achieved by ‘head-to-tail’ or ‘tail-to-head’ fusion of a single chain Fab derived from the DN30 MET antibody with a recombinant ‘ad-hoc’ engineered MET extracellular domain (decoyMET), encompassing the HGF binding site but lacking the DN30 epitope. Results The hybrid molecules correctly bind MET and HGF, inhibit HGF-induced MET downstream signaling, and quench HGF-driven biological responses, such as growth, motility and invasion, in cancer cells of different origin. Two metastatic models were generated in mice knocked-in by the human HGF gene: (i) orthotopic transplantation of pancreatic cancer cells; (ii) subcutaneous injection of primary cells derived from a cancer of unknown primary. Treatment with hybrid molecules strongly affects time of onset, number, and size of metastatic lesions. Conclusion These results provide a strategy to treat metastatic dissemination driven by the HGF/MET axis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-020-01822-5.
Collapse
Affiliation(s)
- Chiara Modica
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060, Candiolo, TO, Italy
| | - Cristina Basilico
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060, Candiolo, TO, Italy.
| | - Cristina Chiriaco
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060, Candiolo, TO, Italy
| | - Nicla Borrelli
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060, Candiolo, TO, Italy
| | - Paolo M Comoglio
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060, Candiolo, TO, Italy
| | - Elisa Vigna
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060, Candiolo, TO, Italy.,Department of Oncology, University of Turin, Turin, Italy
| |
Collapse
|
7
|
Pothula SP, Xu Z, Goldstein D, Pirola RC, Wilson JS, Apte MV. Targeting HGF/c-MET Axis in Pancreatic Cancer. Int J Mol Sci 2020; 21:E9170. [PMID: 33271944 PMCID: PMC7730415 DOI: 10.3390/ijms21239170] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer (pancreatic ductal adenocarcinoma (PDAC/PC)) has been an aggressive disease that is associated with early metastases. It is characterized by dense and collagenous desmoplasia/stroma, predominantly produced by pancreatic stellate cells (PSCs). PSCs interact with cancer cells as well as other stromal cells, facilitating disease progression. A candidate growth factor pathway that may mediate this interaction is the hepatocyte growth factor (HGF)/c-MET pathway. HGF is produced by PSCs and its receptor c-MET is expressed on pancreatic cancer cells and endothelial cells. The current review discusses the role of the MET/HGF axis in tumour progression and dissemination of pancreatic cancer. Therapeutic approaches that were developed targeting either the ligand (HGF) or the receptor (c-MET) have not been shown to translate well into clinical settings. We discuss a two-pronged approach of targeting both the components of this pathway to interrupt the stromal-tumour interactions, which may represent a potential therapeutic strategy to improve outcomes in PC.
Collapse
Affiliation(s)
- Srinivasa P. Pothula
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - David Goldstein
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Romano C. Pirola
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Jeremy S. Wilson
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Minoti V. Apte
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| |
Collapse
|
8
|
Brubaker DK, Paulo JA, Sheth S, Poulin EJ, Popow O, Joughin BA, Strasser SD, Starchenko A, Gygi SP, Lauffenburger DA, Haigis KM. Proteogenomic Network Analysis of Context-Specific KRAS Signaling in Mouse-to-Human Cross-Species Translation. Cell Syst 2019; 9:258-270.e6. [PMID: 31521603 PMCID: PMC6816257 DOI: 10.1016/j.cels.2019.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 06/01/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022]
Abstract
The highest frequencies of KRAS mutations occur in colorectal carcinoma (CRC) and pancreatic ductal adenocarcinoma (PDAC). The ability to target downstream pathways mediating KRAS oncogenicity is limited by an incomplete understanding of the contextual cues modulating the signaling output of activated K-RAS. We performed mass spectrometry on mouse tissues expressing wild-type or mutant Kras to determine how tissue context and genetic background modulate oncogenic signaling. Mutant Kras dramatically altered the proteomes and phosphoproteomes of preneoplastic and neoplastic colons and pancreases in a context-specific manner. We developed an approach to statistically humanize the mouse networks with data from human cancer and identified genes within the humanized CRC and PDAC networks synthetically lethal with mutant KRAS. Our studies demonstrate the context-dependent plasticity of oncogenic signaling, identify non-canonical mediators of KRAS oncogenicity within the KRAS-regulated signaling network, and demonstrate how statistical integration of mouse and human datasets can reveal cross-species therapeutic insights.
Collapse
Affiliation(s)
- Douglas K Brubaker
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Shikha Sheth
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Emily J Poulin
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Olesja Popow
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Brian A Joughin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Samantha Dale Strasser
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alina Starchenko
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Kevin M Haigis
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Harvard Digestive Disease Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Fernandes M, Duplaquet L, Tulasne D. Proteolytic cleavages of MET: the divide-and-conquer strategy of a receptor tyrosine kinase. BMB Rep 2019. [PMID: 30670153 PMCID: PMC6507848 DOI: 10.5483/bmbrep.2019.52.4.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Membrane-anchored full-length MET stimulated by its ligand HGF/SF induces various biological responses, including survival, growth, and invasion. This panel of responses, referred to invasive growth, is required for embryogenesis and tissue regeneration in adults. On the contrary, MET deregulation is associated with tumorigenesis in many kinds of cancer. In addition to its well-documented ligand-stimulated downstream signaling, the receptor can be cleaved by proteases such as secretases, caspases, and calpains. These cleavages are involved either in MET receptor inactivation or, more interestingly, in generating active fragments that can modify cell fate. For instance, MET fragments can promote cell death or invasion. Given a large number of proteases capable of cleaving MET, this receptor appears as a prototype of proteolytic-cleavage-regulated receptor tyrosine kinase. In this review, we describe and discuss the mechanisms and consequences, both physiological and pathological, of MET proteolytic cleavages.
Collapse
Affiliation(s)
- Marie Fernandes
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France
| | - Leslie Duplaquet
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France
| | - David Tulasne
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France
| |
Collapse
|
10
|
MET/HGF Co-Targeting in Pancreatic Cancer: A Tool to Provide Insight into the Tumor/Stroma Crosstalk. Int J Mol Sci 2018; 19:ijms19123920. [PMID: 30544501 PMCID: PMC6321305 DOI: 10.3390/ijms19123920] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023] Open
Abstract
The ‘onco-receptor’ MET (Hepatocyte Growth Factor Receptor) is involved in the activation of the invasive growth program that is essential during embryonic development and critical for wound healing and organ regeneration during adult life. When aberrantly activated, MET and its stroma-secreted ligand HGF (Hepatocyte Growth Factor) concur to tumor onset, progression, and metastasis in solid tumors, thus representing a relevant target for cancer precision medicine. In the vast majority of tumors, wild-type MET behaves as a ‘stress-response’ gene, and relies on ligand stimulation to sustain cancer cell ‘scattering’, invasion, and protection form apoptosis. Moreover, the MET/HGF axis is involved in the crosstalk between cancer cells and the surrounding microenvironment. Pancreatic cancer (namely, pancreatic ductal adenocarcinoma, PDAC) is an aggressive malignancy characterized by an abundant stromal compartment that is associated with early metastases and resistance to conventional and targeted therapies. Here, we discuss the role of the MET/HGF axis in tumor progression and dissemination considering as a model pancreatic cancer, and provide a proof of concept for the application of dual MET/HGF inhibition as an adjuvant therapy in pancreatic cancer patients.
Collapse
|