1
|
Khoury E, Maalouf H, Mendola A, Boutry S, Camboni A, D’Angiolella V, Choquet S, Landman-Parker J, Besson C, Poirel HA, Limaye N. CCNF (Cyclin F) as a Candidate Gene for Familial Hodgkin Lymphoma: Additional Evidence for the Importance of Mitotic Checkpoint Defects in Tumorigenesis. Hemasphere 2023; 7:e985. [PMID: 38026792 PMCID: PMC10656094 DOI: 10.1097/hs9.0000000000000985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Elsa Khoury
- Genetics of Autoimmune Diseases and Cancer, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Hiba Maalouf
- Genetics of Autoimmune Diseases and Cancer, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Antonella Mendola
- Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Simon Boutry
- Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Alessandra Camboni
- Pathology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Vincenzo D’Angiolella
- Department of Oncology, Medical Research Council Institute for Radiation Oncology, University of Oxford, United Kingdom
| | - Sylvain Choquet
- Service d’Hématologie, CHU La Pitié Salpétrière, Paris, France
- French Registry of Familial Lymphoid Neoplasms, Paris, France
| | - Judith Landman-Parker
- Service d’Hématologie et d’Oncologie Pédiatrique, Hôpital Armand Trousseau, Paris, France
| | - Caroline Besson
- Unité d’Hémato-Oncologie, Centre Hospitalier de Versailles, Le Chesnay, France
- Centre for Research in Epidemiology and Population Health (CESP), INSERM Unit 1018, Villejuif, France
| | | | - Nisha Limaye
- Genetics of Autoimmune Diseases and Cancer, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
2
|
Flerlage JE, Myers JR, Maciaszek JL, Oak N, Rashkin SR, Hui Y, Wang YD, Chen W, Wu G, Chang TC, Hamilton K, Tithi SS, Goldin LR, Rotunno M, Caporaso N, Vogt A, Flamish D, Wyatt K, Liu J, Tucker M, Hahn CN, Brown AL, Scott HS, Mullighan C, Nichols KE, Metzger ML, McMaster ML, Yang JJ, Rampersaud E. Discovery of novel predisposing coding and noncoding variants in familial Hodgkin lymphoma. Blood 2023; 141:1293-1307. [PMID: 35977101 PMCID: PMC10082357 DOI: 10.1182/blood.2022016056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/12/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
Familial aggregation of Hodgkin lymphoma (HL) has been demonstrated in large population studies, pointing to genetic predisposition to this hematological malignancy. To understand the genetic variants associated with the development of HL, we performed whole genome sequencing on 234 individuals with and without HL from 36 pedigrees that had 2 or more first-degree relatives with HL. Our pedigree selection criteria also required at least 1 affected individual aged <21 years, with the median age at diagnosis of 21.98 years (3-55 years). Family-based segregation analysis was performed for the identification of coding and noncoding variants using linkage and filtering approaches. Using our tiered variant prioritization algorithm, we identified 44 HL-risk variants in 28 pedigrees, of which 33 are coding and 11 are noncoding. The top 4 recurrent risk variants are a coding variant in KDR (rs56302315), a 5' untranslated region variant in KLHDC8B (rs387906223), a noncoding variant in an intron of PAX5 (rs147081110), and another noncoding variant in an intron of GATA3 (rs3824666). A newly identified splice variant in KDR (c.3849-2A>C) was observed for 1 pedigree, and high-confidence stop-gain variants affecting IRF7 (p.W238∗) and EEF2KMT (p.K116∗) were also observed. Multiple truncating variants in POLR1E were found in 3 independent pedigrees as well. Whereas KDR and KLHDC8B have previously been reported, PAX5, GATA3, IRF7, EEF2KMT, and POLR1E represent novel observations. Although there may be environmental factors influencing lymphomagenesis, we observed segregation of candidate germline variants likely to predispose HL in most of the pedigrees studied.
Collapse
Affiliation(s)
- Jamie E. Flerlage
- Department of Oncology, St. Jude Children’s Research Hospital and the University of Tennessee Health Sciences Center, Memphis, TN
| | - Jason R. Myers
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jamie L. Maciaszek
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ninad Oak
- Department of Oncology, St. Jude Children’s Research Hospital and the University of Tennessee Health Sciences Center, Memphis, TN
| | - Sara R. Rashkin
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yawei Hui
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Wenan Chen
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kayla Hamilton
- Department of Oncology, St. Jude Children’s Research Hospital and the University of Tennessee Health Sciences Center, Memphis, TN
| | - Saima S. Tithi
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Lynn R. Goldin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Melissa Rotunno
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | | | | | - Jia Liu
- Leidos Biomedical, Inc, Frederick, MD
| | - Margaret Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Christopher N. Hahn
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Anna L. Brown
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Hamish S. Scott
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Charles Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kim E. Nichols
- Department of Oncology, St. Jude Children’s Research Hospital and the University of Tennessee Health Sciences Center, Memphis, TN
| | - Monika L. Metzger
- Department of Oncology, St. Jude Children’s Research Hospital and the University of Tennessee Health Sciences Center, Memphis, TN
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN
| | - Mary L. McMaster
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Jun J. Yang
- Department of Oncology, St. Jude Children’s Research Hospital and the University of Tennessee Health Sciences Center, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Evadnie Rampersaud
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
3
|
Li Z, Mu W, Xiao M. Genetic lesions and targeted therapy in Hodgkin lymphoma. Ther Adv Hematol 2023; 14:20406207221149245. [PMID: 36654739 PMCID: PMC9841868 DOI: 10.1177/20406207221149245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
Hodgkin lymphoma is a special type of lymphoma in which tumor cells frequently undergo multiple genetic lesions that are associated with accompanying pathway abnormalities. These pathway abnormalities are dominated by active signaling pathways, such as the JAK-STAT (Janus kinase-signal transducer and activator of transcription) pathway and the NFκB (nuclear factor kappa-B) pathway, which usually result in hyperactive survival signaling. Targeted therapies often play an important role in hematologic malignancies, such as CAR-T therapy (chimeric antigen receptor T-cell immunotherapy) targeting CD19 and CD22 in diffuse large B-cell lymphoma, while in Hodgkin lymphoma, the main targets of targeted therapies are CD30 molecules and PD1 molecules. Drugs targeting other molecules are also under investigation. This review summarizes the actionable genetic lesions, current treatment options, clinical trials for Hodgkin lymphoma and the potential value of those genetic lesions in clinical applications.
Collapse
Affiliation(s)
- Zhe Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Mu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | |
Collapse
|
4
|
Trecourt A, Donzel M, Fontaine J, Ghesquières H, Jallade L, Antherieu G, Laurent C, Mauduit C, Traverse-Glehen A. Plasticity in Classical Hodgkin Composite Lymphomas: A Systematic Review. Cancers (Basel) 2022; 14:cancers14225695. [PMID: 36428786 PMCID: PMC9688742 DOI: 10.3390/cancers14225695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
The co-occurrence of several lymphomas in a patient defines composite/synchronous lymphoma. A common cellular origin has been reported for both contingents of such entities. In the present review, we aimed to gather the available data on composite lymphomas associating a classical Hodgkin lymphoma (cHL) with another lymphoma, to better understand the plasticity of mature B and T-cells. This review highlights that >70% of patients with a composite lymphoma are ≥55 years old, with a male predominance. The most reported associations are cHL with follicular lymphoma or diffuse large B-cell lymphoma, with over 130 cases reported. The cHL contingent is often of mixed cellularity type, with a more frequent focal/weak CD20 expression (30% to 55.6%) compared to de novo cHL, suggesting a particular pathophysiology. Moreover, Hodgkin cells may express specific markers of the associated lymphoma (e.g., BCL2/BCL6 for follicular lymphoma and Cyclin D1 for mantle cell lymphoma), sometimes combined with common BCL2/BCL6 or CCND1 rearrangements, respectively. In addition, both contingents may share similar IgH/IgK rearrangements and identical pathogenic variants, reinforcing the hypothesis of a common clonal origin. Finally, cHL appears to be endowed with a greater plasticity than previously thought, supporting a common clonal origin and a transdifferentiation process during lymphomagenesis of composite lymphomas.
Collapse
Affiliation(s)
- Alexis Trecourt
- Service de Pathologie Multi-Site, Site Sud, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
- Faculté de Médecine Lyon-Sud, Université Claude Bernard Lyon 1, UR 3738—CICLY, 69921 Oullins, France
- Correspondence: ; Tel.: +33-(0)4-7886-1186; Fax: +33-(0)4-7886-5713
| | - Marie Donzel
- Service de Pathologie Multi-Site, Site Sud, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
- Faculté de Médecine de Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Faculté de Médecine Lyon-Sud, CRCL, Centre International de Recherche en Infectiologie (CIRI), Université Claude Bernard Lyon-1, INSERM U1111, CNRS, UMR5308, ENS Lyon, 69921 Oullins, France
| | - Juliette Fontaine
- Service de Pathologie Multi-Site, Site Sud, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| | - Hervé Ghesquières
- Faculté de Médecine de Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Faculté de Médecine Lyon-Sud, CRCL, Centre International de Recherche en Infectiologie (CIRI), Université Claude Bernard Lyon-1, INSERM U1111, CNRS, UMR5308, ENS Lyon, 69921 Oullins, France
- Service d’Hématologie Clinique, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| | - Laurent Jallade
- Faculté de Médecine de Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Faculté de Médecine Lyon-Sud, CRCL, Centre International de Recherche en Infectiologie (CIRI), Université Claude Bernard Lyon-1, INSERM U1111, CNRS, UMR5308, ENS Lyon, 69921 Oullins, France
- Laboratoire d’Hématologie, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| | - Gabriel Antherieu
- Service d’Hématologie Clinique, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| | - Camille Laurent
- Service de Pathologie, Centre de Recherche en Cancérologie de Toulouse-Purpan, Institut Universitaire du Cancer, Oncopole de Toulouse, 31100 Toulouse, France
| | - Claire Mauduit
- Service de Pathologie Multi-Site, Site Sud, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
- Faculté de Médecine de Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Institut National de la Santé et de la Recherche Médicale, Centre Méditerranéen de Médecine Moléculaire (C3M), Unité 1065, Equipe 10, 06000 Nice, France
| | - Alexsandra Traverse-Glehen
- Service de Pathologie Multi-Site, Site Sud, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
- Faculté de Médecine de Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Faculté de Médecine Lyon-Sud, CRCL, Centre International de Recherche en Infectiologie (CIRI), Université Claude Bernard Lyon-1, INSERM U1111, CNRS, UMR5308, ENS Lyon, 69921 Oullins, France
| |
Collapse
|
5
|
Skopelitou D, Srivastava A, Miao B, Kumar A, Dymerska D, Paramasivam N, Schlesner M, Lubinski J, Hemminki K, Försti A, Reddy Bandapalli O. Whole exome sequencing identifies novel germline variants of SLC15A4 gene as potentially cancer predisposing in familial colorectal cancer. Mol Genet Genomics 2022; 297:965-979. [PMID: 35562597 PMCID: PMC9250485 DOI: 10.1007/s00438-022-01896-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 04/02/2022] [Indexed: 11/25/2022]
Abstract
About 15% of colorectal cancer (CRC) patients have first-degree relatives affected by the same malignancy. However, for most families the cause of familial aggregation of CRC is unknown. To identify novel high-to-moderate-penetrance germline variants underlying CRC susceptibility, we performed whole exome sequencing (WES) on four CRC cases and two unaffected members of a Polish family without any mutation in known CRC predisposition genes. After WES, we used our in-house developed Familial Cancer Variant Prioritization Pipeline and identified two novel variants in the solute carrier family 15 member 4 (SLC15A4) gene. The heterozygous missense variant, p. Y444C, was predicted to affect the phylogenetically conserved PTR2/POT domain and to have a deleterious effect on the function of the encoded peptide/histidine transporter. The other variant was located in the upstream region of the same gene (GRCh37.p13, 12_129308531_C_T; 43 bp upstream of transcription start site, ENST00000266771.5) and it was annotated to affect the promoter region of SLC15A4 as well as binding sites of 17 different transcription factors. Our findings of two distinct variants in the same gene may indicate a synergistic up-regulation of SLC15A4 as the underlying genetic cause and implicate this gene for the first time in genetic inheritance of familial CRC.
Collapse
Affiliation(s)
- Diamanto Skopelitou
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Aayushi Srivastava
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Beiping Miao
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Abhishek Kumar
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Dagmara Dymerska
- Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Nagarajan Paramasivam
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Matthias Schlesner
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Kari Hemminki
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Asta Försti
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Obul Reddy Bandapalli
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
6
|
Meiotic drive in chronic lymphocytic leukemia compared with other malignant blood disorders. Sci Rep 2022; 12:6138. [PMID: 35413962 PMCID: PMC9005523 DOI: 10.1038/s41598-022-09602-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/22/2022] [Indexed: 11/12/2022] Open
Abstract
The heredity of the malignant blood disorders, leukemias, lymphomas and myeloma, has so far been largely unknown. The present study comprises genealogical investigations of one hundred and twelve Scandinavian families with unrelated parents and two or more cases of malignant blood disease. For comparison, one large family with related family members and three hundred and forty-one cases of malignant blood disease from the Faroese population was included. The inheritance is non-Mendelian, a combination of genomic parental imprinting and feto-maternal microchimerism. There is significantly more segregation in maternal than in paternal lines, predominance of mother-daughter combinations in maternal lines, and father-son combinations in paternal lines. Chronic lymphocytic leukemia is the most frequent diagnosis in the family material, and chronic lymphocytic leukemia has a transgenerational segregation that is unique in that inheritance of susceptibility to chronic lymphocytic leukemia is predominant in males of paternal lines. Male offspring with chronic lymphocytic leukemia in paternal lines have a birth-order effect, which is manifest by the fact that there are significantly more male patients late in the sibling line. In addition, there is contravariation in chronic lymphocytic leukemia, i.e. lower occurrence than expected in relation to other diagnoses, interpreted in such a way that chronic lymphocytic leukemia remains isolated in the pedigree in relation to other diagnoses of malignant blood disease. Another non-Mendelian function appears in the form of anticipation, i.e. increased intensity of malignancy down through the generations and a lower age at onset of disease than otherwise seen in cases from the Cancer Registers, in acute lymphoblastic leukemia, for example. It is discussed that this non-Mendelian segregation seems to spread the susceptibility genes depending on the gender of the parents and not equally to all children in the sibling line, with some remaining unaffected by susceptibility i.e. "healthy and unaffected", due to a birth order effect. In addition, anticipation is regarded as a non-Mendelian mechanism that can amplify, «preserve» these vital susceptibility genes in the family. Perhaps this segregation also results in a sorting of the susceptibility, as the percentage of follicular lymphoma and diffuse large B-cell lymphoma is lower in the family material than in an unselected material. Although leukemias, lymphomas and myelomas are potentially fatal diseases, this non-Mendelian distribution and amplification hardly play any quantitative role in the survival of Homo sapiens, because these diseases mostly occur after fertile age.
Collapse
|
7
|
Miao B, Skopelitou D, Srivastava A, Giangiobbe S, Dymerska D, Paramasivam N, Kumar A, Kuświk M, Kluźniak W, Paszkowska-Szczur K, Schlesner M, Lubinski J, Hemminki K, Försti A, Bandapalli OR. Whole-Exome Sequencing Identifies a Novel Germline Variant in PTK7 Gene in Familial Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23031295. [PMID: 35163215 PMCID: PMC8836109 DOI: 10.3390/ijms23031295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/02/2022] [Accepted: 01/18/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the third most frequently diagnosed malignancy worldwide. Only 5% of all CRC cases are due to germline mutations in known predisposition genes, and the remaining genetic burden still has to be discovered. In this study, we performed whole-exome sequencing on six members of a Polish family diagnosed with CRC and identified a novel germline variant in the protein tyrosine kinase 7 (inactive) gene (PTK7, ENST00000230419, V354M). Targeted screening of the variant in 1705 familial CRC cases and 1674 healthy elderly individuals identified the variant in an additional familial CRC case. Introduction of this variant in HT-29 cells resulted in increased cell proliferation, migration, and invasion; it also caused down-regulation of CREB, p21 and p53 mRNA and protein levels, and increased AKT phosphorylation. These changes indicated inhibition of apoptosis pathways and activation of AKT signaling. Our study confirmed the oncogenic function of PTK7 and supported its role in genetic predisposition of familial CRC.
Collapse
Affiliation(s)
- Beiping Miao
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (B.M.); (D.S.); (A.S.); (S.G.); (A.K.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Diamanto Skopelitou
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (B.M.); (D.S.); (A.S.); (S.G.); (A.K.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Aayushi Srivastava
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (B.M.); (D.S.); (A.S.); (S.G.); (A.K.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Sara Giangiobbe
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (B.M.); (D.S.); (A.S.); (S.G.); (A.K.); (A.F.)
| | - Dagmara Dymerska
- Department of Genetics and Pathology, Pomeranian Medical University, 71252 Szczecin, Poland; (D.D.); (M.K.); (W.K.); (K.P.-S.); (J.L.)
| | - Nagarajan Paramasivam
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany;
| | - Abhishek Kumar
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (B.M.); (D.S.); (A.S.); (S.G.); (A.K.); (A.F.)
- Institute of Bioinformatics, International Technology Park, Bengaluru 560066, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Magdalena Kuświk
- Department of Genetics and Pathology, Pomeranian Medical University, 71252 Szczecin, Poland; (D.D.); (M.K.); (W.K.); (K.P.-S.); (J.L.)
| | - Wojciech Kluźniak
- Department of Genetics and Pathology, Pomeranian Medical University, 71252 Szczecin, Poland; (D.D.); (M.K.); (W.K.); (K.P.-S.); (J.L.)
| | - Katarzyna Paszkowska-Szczur
- Department of Genetics and Pathology, Pomeranian Medical University, 71252 Szczecin, Poland; (D.D.); (M.K.); (W.K.); (K.P.-S.); (J.L.)
| | - Matthias Schlesner
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, 71252 Szczecin, Poland; (D.D.); (M.K.); (W.K.); (K.P.-S.); (J.L.)
| | - Kari Hemminki
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (B.M.); (D.S.); (A.S.); (S.G.); (A.K.); (A.F.)
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
- Correspondence: (K.H.); (O.R.B.); Tel.: +49-6221-421809 (O.R.B.); Fax: +49-6221-424639 (O.R.B.)
| | - Asta Försti
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (B.M.); (D.S.); (A.S.); (S.G.); (A.K.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Obul Reddy Bandapalli
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (B.M.); (D.S.); (A.S.); (S.G.); (A.K.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
- Correspondence: (K.H.); (O.R.B.); Tel.: +49-6221-421809 (O.R.B.); Fax: +49-6221-424639 (O.R.B.)
| |
Collapse
|
8
|
A Novel Low-Risk Germline Variant in the SH2 Domain of the SRC Gene Affects Multiple Pathways in Familial Colorectal Cancer. J Pers Med 2021; 11:jpm11040262. [PMID: 33916261 PMCID: PMC8066297 DOI: 10.3390/jpm11040262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer (CRC) shows one of the largest proportions of familial cases among different malignancies, but only 5-10% of all CRC cases are linked to mutations in established predisposition genes. Thus, familial CRC constitutes a promising target for the identification of novel, high- to moderate-penetrance germline variants underlying cancer susceptibility by next generation sequencing. In this study, we performed whole genome sequencing on three members of a family with CRC aggregation. Subsequent integrative in silico analysis using our in-house developed variant prioritization pipeline resulted in the identification of a novel germline missense variant in the SRC gene (V177M), a proto-oncogene highly upregulated in CRC. Functional validation experiments in HT-29 cells showed that introduction of SRCV177M resulted in increased cell proliferation and enhanced protein expression of phospho-SRC (Y419), a potential marker for SRC activity. Upregulation of paxillin, β-Catenin, and STAT3 mRNA levels, increased levels of phospho-ERK, CREB, and CCND1 proteins and downregulation of the tumor suppressor p53 further proposed the activation of several pathways due to the SRCV177M variant. The findings of our pedigree-based study contribute to the exploration of the genetic background of familial CRC and bring insights into the molecular basis of upregulated SRC activity and downstream pathways in colorectal carcinogenesis.
Collapse
|
9
|
Skopelitou D, Miao B, Srivastava A, Kumar A, Kuswick M, Dymerska D, Paramasivam N, Schlesner M, Lubinski J, Hemminki K, Försti A, Bandapalli OR. Whole Exome Sequencing Identifies APCDD1 and HDAC5 Genes as Potentially Cancer Predisposing in Familial Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22041837. [PMID: 33673279 PMCID: PMC7917948 DOI: 10.3390/ijms22041837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 01/01/2023] Open
Abstract
Germline mutations in predisposition genes account for only 20% of all familial colorectal cancers (CRC) and the remaining genetic burden may be due to rare high- to moderate-penetrance germline variants that are not explored. With the aim of identifying such potential cancer-predisposing variants, we performed whole exome sequencing on three CRC cases and three unaffected members of a Polish family and identified two novel heterozygous variants: a coding variant in APC downregulated 1 gene (APCDD1, p.R299H) and a non-coding variant in the 5′ untranslated region (UTR) of histone deacetylase 5 gene (HDAC5). Sanger sequencing confirmed the variants segregating with the disease and Taqman assays revealed 8 additional APCDD1 variants in a cohort of 1705 familial CRC patients and no further HDAC5 variants. Proliferation assays indicated an insignificant proliferative impact for the APCDD1 variant. Luciferase reporter assays using the HDAC5 variant resulted in an enhanced promoter activity. Targeting of transcription factor binding sites of SNAI-2 and TCF4 interrupted by the HDAC5 variant showed a significant impact of TCF4 on promoter activity of mutated HDAC5. Our findings contribute not only to the identification of unrecognized genetic causes of familial CRC but also underline the importance of 5’UTR variants affecting transcriptional regulation and the pathogenesis of complex disorders.
Collapse
Affiliation(s)
- Diamanto Skopelitou
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (D.S.); (B.M.); (A.S.); (A.K.); (K.H.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Beiping Miao
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (D.S.); (B.M.); (A.S.); (A.K.); (K.H.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Aayushi Srivastava
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (D.S.); (B.M.); (A.S.); (A.K.); (K.H.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Abhishek Kumar
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (D.S.); (B.M.); (A.S.); (A.K.); (K.H.); (A.F.)
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Magdalena Kuswick
- Department of Genetics and Pathology, Pomeranian Medical University, 71252 Szczecin, Poland; (M.K.); (D.D.); (J.L.)
| | - Dagmara Dymerska
- Department of Genetics and Pathology, Pomeranian Medical University, 71252 Szczecin, Poland; (M.K.); (D.D.); (J.L.)
| | - Nagarajan Paramasivam
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany;
| | - Matthias Schlesner
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, 71252 Szczecin, Poland; (M.K.); (D.D.); (J.L.)
| | - Kari Hemminki
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (D.S.); (B.M.); (A.S.); (A.K.); (K.H.); (A.F.)
- Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Asta Försti
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (D.S.); (B.M.); (A.S.); (A.K.); (K.H.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Obul Reddy Bandapalli
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (D.S.); (B.M.); (A.S.); (A.K.); (K.H.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-421809
| |
Collapse
|
10
|
Lv X, Wang Q, Ge X, Xue C, Liu X. Application of high-throughput gene sequencing in lymphoma. Exp Mol Pathol 2021; 119:104606. [PMID: 33493455 DOI: 10.1016/j.yexmp.2021.104606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/30/2020] [Accepted: 01/12/2021] [Indexed: 12/29/2022]
Abstract
As a malignant tumor originating from the lymphoid hematopoietic tissues, lymphoma has an increased incidence in recent years and has ranked among the top ten malignant tumors in the world. But until now, due to the multiple pathological subtypes and the unclear molecular mechanism, it's still difficult to make rapid diagnosis and accurate prognosis assessment for lymphoma patients. Recently, the development of high-throughput gene sequencing technology has provided the possibility to solve these clinical problems. This technology has realized large-scale screening of specific markers for lymphoma at the molecular biology level, followed by discovery of prognostic indicators and biological targets for new drug research. In this paper, we summarize the results of large-scale high-throughput gene sequencing research, and introduce the genetic changes associated with occurrence and prognosis of lymphomas with different pathological subtypes, hoping to further promote the application of this technology in clinical research of lymphoma.
Collapse
Affiliation(s)
- Xiao Lv
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Qian Wang
- State Grid Electronic Commerce CO.,LTD, China
| | - Xueling Ge
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Chao Xue
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, China
| | - Xin Liu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China.
| |
Collapse
|
11
|
Rotunno M, Barajas R, Clyne M, Hoover E, Simonds NI, Lam TK, Mechanic LE, Goldstein AM, Gillanders EM. A Systematic Literature Review of Whole Exome and Genome Sequencing Population Studies of Genetic Susceptibility to Cancer. Cancer Epidemiol Biomarkers Prev 2020; 29:1519-1534. [PMID: 32467344 DOI: 10.1158/1055-9965.epi-19-1551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/17/2020] [Accepted: 05/13/2020] [Indexed: 01/03/2023] Open
Abstract
The application of next-generation sequencing (NGS) technologies in cancer research has accelerated the discovery of somatic mutations; however, progress in the identification of germline variation associated with cancer risk is less clear. We conducted a systematic literature review of cancer genetic susceptibility studies that used NGS technologies at an exome/genome-wide scale to obtain a fuller understanding of the research landscape to date and to inform future studies. The variability across studies on methodologies and reporting was considerable. Most studies sequenced few high-risk (mainly European) families, used a candidate analysis approach, and identified potential cancer-related germline variants or genes in a small fraction of the sequenced cancer cases. This review highlights the importance of establishing consensus on standards for the application and reporting of variants filtering strategies. It also describes the progress in the identification of cancer-related germline variation to date. These findings point to the untapped potential in conducting studies with appropriately sized and racially diverse families and populations, combining results across studies and expanding beyond a candidate analysis approach to advance the discovery of genetic variation that accounts for the unexplained cancer heritability.
Collapse
Affiliation(s)
- Melissa Rotunno
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland.
| | - Rolando Barajas
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Mindy Clyne
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Elise Hoover
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | | | - Tram Kim Lam
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Leah E Mechanic
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Alisa M Goldstein
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Elizabeth M Gillanders
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| |
Collapse
|
12
|
Srivastava A, Giangiobbe S, Kumar A, Paramasivam N, Dymerska D, Behnisch W, Witzens-Harig M, Lubinski J, Hemminki K, Försti A, Bandapalli OR. Identification of Familial Hodgkin Lymphoma Predisposing Genes Using Whole Genome Sequencing. Front Bioeng Biotechnol 2020; 8:179. [PMID: 32211398 PMCID: PMC7067901 DOI: 10.3389/fbioe.2020.00179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/21/2020] [Indexed: 12/18/2022] Open
Abstract
Hodgkin lymphoma (HL) is a lymphoproliferative malignancy of B-cell origin that accounts for 10% of all lymphomas. Despite evidence suggesting strong familial clustering of HL, there is no clear understanding of the contribution of genes predisposing to HL. In this study, whole genome sequencing (WGS) was performed on 7 affected and 9 unaffected family members from three HL-prone families and variants were prioritized using our Familial Cancer Variant Prioritization Pipeline (FCVPPv2). WGS identified a total of 98,564, 170,550, and 113,654 variants which were reduced by pedigree-based filtering to 18,158, 465, and 26,465 in families I, II, and III, respectively. In addition to variants affecting amino acid sequences, variants in promoters, enhancers, transcription factors binding sites, and microRNA seed sequences were identified from upstream, downstream, 5′ and 3′ untranslated regions. A panel of 565 cancer predisposing and other cancer-related genes and of 2,383 potential candidate HL genes were also screened in these families to aid further prioritization. Pathway analysis of segregating genes with Combined Annotation Dependent Depletion Tool (CADD) scores >20 was performed using Ingenuity Pathway Analysis software which implicated several candidate genes in pathways involved in B-cell activation and proliferation and in the network of “Cancer, Hematological disease and Immunological Disease.” We used the FCVPPv2 for further in silico analyses and prioritized 45 coding and 79 non-coding variants from the three families. Further literature-based analysis allowed us to constrict this list to one rare germline variant each in families I and II and two in family III. Functional studies were conducted on the candidate from family I in a previous study, resulting in the identification and functional validation of a novel heterozygous missense variant in the tumor suppressor gene DICER1 as potential HL predisposition factor. We aim to identify the individual genes responsible for predisposition in the remaining two families and will functionally validate these in further studies.
Collapse
Affiliation(s)
- Aayushi Srivastava
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Sara Giangiobbe
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Abhishek Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nagarajan Paramasivam
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Dagmara Dymerska
- Department of Genetics and Pathology, International Hereditary Cancer Centre, Pomeranian Medical University, Szczecin, Poland
| | - Wolfgang Behnisch
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | | | - Jan Lubinski
- Department of Genetics and Pathology, International Hereditary Cancer Centre, Pomeranian Medical University, Szczecin, Poland
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Pilsen, Czechia
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Obul Reddy Bandapalli
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
13
|
Martínez de LaPiscina I, Hernández-Ramírez LC, Portillo N, Gómez-Gila AL, Urrutia I, Martínez-Salazar R, García-Castaño A, Aguayo A, Rica I, Gaztambide S, Faucz FR, Keil MF, Lodish MB, Quezado M, Pankratz N, Chittiboina P, Lane J, Kay DM, Mills JL, Castaño L, Stratakis CA. Rare Germline DICER1 Variants in Pediatric Patients With Cushing's Disease: What Is Their Role? Front Endocrinol (Lausanne) 2020; 11:433. [PMID: 32714280 PMCID: PMC7351020 DOI: 10.3389/fendo.2020.00433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Context: The DICER1 syndrome is a multiple neoplasia disorder caused by germline mutations in the DICER1 gene. In DICER1 patients, aggressive congenital pituitary tumors lead to neonatal Cushing's disease (CD). The role of DICER1 in other corticotropinomas, however, remains unknown. Objective: To perform a comprehensive screening for DICER1 variants in a large cohort of CD patients, and to analyze their possible contribution to the phenotype. Design, setting, patients, and interventions: We included 192 CD cases: ten young-onset (age <30 years at diagnosis) patients were studied using a next generation sequencing panel, and 182 patients (170 pediatric and 12 adults) were screened via whole-exome sequencing. In seven cases, tumor samples were analyzed by Sanger sequencing. Results: Rare germline DICER1 variants were found in seven pediatric patients with no other known disease-associated germline defects or somatic DICER1 second hits. By immunohistochemistry, DICER1 showed nuclear localization in 5/6 patients. Variant transmission from one of the parents was confirmed in 5/7 cases. One patient had a multinodular goiter; another had a family history of melanoma; no other patients had a history of neoplasms. Conclusions: Our findings suggest that DICER1 gene variants may contribute to the pathogenesis of non-syndromic corticotropinomas. Clarifying whether DICER1 loss-of-function is disease-causative or a mere disease-modifier in this setting, requires further studies. Clinical trial registration: ClinicalTrials.gov: NCT00001595.
Collapse
Affiliation(s)
- Idoia Martínez de LaPiscina
- Section on Endocrinology, Metabolism, Nutrition and Renal Diseases, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV/EHU, CIBERER, CIBERDEM, Barakaldo, Spain
| | - Laura C. Hernández-Ramírez
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Nancy Portillo
- Section on Endocrinology, Metabolism, Nutrition and Renal Diseases, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV/EHU, CIBERER, CIBERDEM, Barakaldo, Spain
- Pediatric Endocrinology Service, Alto Deba Hospital, Arrasate, Spain
| | - Ana L. Gómez-Gila
- Pediatric Endocrinology Service, Virgen del Rocío University Hospital, Sevilla, Spain
| | - Inés Urrutia
- Section on Endocrinology, Metabolism, Nutrition and Renal Diseases, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV/EHU, CIBERER, CIBERDEM, Barakaldo, Spain
| | - Rosa Martínez-Salazar
- Section on Endocrinology, Metabolism, Nutrition and Renal Diseases, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV/EHU, CIBERER, CIBERDEM, Barakaldo, Spain
| | - Alejandro García-Castaño
- Section on Endocrinology, Metabolism, Nutrition and Renal Diseases, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV/EHU, CIBERER, CIBERDEM, Barakaldo, Spain
| | - Aníbal Aguayo
- Section on Endocrinology, Metabolism, Nutrition and Renal Diseases, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV/EHU, CIBERER, CIBERDEM, Barakaldo, Spain
| | - Itxaso Rica
- Section on Endocrinology, Metabolism, Nutrition and Renal Diseases, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV/EHU, CIBERER, CIBERDEM, Barakaldo, Spain
- Pediatric Endocrinology Service, Cruces University Hospital, Barakaldo, Spain
| | - Sonia Gaztambide
- Section on Endocrinology, Metabolism, Nutrition and Renal Diseases, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV/EHU, CIBERER, CIBERDEM, Barakaldo, Spain
- Endocrinology Service, Cruces University Hospital, Barakaldo, Spain
| | - Fabio R. Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Margaret F. Keil
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Maya B. Lodish
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
- Division of Pediatric Endocrinology, Department of Pediatrics, Mission Hall, University of California, San Francisco, San Francisco, CA, United States
| | - Martha Quezado
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Prashant Chittiboina
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - John Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Denise M. Kay
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - James L. Mills
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Luis Castaño
- Section on Endocrinology, Metabolism, Nutrition and Renal Diseases, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV/EHU, CIBERER, CIBERDEM, Barakaldo, Spain
- *Correspondence: Luis Castaño
| | - Constantine A. Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
14
|
Whole Genome Sequencing of Familial Non-Medullary Thyroid Cancer Identifies Germline Alterations in MAPK/ERK and PI3K/AKT Signaling Pathways. Biomolecules 2019; 9:biom9100605. [PMID: 31614935 PMCID: PMC6843654 DOI: 10.3390/biom9100605] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/06/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022] Open
Abstract
Evidence of familial inheritance in non-medullary thyroid cancer (NMTC) has accumulated over the last few decades. However, known variants account for a very small percentage of the genetic burden. Here, we focused on the identification of common pathways and networks enriched in NMTC families to better understand its pathogenesis with the final aim of identifying one novel high/moderate-penetrance germline predisposition variant segregating with the disease in each studied family. We performed whole genome sequencing on 23 affected and 3 unaffected family members from five NMTC-prone families and prioritized the identified variants using our Familial Cancer Variant Prioritization Pipeline (FCVPPv2). In total, 31 coding variants and 39 variants located in upstream, downstream, 5′ or 3′ untranslated regions passed FCVPPv2 filtering. Altogether, 210 genes affected by variants that passed the first three steps of the FCVPPv2 were analyzed using Ingenuity Pathway Analysis software. These genes were enriched in tumorigenic signaling pathways mediated by receptor tyrosine kinases and G-protein coupled receptors, implicating a central role of PI3K/AKT and MAPK/ERK signaling in familial NMTC. Our approach can facilitate the identification and functional validation of causal variants in each family as well as the screening and genetic counseling of other individuals at risk of developing NMTC.
Collapse
|