1
|
Chen Y, Qiao H, Zhong R, Sun L, Shang B. Forkhead box D subfamily genes in colorectal cancer: potential biomarkers and therapeutic targets. PeerJ 2024; 12:e18406. [PMID: 39494294 PMCID: PMC11529599 DOI: 10.7717/peerj.18406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/05/2024] [Indexed: 11/05/2024] Open
Abstract
Background The forkhead box (FOX) family members regulate gene transcription and expression. FOX family members regulate various biological processes, such as cell proliferation and tumorigenesis. FOXD, a FOX protein subfamily, is associated with poor prognosis for various cancers. However, the potential clinical value of FOXD subfamily members in colorectal cancer (CRC) has not yet been elucidated. Therefore, in this study, we aimed to determine the role of the FOXD subfamily members in CRC development. Methods Using HTSeq-count data, clinical data, and single-nucleotide polymorphisms (obtained from The Cancer Genome Atlas Project), and bioinformatics analyses (using DESEQ2 software), we identified differentially expressed genes (DEGs) in CRC. Next, each DEG expression was validated in vitro using reverse transcription-quantitative polymerase chain reaction, western blotting, and immunohistochemistry (IHC). Results Among the FOXD subfamily members, the area under the receiver operating characteristic curve of FOXD3 was 0.949, indicating that FOXD3 has a high overall diagnostic accuracy for CRC. Gene Set Enrichment Analysis revealed that FOXD-DEGs were mainly related to pathways such as cytokine, cytokine, and extracellular matrix receptor interactions. Kaplan-Meier curves and nomograms showed that FOXD1, FOXD3, and FOXD4 were prognostically significant. In conclusion, FOXD subfamily members (especially FOXD3) could serve as diagnostic and prognostic biomarkers for CRC and an immunotherapy target in patients with CRC.
Collapse
Affiliation(s)
- Ying Chen
- Emergency Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Haiyan Qiao
- Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Ruiqi Zhong
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lei Sun
- Emergency Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Bingbing Shang
- Emergency Department, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Prasad P, Kannan B, Sriram G, Jaber M, Khair AMB, Ramasubramanian A, Ramani P, Jayaseelan VP, Arumugam P. Waterpipe smoke condensate induces epithelial-mesenchymal transformation and promotes metastasis of oral cancer by FOXD1 expression. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101900. [PMID: 38692456 DOI: 10.1016/j.jormas.2024.101900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND/PURPOSE Smoking is a major contributor to global oral cancer cases, necessitating urgent intervention. FOXD1, involved in developmental processes and various cancers, shows promise as a prognostic marker in oral squamous cell carcinoma (OSCC). This study investigates the impact of waterpipe smoke condensate (WPSC) on OSCC, focusing on FOXD1 role in inducing epithelial-mesenchymal transition (EMT) and metastasis. METHODS The study involved using OSCC cells treated with WPSC to evaluate their proliferation, colony formation, gene expression, and protein levels. The researchers also explored the clinical relevance of their findings using online databases to analyze FOXD1 expression in cancer tissues and its correlation with clinicopathological features and patient survival. Additionally, in silico tools were employed for functional analysis, pathway enrichment, and network exploration. RESULTS The study found that WPSC increased the expression of FOXD1 in OSCC cells, which led to increased cell growth. The study also showed that FOXD1 plays a critical role in the EMT process induced by WPSC, as evidenced by changes in the expression of EMT-related genes and proteins. Clinical analysis revealed that FOXD1 was significantly associated with more aggressive tumor features and poorer prognosis in cancer patients. CONCLUSION The study highlights FOXD1 as a key player in OSCC pathogenesis and a potential prognostic marker and therapeutic target, particularly when influenced by WPSC exposure. Further research is needed to explore FOXD1 molecular mechanisms and clinical implications to enhance OSCC treatment strategies.
Collapse
Affiliation(s)
- Prathibha Prasad
- Medical and Dental Sciences Department, College of Dentistry, Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE; Department of Oral Pathology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Balachander Kannan
- Molecular Biology Lab, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Mohamed Jaber
- Medical and Dental Sciences Department, College of Dentistry, Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Al Moutassem Billah Khair
- Medical and Dental Sciences Department, College of Dentistry, Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Abilasha Ramasubramanian
- Department of Oral Pathology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Pratibha Ramani
- Department of Oral Pathology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Vijayashree Priyadharshini Jayaseelan
- Clinical Genetics Lab, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Paramasivam Arumugam
- Molecular Biology Lab, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
| |
Collapse
|
3
|
Zhang Z, Wu Y, Fu J, Yu X, Su Y, Jia S, Cheng H, Shen Y, He X, Ren K, Zheng X, Guan H, Rao F, Zhao L. Proteostatic reactivation of the developmental transcription factor TBX3 drives BRAF/MAPK-mediated tumorigenesis. Nat Commun 2024; 15:4108. [PMID: 38750011 PMCID: PMC11096176 DOI: 10.1038/s41467-024-48173-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
MAPK pathway-driven tumorigenesis, often induced by BRAFV600E, relies on epithelial dedifferentiation. However, how lineage differentiation events are reprogrammed remains unexplored. Here, we demonstrate that proteostatic reactivation of developmental factor, TBX3, accounts for BRAF/MAPK-mediated dedifferentiation and tumorigenesis. During embryonic development, BRAF/MAPK upregulates USP15 to stabilize TBX3, which orchestrates organogenesis by restraining differentiation. The USP15-TBX3 axis is reactivated during tumorigenesis, and Usp15 knockout prohibits BRAFV600E-driven tumor development in a Tbx3-dependent manner. Deleting Tbx3 or Usp15 leads to tumor redifferentiation, which parallels their overdifferentiation tendency during development, exemplified by disrupted thyroid folliculogenesis and elevated differentiation factors such as Tpo, Nis, Tg. The clinical relevance is highlighted in that both USP15 and TBX3 highly correlates with BRAFV600E signature and poor tumor prognosis. Thus, USP15 stabilized TBX3 represents a critical proteostatic mechanism downstream of BRAF/MAPK-directed developmental homeostasis and pathological transformation, supporting that tumorigenesis largely relies on epithelial dedifferentiation achieved via embryonic regulatory program reinitiation.
Collapse
Affiliation(s)
- Zhenlei Zhang
- Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yufan Wu
- Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jinrong Fu
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xiujie Yu
- Department of Pathology, Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin, China
| | - Yang Su
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shikai Jia
- Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Huili Cheng
- Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yan Shen
- Department of Pathology, Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin, China
| | - Xianghui He
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Kai Ren
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiangqian Zheng
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Haixia Guan
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| | - Feng Rao
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Li Zhao
- Department of Thyroid and Neck Tumor, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
4
|
Roccuzzo G, Bongiovanni E, Tonella L, Pala V, Marchisio S, Ricci A, Senetta R, Bertero L, Ribero S, Berrino E, Marchiò C, Sapino A, Quaglino P, Cassoni P. Emerging prognostic biomarkers in advanced cutaneous melanoma: a literature update. Expert Rev Mol Diagn 2024; 24:49-66. [PMID: 38334382 DOI: 10.1080/14737159.2024.2314574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
INTRODUCTION Over the past two years, the scientific community has witnessed an exponential growth in research focused on identifying prognostic biomarkers for melanoma, both in pre-clinical and clinical settings. This surge in studies reflects the need of developing effective prognostic indicators in the field of melanoma. AREAS COVERED The aim of this work is to review the scientific literature on the most recent findings on the development or validation of prognostic biomarkers in melanoma, in the attempt of providing both clinicians and researchers with an updated broad synopsis of prognostic biomarkers in cutaneous melanoma. EXPERT OPINION While the field of prognostic biomarkers in melanoma appears promising, there are several complexities and limitations to address. The interdependence of clinical, histological, and molecular features requires accurate classification of different biomarker families. Correlation does not imply causation, and adjustments for confounding factors are often overlooked. In this scenario, large-scale studies based on high-quality clinical trial data can provide more reliable evidence. It is essential to avoid oversimplification by focusing on a single biomarker, as the interactions among multiple factors contribute to define the disease course and patient's outcome. Furthermore, implementing well-supported evidence in real-life settings can help advance prognostic biomarker research in melanoma.
Collapse
Affiliation(s)
- Gabriele Roccuzzo
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Eleonora Bongiovanni
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Luca Tonella
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Valentina Pala
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Sara Marchisio
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alessia Ricci
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Rebecca Senetta
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Simone Ribero
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Enrico Berrino
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Caterina Marchiò
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Anna Sapino
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Pietro Quaglino
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
5
|
Ram A, Murphy D, DeCuzzi N, Patankar M, Hu J, Pargett M, Albeck JG. A guide to ERK dynamics, part 2: downstream decoding. Biochem J 2023; 480:1909-1928. [PMID: 38038975 PMCID: PMC10754290 DOI: 10.1042/bcj20230277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023]
Abstract
Signaling by the extracellular signal-regulated kinase (ERK) pathway controls many cellular processes, including cell division, death, and differentiation. In this second installment of a two-part review, we address the question of how the ERK pathway exerts distinct and context-specific effects on multiple processes. We discuss how the dynamics of ERK activity induce selective changes in gene expression programs, with insights from both experiments and computational models. With a focus on single-cell biosensor-based studies, we summarize four major functional modes for ERK signaling in tissues: adjusting the size of cell populations, gradient-based patterning, wave propagation of morphological changes, and diversification of cellular gene expression states. These modes of operation are disrupted in cancer and other related diseases and represent potential targets for therapeutic intervention. By understanding the dynamic mechanisms involved in ERK signaling, there is potential for pharmacological strategies that not only simply inhibit ERK, but also restore functional activity patterns and improve disease outcomes.
Collapse
Affiliation(s)
- Abhineet Ram
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - Devan Murphy
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - Nicholaus DeCuzzi
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - Madhura Patankar
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - Jason Hu
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - Michael Pargett
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - John G. Albeck
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| |
Collapse
|
6
|
Huang Y, Zhang L, Liu T, Liang E. LMNB1 targets FOXD1 to promote progression of prostate cancer. Exp Ther Med 2023; 26:513. [PMID: 37840569 PMCID: PMC10570766 DOI: 10.3892/etm.2023.12212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/09/2023] [Indexed: 10/17/2023] Open
Abstract
Forkhead box D1 (FOXD1) expression is upregulated in various types of human cancer. To the best of our knowledge, the roles of FOXD1 in prostate cancer (PC) remain largely unknown. The Cancer Genome Atlas dataset was used for the bioinformatics analysis of FOXD1 in PC. FOXD1 expression levels in normal immortalized human prostate epithelial cells (RWPE-1) and prostate cancer cells were detected by reverse transcription-quantitative PCR. PC cell viability was detected using Cell Counting Kit-8 assay. Transwell assays were performed to assess the migration and invasion of PC cells. Luciferase reporter gene assay was used to validate the association between FOXD1 and lamin (LMN)B1. LMNB1 is an important part of the cytoskeleton, which serves an important role in the process of tumor occurrence and development, regulating apoptosis and DNA repair. FOXD1 expression was upregulated in PC tissues, with its high expression being associated with clinical stage and survival in PC. Knockdown of FOXD1 inhibited viability, migration and invasion of PC cells. FOXD1 positively regulated LMNB1 expression. The effect of FOXD1 knockdown on PC cells was reversed by LMNB1 overexpression. In conclusion, FOXD1, positively regulated by LMNB1, served as an oncogene in PC and may be a potential biomarker and treatment target for PC.
Collapse
Affiliation(s)
- Yuanshe Huang
- Agriculture College, Innovation Center for Efficient Agricultural of Guizhou Mountain Characteristics, Anshun University, Anshun, Guizhou 561000, P.R. China
| | - Lai Zhang
- Agriculture College, Innovation Center for Efficient Agricultural of Guizhou Mountain Characteristics, Anshun University, Anshun, Guizhou 561000, P.R. China
| | - Tianlei Liu
- Agriculture College, Innovation Center for Efficient Agricultural of Guizhou Mountain Characteristics, Anshun University, Anshun, Guizhou 561000, P.R. China
| | - E Liang
- Agriculture College, Innovation Center for Efficient Agricultural of Guizhou Mountain Characteristics, Anshun University, Anshun, Guizhou 561000, P.R. China
| |
Collapse
|
7
|
Cheng L, Yan H, Liu Y, Guan G, Cheng P. Dissecting multifunctional roles of forkhead box transcription factor D1 in cancers. Biochim Biophys Acta Rev Cancer 2023; 1878:188986. [PMID: 37716516 DOI: 10.1016/j.bbcan.2023.188986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023]
Abstract
As a member of the forkhead box (FOX) family of transcription factors (TF), FOXD1 has recently been implicated as a crucial regulator in a variety of human cancers. Accumulating evidence has established dysregulated and aberrant FOXD1 signaling as a prominent feature in cancer development and progression. However, there is a lack of systematic review on this topic. Here, we summarized the present understanding of FOXD1 functions in cancer biology and reviewed the downstream targets and upstream regulatory mechanisms of FOXD1 as well as the related signaling pathways within the context of current reports. We highlighted the functional features of FOXD1 in cancers to identify the future research consideration of this multifunctional transcription factor and potential therapeutic strategies targeting its oncogenic activity.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Haixu Yan
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Gefei Guan
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China.
| | - Peng Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
8
|
Wu T, Yang Z, Chen W, Jiang M, Xiao Z, Su X, Jiao Z, Yu Y, Chen S, Song M, Yang A. miR-30e-5p-mediated FOXD1 promotes cell proliferation by blocking cellular senescence and apoptosis through p21/CDK2/Rb signaling in head and neck carcinoma. Cell Death Discov 2023; 9:295. [PMID: 37563111 PMCID: PMC10415393 DOI: 10.1038/s41420-023-01571-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023] Open
Abstract
Forkhead box D1 (FOXD1) belongs to the FOX protein family, which has been found to function as a oncogene in multiple cancer types, but its role in head and neck squamous cell carcinoma (HNSCC) requires further investigation. Our research aimed to investigate the function of FOXD1 in HNSCC. Bioinformatics analysis indicated that mRNA level of FOXD1 was highly expressed in HNSCC tissues, and over-expressed FOXD1 was related to poor prognosis. Moreover, FOXD1 knockdown increased the ratio of senescent cells but decreased the proliferation ability, while FOXD1 overexpression obtained the opposite results. In vitro experiments revealed that FOXD1 bound to the p21 promoter and inhibited its transcription, which blocked the cyclin dependent kinase 2 (CDK2)/retinoblastoma (Rb) signaling pathway, thus preventing senescence and accelerating proliferation of tumor cells. CDK2 inhibitor could reverse the process to some extent. Further research has shown that miR-3oe-5p serves as a tumor suppressant by repressing the translation of FOXD1 through combining with the 3'-untranslated region (UTR). Thus, FOXD1 resists cellular senescence and facilitates HNSCC cell proliferation by affecting the expression of p21/CDK2/Rb signaling, suggesting that FOXD1 may be a potential curative target for HNSCC.
Collapse
Affiliation(s)
- Tong Wu
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China
| | - Zhongyuan Yang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China
| | - Weichao Chen
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China
| | - Mingjie Jiang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China
| | - Zhichao Xiao
- Department of Otolaryngology-Head Neck Surgery, Loudi Central Hospital, Loudi, Hunan Province, China
| | - Xuan Su
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China
| | - Zan Jiao
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China
| | - Yongchao Yu
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China
| | - Shuwei Chen
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China.
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China.
| | - Ming Song
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China.
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China.
| | - Ankui Yang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China.
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China.
| |
Collapse
|
9
|
Kumegawa K, Yang L, Miyata K, Maruyama R. FOXD1 is associated with poor outcome and maintains tumor-promoting enhancer-gene programs in basal-like breast cancer. Front Oncol 2023; 13:1156111. [PMID: 37234983 PMCID: PMC10206236 DOI: 10.3389/fonc.2023.1156111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Breast cancer biology varies markedly among patients. Basal-like breast cancer is one of the most challenging subtypes to treat because it lacks effective therapeutic targets. Despite numerous studies on potential targetable molecules in this subtype, few targets have shown promise. However, the present study revealed that FOXD1, a transcription factor that functions in both normal development and malignancy, is associated with poor prognosis in basal-like breast cancer. We analyzed publicly available RNA sequencing data and conducted FOXD1-knockdown experiments, finding that FOXD1 maintains gene expression programs that contribute to tumor progression. We first conducted survival analysis of patients grouped via a Gaussian mixture model based on gene expression in basal-like tumors, finding that FOXD1 is a prognostic factor specific to this subtype. Then, our RNA sequencing and chromatin immunoprecipitation sequencing experiments using the basal-like breast cancer cell lines BT549 and Hs578T with FOXD1 knockdown revealed that FOXD1 regulates enhancer-gene programs related to tumor progression. These findings suggest that FOXD1 plays an important role in basal-like breast cancer progression and may represent a promising therapeutic target.
Collapse
Affiliation(s)
- Kohei Kumegawa
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Liying Yang
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kenichi Miyata
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Reo Maruyama
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
10
|
The role of transcription factors in the acquisition of the four latest proposed hallmarks of cancer and corresponding enabling characteristics. Semin Cancer Biol 2022; 86:1203-1215. [PMID: 36244529 DOI: 10.1016/j.semcancer.2022.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 01/27/2023]
Abstract
With the recent description of the molecular and cellular characteristics that enable acquisition of both core and new hallmarks of cancer, the consequences of transcription factor dysregulation in the hallmarks scheme has become increasingly evident. Dysregulation or mutation of transcription factors has long been recognized in the development of cancer where alterations in these key regulatory molecules can result in aberrant gene expression and consequential blockade of normal cellular differentiation. Here, we provide an up-to-date review of involvement of dysregulated transcription factor networks with the most recently reported cancer hallmarks and enabling characteristic properties. We present some illustrative examples of the impact of dysregulated transcription factors, specifically focusing on the characteristics of phenotypic plasticity, non-mutational epigenetic reprogramming, polymorphic microbiomes, and senescence. We also discuss how new insights into transcription factor dysregulation in cancer is contributing to addressing current therapeutic challenges.
Collapse
|
11
|
FOXD1 facilitates pancreatic cancer cell proliferation, invasion, and metastasis by regulating GLUT1-mediated aerobic glycolysis. Cell Death Dis 2022; 13:765. [PMID: 36057597 PMCID: PMC9440910 DOI: 10.1038/s41419-022-05213-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 01/21/2023]
Abstract
Although FOXD1 has been found to be involved in the malignant processes of several types of cancers, its role in pancreatic cancer (PC) is not well understood. This study aimed to investigate the expression and function of FOXD1 in PC. We found that FOXD1 mRNA and protein expression were upregulated in PC tissues compared with non-tumor tissues, and high expression level of FOXD1 was associated with an adverse prognostic index of PC. The results of in vitro and in vivo assays indicate that overexpression of FOXD1 promotes aerobic glycolysis and the capacity of PC cells to proliferate, invade, and metastasize, whereas FOXD1 knockdown inhibits these functions. The results of mechanistic experiments suggest that FOXD1 can not only directly promote SLC2A1 transcription but also inhibit the degradation of SLC2A1 through the RNA-induced silencing complex. As a result, FOXD1 enhances GLUT1 expression and ultimately facilitates PC cell proliferation, invasion, and metastasis by regulating aerobic glycolysis. Taken together, FOXD1 is suggested to be a potential therapeutic target for PC.
Collapse
|
12
|
Sang Q, Dai W, Yu J, Chen Y, Fan Z, Liu J, Li F, Li J, Wu X, Hou J, Yu B, Feng H, Zhu ZG, Su L, Li YY, Liu B. Identification of prognostic gene expression signatures based on the tumor microenvironment characterization of gastric cancer. Front Immunol 2022; 13:983632. [PMID: 36032070 PMCID: PMC9411533 DOI: 10.3389/fimmu.2022.983632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/20/2022] [Indexed: 12/02/2022] Open
Abstract
Increasing evidence has elucidated that the tumor microenvironment (TME) shows a strong association with tumor progression and therapeutic outcome. We comprehensively estimated the TME infiltration patterns of 111 gastric cancer (GC) and 21 normal stomach mucosa samples based on bulk transcriptomic profiles based on which GC could be clustered as three subtypes, TME-Stromal, TME-Mix, and TME-Immune. The expression data of TME-relevant genes were utilized to build a GC prognostic model—GC_Score. Among the three GC TME subtypes, TME-Stomal displayed the worst prognosis and the highest GC_Score, while TME-Immune had the best prognosis and the lowest GC_Score. Connective tissue growth factor (CTGF), the highest weighted gene in the GC_Score, was found to be overexpressed in GC. In addition, CTGF exhibited a significant correlation with the abundance of fibroblasts. CTGF has the potential to induce transdifferentiation of peritumoral fibroblasts (PTFs) to cancer-associated fibroblasts (CAFs). Beyond characterizing TME subtypes associated with clinical outcomes, we correlated TME infiltration to molecular features and explored their functional relevance, which helps to get a better understanding of carcinogenesis and therapeutic response and provide novel strategies for tumor treatments.
Collapse
Affiliation(s)
- Qingqing Sang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wentao Dai
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
| | - Junxian Yu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunqin Chen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Zhiyuan Fan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jixiang Liu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Fangyuan Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfang Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiongyan Wu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyi Hou
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beiqin Yu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoran Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng-Gang Zhu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liping Su
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan-Yuan Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
- *Correspondence: Bingya Liu, ; Yuan-Yuan Li,
| | - Bingya Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Bingya Liu, ; Yuan-Yuan Li,
| |
Collapse
|
13
|
van den Bosch QCC, Nguyen JQN, Brands T, van den Bosch TPP, Verdijk RM, Paridaens D, Naus NC, de Klein A, Kiliç E, Brosens E. FOXD1 Is a Transcription Factor Important for Uveal Melanocyte Development and Associated with High-Risk Uveal Melanoma. Cancers (Basel) 2022; 14:cancers14153668. [PMID: 35954332 PMCID: PMC9367502 DOI: 10.3390/cancers14153668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Despite successful treatment of primary uveal melanoma (UM), metastases still occur in approximately 50% of the patients. Unfortunately, little is known about the mechanism behind metastasized UM. By reanalyzing publicly available single-cell RNA sequencing data of embryonic zebrafish larvae and validating the results with UM data, we have identified five transcription regulators of interest: ELL2, KDM5B, REXO4, RBFOX2 and FOXD1. The most significant finding is FOXD1, which is nearly exclusively expressed in high-risk UM and is associated with poor survival. FOXD1 is a novel gene which could be involved in the metastatic capability of UM. Elucidating its function and role in metastatic UM could help to understand and develop treatment for UM. Abstract Uveal melanoma (UM) is a deadly ocular malignancy, originating from uveal melanocytes. Although much is known regarding prognostication in UM, the exact mechanism of metastasis is mostly unknown. Metastatic tumor cells are known to express a more stem-like RNA profile which is seen often in cell-specific embryonic development to induce tumor progression. Here, we identified novel transcription regulators by reanalyzing publicly available single cell RNA sequencing experiments. We identified five transcription regulators of interest: ELL2, KDM5B, REXO4, RBFOX2 and FOXD1. Our most significant finding is FOXD1, as this gene is nearly exclusively expressed in high-risk UM and its expression is associated with a poor prognosis. Even within the BAP1-mutated UM, the expression of FOXD1 is correlated with poor survival. FOXD1 is a novel factor which could potentially be involved in the metastatic capacity of high-risk UM. Elucidating the function of FOXD1 in UM could provide insight into the malignant transformation of uveal melanocytes, especially in high-risk UM.
Collapse
Affiliation(s)
- Quincy C. C. van den Bosch
- Department of Ophthalmology, Erasmus MC Cancer Center, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (Q.C.C.v.d.B.); (J.Q.N.N.); (T.B.); (N.C.N.)
- Department of Clinical Genetics, Erasmus MC Cancer Center, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands;
| | - Josephine Q. N. Nguyen
- Department of Ophthalmology, Erasmus MC Cancer Center, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (Q.C.C.v.d.B.); (J.Q.N.N.); (T.B.); (N.C.N.)
- Department of Clinical Genetics, Erasmus MC Cancer Center, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands;
| | - Tom Brands
- Department of Ophthalmology, Erasmus MC Cancer Center, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (Q.C.C.v.d.B.); (J.Q.N.N.); (T.B.); (N.C.N.)
- Department of Clinical Genetics, Erasmus MC Cancer Center, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands;
| | - Thierry P. P. van den Bosch
- Department of Pathology, Section Ophthalmic Pathology, Erasmus MC Cancer Institute, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (T.P.P.v.d.B.); (R.M.V.)
| | - Robert M. Verdijk
- Department of Pathology, Section Ophthalmic Pathology, Erasmus MC Cancer Institute, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (T.P.P.v.d.B.); (R.M.V.)
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Dion Paridaens
- The Rotterdam Eye Hospital, 3011 BH Rotterdam, The Netherlands;
| | - Nicole C. Naus
- Department of Ophthalmology, Erasmus MC Cancer Center, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (Q.C.C.v.d.B.); (J.Q.N.N.); (T.B.); (N.C.N.)
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC Cancer Center, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands;
| | - Emine Kiliç
- Department of Ophthalmology, Erasmus MC Cancer Center, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (Q.C.C.v.d.B.); (J.Q.N.N.); (T.B.); (N.C.N.)
- Correspondence: (E.K.); (E.B.); Tel.: +31-107030683 (E.B.)
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC Cancer Center, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands;
- Correspondence: (E.K.); (E.B.); Tel.: +31-107030683 (E.B.)
| |
Collapse
|
14
|
Minemura C, Asai S, Koma A, Kikkawa N, Kato M, Kasamatsu A, Uzawa K, Hanazawa T, Seki N. Identification of Antitumor miR-30e-5p Controlled Genes; Diagnostic and Prognostic Biomarkers for Head and Neck Squamous Cell Carcinoma. Genes (Basel) 2022; 13:genes13071225. [PMID: 35886008 PMCID: PMC9322981 DOI: 10.3390/genes13071225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023] Open
Abstract
Analysis of microRNA (miRNA) expression signatures in head and neck squamous cell carcinoma (HNSCC) has revealed that the miR-30 family is frequently downregulated in cancer tissues. The Cancer Genome Atlas (TCGA) database confirms that all members of the miR-30 family (except miR-30c-5p) are downregulated in HNSCC tissues. Moreover, low expression of miR-30e-5p and miR-30c-1-3p significantly predicts shorter survival of HNSCC patients (p = 0.0081 and p = 0.0224, respectively). In this study, we focused on miR-30e-5p to investigate its tumor-suppressive roles and its control of oncogenic genes in HNSCC cells. Transient expression of miR-30e-5p significantly attenuated cancer cell migration and invasive abilities in HNSCC cells. Nine genes (DDIT4, FOXD1, FXR1, FZD2, HMGB3, MINPP1, PAWR, PFN2, and RTN4R) were identified as putative targets of miR-30e-5p control. Their expression levels significantly predicted shorter survival of HNSCC patients (p < 0.05). Among those targets, FOXD1 expression appeared to be an independent factor predicting patient survival according to multivariate Cox regression analysis (p = 0.049). Knockdown assays using siRNAs corresponding to FOXD1 showed that malignant phenotypes (e.g., cell proliferation, migration, and invasive abilities) of HNSCC cells were significantly suppressed. Overexpression of FOXD1 was confirmed by immunostaining of HNSCC clinical specimens. Our miRNA-based approach is an effective strategy for the identification of prognostic markers and therapeutic target molecules in HNSCC. Moreover, these findings led to insights into the molecular pathogenesis of HNSCC.
Collapse
Affiliation(s)
- Chikashi Minemura
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (C.M.); (A.K.); (A.K.); (K.U.)
| | - Shunichi Asai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (N.K.); (M.K.)
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Ayaka Koma
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (C.M.); (A.K.); (A.K.); (K.U.)
| | - Naoko Kikkawa
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (N.K.); (M.K.)
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Mayuko Kato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (N.K.); (M.K.)
| | - Atsushi Kasamatsu
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (C.M.); (A.K.); (A.K.); (K.U.)
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (C.M.); (A.K.); (A.K.); (K.U.)
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (N.K.); (M.K.)
- Correspondence: ; Tel.: +81-43-226-2971; Fax: +81-43-227-3442
| |
Collapse
|
15
|
The Expression and Survival Significance of FOXD1 in Lung Squamous Cell Carcinoma: A Meta-Analysis, Immunohistochemistry Validation, and Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7798654. [PMID: 35607308 PMCID: PMC9124105 DOI: 10.1155/2022/7798654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/21/2022] [Indexed: 12/24/2022]
Abstract
Accumulating evidence demonstrated that FOXD1 dysregulation was correlated with a broad spectrum of malignancies. However, litter is known about the role of FOXD1 in the progression of lung squamous cell carcinoma (LUSC). We conducted the comprehensive bioinformatics analysis to investigate FOXD1 expression in LUSC from TCGA and GEO datasets, and validated the FOXD1 expression pattern in clinical samples using immunohistochemistry method. ESTIMATE and CIBERSORT algorithms were performed to assess the relationship of FOXD1 and tumor microenvironment and immune cell infiltration. Our study showed that FOXD1 expression was significantly upregulated in LUSC tissues in TCGA dataset, validated by GEO datasets and clinical samples. In TCGA dataset, Kaplan-Meier curves showed that high FOXD1 expression was significantly correlated with favorable prognosis in LUSC patients. Moreover, FOXD1 expression has an impact on immune score and the proportions of immune cell infiltration subgroups. Finally, we predicted FOXD1 may be involved in many immune-related biological functions and cancer-related signaling pathways. Taken together, FOXD1 was upregulated in LUSC tissues, and FOXD1 expression could be a potential prognostic marker. FOXD1 might be associated with tumor microenvironment and perhaps a potential target in the tumor immunotherapy.
Collapse
|