1
|
Li M, Shao D, Fan Z, Qin J, Xu J, Huang Q, Li X, Hua Z, Li J, Hao C, Wei W, Abnet CC. Non-invasive early detection on esophageal squamous cell carcinoma and precancerous lesions by microbial biomarkers combining epidemiological factors in China. J Gastroenterol 2024; 59:531-542. [PMID: 38819499 DOI: 10.1007/s00535-024-02117-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Microbiota may be associated with esophageal squamous cell carcinoma (ESCC) development. However, it is not known the predictive value of microbial biomarkers combining epidemiological factors for the early detection of ESCC and precancerous lesions. METHODS A total of 449 specimens (esophageal swabs and saliva) were collected from 349 participants with different esophageal statuses in China to explore and validate ESCC-associated microbial biomarkers from genes level to species level by 16S rRNA sequencing, metagenomic sequencing and real-time quantitative polymerase chain reaction. RESULTS A bacterial biomarker panel including Actinomyces graevenitzii (A.g_1, A.g_2, A.g_3, A.g_4), Fusobacteria nucleatum (F.n_1, F.n_2, F.n_3), Haemophilus haemolyticus (H.h_1), Porphyromonas gingivalis (P.g_1, P.g_2, P.g_3) and Streptococcus australis (S.a_1) was explored by metagenomic sequencing to early detect the participants in Need group (low-grade intraepithelial neoplasia, high-grade intraepithelial neoplasia and ESCC) vs participants without these lesions as the Noneed group. Significant quantitative differences existed for each microbial target in which the detection efficiency rate was higher in saliva than esophageal swab. In saliva, the area under the curve (AUC) based on the microbial biomarkers (A.g_4 ∩ P.g_3 ∩ H.h_1 ∩ S.a_1 ∩ F.n_2) was 0.722 (95% CI 0.621-0.823) in the exploration cohort. Combining epidemiological factors (age, smoking, drinking, intake of high-temperature food and toothache), the AUC improved to 0.869 (95% CI 0.802-0.937) in the exploration cohort, which was validated with AUC of 0.757 (95% CI 0.663-0.852) in the validation cohort. CONCLUSIONS It is feasible to combine microbial biomarkers in saliva and epidemiological factors to early detect ESCC and precancerous lesions in China.
Collapse
Affiliation(s)
- Minjuan Li
- Department of Orthopedic Trauma, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Dantong Shao
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhiyuan Fan
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | - Xinqing Li
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhaolai Hua
- Cancer Institute of Yangzhong City, People's Hospital of Yangzhong City, Yangzhong, China
| | - Jun Li
- Cancer Prevention and Treatment Office, Yanting Cancer Hospital, Mianyang, China
| | - Changqing Hao
- Department of Endoscopy, Cancer Institute/Hospital of Linzhou, Linzhou, China
| | - Wenqiang Wei
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Christian C Abnet
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
2
|
Wang P, Liu Y, Wei L, Wang J, Wang J, Du B. Development of a Novel Prognostic Model for Esophageal Squamous Cell Carcinoma: Insights into Immune Cell Interactions and Drug Sensitivity. Cancer Invest 2024:1-17. [PMID: 38616306 DOI: 10.1080/07357907.2024.2340576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) presents a five-year survival rate below 20%, underscoring the need for improved prognostic markers. Our study analyzed ESCC-specific datasets to identify consistently differentially expressed genes. A Venn analysis followed by gene network interactions revealed 23 key genes, from which we built a prognostic model using the COX algorithm (p = 0.000245, 3-year AUC = 0.967). This model stratifies patients into risk groups, with high-risk individuals showing worse outcomes and lower chemotherapy sensitivity. Moreover, a link between risk scores and M2 macrophage infiltration, as well as significant correlations with immune checkpoint genes (e.g., SIGLEC15, PDCD1LG2, and HVCR2), was discovered. High-risk patients had lower Tumor Immune Dysfunction and Exclusion (TIDE) values, suggesting potential responsiveness to immune checkpoint blockade (ICB) therapy. Our efficient 23-gene prognostic model for ESCC indicates a dual utility in assessing prognosis and guiding therapeutic decisions, particularly in the context of ICB therapy for high-risk patients.
Collapse
Affiliation(s)
- Pu Wang
- Center of Healthy Aging, Changzhi Medical College, Changzhi, PR China
| | - Yu Liu
- Center of Healthy Aging, Changzhi Medical College, Changzhi, PR China
| | - Lingyu Wei
- Central Laboratory of Clinical Research, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, PR China
| | - Jia Wang
- Center of Healthy Aging, Changzhi Medical College, Changzhi, PR China
| | - Jinsheng Wang
- First Clinical College of Changzhi Medical College, Changzhi, PR China
| | - Bin Du
- Center of Healthy Aging, Changzhi Medical College, Changzhi, PR China
| |
Collapse
|
3
|
Zhou L, Zhang W, Fan S, Wang D, Tang D. The value of intratumoral microbiota in the diagnosis and prognosis of tumors. Cell Biochem Funct 2024; 42:e3999. [PMID: 38571320 DOI: 10.1002/cbf.3999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
Intratumoral microbiota (ITM) are microorganisms present in tumor cells. ITM participate in tumor development by affecting tumor cells directly and the tumor microenvironment (TME), indirectly. Alterations in ITM instigate changes in tumor DNA, activate oncogenic pathways, induce tumor inflammatory responses, disrupt normal immune activity, and facilitate the secretion of effectors leading to tumor progression, metastasis, or diminished therapeutic effects. ITM varies significantly in different types of cancer cells and disease states. The presence of certain ITM serves as a predictor of various disease states. Thus, ITM predicts tumorigenesis, tumor grade, treatment efficacy, and prognosis, making it a potential tumor biomarker. The present study aimed to determine the mechanisms by which ITM affects tumor development, especially through the TME; highlight the significant potential of ITM in enhancing tumor diagnosis and prognosis; and outline future directions for ITM research, with a focus on the development of innovative tumor markers.
Collapse
Affiliation(s)
- Lujia Zhou
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Wenjie Zhang
- School of Medicine, Chongqing University, Chongqing, China
| | - Shiying Fan
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Zhang Z, Zhang G, Huang Z, Shi Y, Wang D. Application of Mendelian randomization to assess host gene-gut microbiota correlations in patients with esophageal cancer. Front Microbiol 2023; 14:1309596. [PMID: 38179450 PMCID: PMC10764629 DOI: 10.3389/fmicb.2023.1309596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Background Increasing evidence suggests that esophageal cancer (ESCA) may be correlated with gut flora. However, their causal connection remains unclear. This study aimed to evaluate potential causal linkages and gene-gut microbiome associations between the gut microbiota and ESCA using Mendelian randomization (MR). Methods We analyzed the data using genome-wide association studies. The exposure factor and outcome variable were the gut microbiota and ESCA, respectively. The MR-Egger method, weighted median, inverse-variance weighted method, heterogeneity test, sensitivity analysis, and multiplicity analysis were used for the MR analysis. And it was validated using an external dataset. Further meta-analysis was performed to validate the robustness of this relationship. Finally, we annotated single nucleotide polymorphisms in the gut microbiota that were causally associated with ESCA to explore possible host gene-gut microbiota correlations in patients with ESCA. Results We identified four species with potential associations with ESCA. Three of these species had a negative causal relationship with ESCA (odds ratio (OR): 0.961; 95% confidence interval (CI): 0.923-0.971; p = 0.047 for Romboutsia; OR: 0.972; 95% CI: 0.921-0.961; p = 0.018 for Lachnospira; OR: 0.948; 95% CI: 0.912-0.970; p = 0.032 for Eubacterium). A positive causal relationship was observed between one bacterial group and ESCA (OR: 1.105; 95% CI: 1.010-1.072; p = 0.018 for Veillonella). External datasets show the same trend. This is further supported by meta-analysis. None of the data showed pleiotropy, and leave-one-out analysis indicated the reliability of these findings. The gut microbiomes of patients with ESCA may correlate with the 19 identified genes. Conclusion Our data indicate a potential causal link between these four gut bacteria and ESCA and identify a correlation between host genes and gut microbiota in ESCA, offering novel therapeutic options.
Collapse
Affiliation(s)
- Zhenhu Zhang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guodong Zhang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhulan Huang
- Department of Ultrasound Medicine, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City, Shenzhen, Guangdong, China
| | - Yamin Shi
- Department of Foreign Languages, Shandong University of Finance and Economics, Jinan, China
| | - Dong Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
5
|
Mima K, Hamada T, Inamura K, Baba H, Ugai T, Ogino S. The microbiome and rise of early-onset cancers: knowledge gaps and research opportunities. Gut Microbes 2023; 15:2269623. [PMID: 37902043 PMCID: PMC10730181 DOI: 10.1080/19490976.2023.2269623] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023] Open
Abstract
Accumulating evidence indicates an alarming increase in the incidence of early-onset cancers, which are diagnosed among adults under 50 years of age, in the colorectum, esophagus, extrahepatic bile duct, gallbladder, liver, stomach, pancreas, as well as the bone marrow (multiple myeloma), breast, head and neck, kidney, prostate, thyroid, and uterine corpus (endometrium). While the early-onset cancer studies have encompassed research on the wide variety of organs, this article focuses on research on digestive system cancers. While a minority of early-onset cancers in the digestive system are associated with cancer-predisposing high penetrance germline genetic variants, the majority of those cancers are sporadic and multifactorial. Although potential etiological roles of diets, lifestyle, environment, and the microbiome from early life to adulthood (i.e. in one's life course) have been hypothesized, exact contribution of each of these factors remains uncertain. Diets, lifestyle patterns, and environmental exposures have been shown to alter the oral and intestinal microbiome. To address the rising trend of early-onset cancers, transdisciplinary research approaches including lifecourse epidemiology and molecular pathological epidemiology frameworks, nutritional and environmental sciences, multi-omics technologies, etc. are needed. We review current evidence and discuss emerging research opportunities, which can improve our understanding of their etiologies and help us design better strategies for prevention and treatment to reduce the cancer burden in populations.
Collapse
Affiliation(s)
- Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Medicine, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Cancer Epidemiology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Cancer Epidemiology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Immunology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
| |
Collapse
|
6
|
Lin WZ, Chen BY, Qiu P, Zhou LJ, Li YL, Du LJ, Liu Y, Wang YL, Zhu H, Wu XY, Liu X, Duan SZ, Zhu YQ. Altered salivary microbiota profile in patients with abdominal aortic aneurysm. Heliyon 2023; 9:e23040. [PMID: 38144289 PMCID: PMC10746442 DOI: 10.1016/j.heliyon.2023.e23040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Evidence suggests that the DNA of oral pathogens is detectable in the dilated aortic tissue of abdominal aortic aneurysm (AAA), one of the most fatal cardiovascular diseases. However, the association between oral microbial homeostasis and aneurysm formation remains largely unknown. In this study, a cohort of individuals, including 53 AAA patients and 30 control participants (CTL), was recruited for salivary microbiota investigation by 16S rRNA gene sequencing and bioinformatics analysis. Salivary microbial diversity was decreased in AAA compared with CTL, and the microbial structures were significantly separated between the two groups. Additionally, significant taxonomic and functional changes in the salivary microbiota of AAA participants were observed. The genera Streptococcus and Gemella were remarkably enriched, while Selenomonas, Leptotrichia, Lautropia and Corynebacterium were significantly depleted in AAA. Co-occurrence network analysis showed decreased potential interactions among the differentially abundant microbial genera in AAA. A machine-learning model predicted AAA using the combination of 5 genera and 14 differentially enriched functional pathways, which could distinguish AAA from CTL with an area under the receiver-operating curve of 90.3 %. Finally, 16 genera were found to be significantly positively correlated with the morphological parameters of AAA. Our study is the first to show that AAA patients exhibit oral microbial dysbiosis, which has high predictive power for AAA, and the over-representation of specific salivary bacteria may be associated with AAA disease progression. Further studies are needed to better understand the function of putative oral bacteria in the etiopathogenesis of AAA. Importance Host microbial dysbiosis has recently been linked to AAA as a possible etiology. To our knowledge, studies of the oral microbiota and aneurysms remain scarce, although previous studies have indicated that the DNA of some oral pathogens is detectable in aneurysms by PCR method. We take this field one step further by investigating the oral microbiota composition of AAA patients against control participants via high-throughput sequencing technologies and unveiling the potential microbial biomarker associated with AAA formation. Our study will provide new insights into AAA etiology, treatment and prevention from a microecological perspective and highlight the effects of oral microbiota on vascular health.
Collapse
Affiliation(s)
- Wen-Zhen Lin
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Bo-Yan Chen
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Peng Qiu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu-Jun Zhou
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yu-Lin Li
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Lin-Juan Du
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yuan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yong-Li Wang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hong Zhu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xiao-Yu Wu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobing Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Ya-Qin Zhu
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
7
|
Lan Z, Liu WJ, Cui H, Zou KL, Chen H, Zhao YY, Yu GT. The role of oral microbiota in cancer. Front Microbiol 2023; 14:1253025. [PMID: 37954233 PMCID: PMC10634615 DOI: 10.3389/fmicb.2023.1253025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Cancer remains a significant global challenge, with an estimated 47% increase in cancer patients from 2020 to 2040. Increasing research has identified microorganism as a risk factor for cancer development. The oral cavity, second only to the colon, harbors more than 700 bacterial species and serves as a crucial microbial habitat. Although numerous epidemiological studies have reported associations between oral microorganisms and major systemic tumors, the relationship between oral microorganisms and cancers remains largely unclear. Current research primarily focuses on respiratory and digestive system tumors due to their anatomical proximity to the oral cavity. The relevant mechanism research mainly involves 47% dominant oral microbial population that can be cultured in vitro. However, further exploration is necessary to elucidate the mechanisms underlying the association between oral microbiota and tumors. This review systematically summarizes the reported correlations between oral microbiota and common cancers while also outlining potential mechanisms that may guide biological tumor treatment.
Collapse
Affiliation(s)
- Zhou Lan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Wei-Jia Liu
- Department of Oral Mucosal Diseases, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hao Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Ke-Long Zou
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Hao Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yu-Yue Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Guang-Tao Yu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Higashi DL, Krieger MC, Qin H, Zou Z, Palmer EA, Kreth J, Merritt J. Who is in the driver's seat? Parvimonas micra: An understudied pathobiont at the crossroads of dysbiotic disease and cancer. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023. [PMID: 36999244 DOI: 10.1111/1758-2229.13153] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Recent advances in our understanding of microbiome composition at sites of inflammatory dysbiosis have triggered a substantial interest in a variety of historically understudied bacteria, especially among fastidious obligate anaerobes. A plethora of new evidence suggests that these microbes play outsized roles in establishing synergistic polymicrobial infections at many different sites in the human body. Parvimonas micra is a prime example of such an organism. Despite being almost completely uncharacterized at the genetic level, it is one of the few species commonly detected in abundance at multiple mucosal sites experiencing either chronic or acute inflammatory diseases, and more recently, it has been proposed as a discriminating biomarker for multiple types of malignancies. In the absence of disease, P. micra is commonly found in low abundance, typically residing within the oral cavity and gastrointestinal tract. P. micra exhibits the typical features of an inflammophilic organism, meaning its growth actually benefits from active inflammation and inflammatory tissue destruction. In this mini-review, we will describe our current understanding of this underappreciated but ubiquitous pathobiont, specifically focusing upon the role of P. micra in polymicrobial inflammatory dysbiosis and cancer as well as the key emerging questions regarding its pathobiology. Through this timely work, we highlight Parvimonas micra as a significant driver of disease and discuss its unique position at the crossroads of dysbiosis and cancer.
Collapse
Affiliation(s)
- Dustin L Higashi
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Madeline C Krieger
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Hua Qin
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Zhengzhong Zou
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Elizabeth A Palmer
- Department of Pediatric Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Jens Kreth
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Justin Merritt
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
9
|
Liu QY, Liao Y, Wu YX, Diao H, Du Y, Chen YW, Xie JR, Xue WQ, He YQ, Wang TM, Zheng XH, Jia WH. The Oral Microbiome as Mediator between Oral Hygiene and Its Impact on Nasopharyngeal Carcinoma. Microorganisms 2023; 11:microorganisms11030719. [PMID: 36985292 PMCID: PMC10058307 DOI: 10.3390/microorganisms11030719] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Oral hygiene and the alteration of the oral microbiome have been linked to nasopharyngeal carcinoma (NPC). This study aimed to investigate whether the oral microbiome plays a mediating role in the relationship between oral hygiene and NPC, and identify differential microbial taxonomies that potentially mediated this association. We conducted a case–control study that involved 218 NPC patients and 192 healthy controls. The 16S rRNA gene sequencing of the V4 region was performed to evaluate the composition of the oral microbiome. Mediation analysis was applied to explore the relationship among oral hygiene, the oral microbiome and NPC. We found that dental fillings and poor oral hygiene score were associated with increased risks of NPC (OR = 2.51 (1.52–4.25) and OR = 1.54 (1.02–2.33)). Mediation analysis indicated that dental fillings increased the risk of NPC by altering the abundance of Erysipelotrichales, Erysipelotrichaceae, Solobacterium and Leptotrichia wadei. In addition, Leptotrichia wadei also mediated the association between oral hygiene score and the risk of NPC. Our study confirmed that poor oral hygiene increased the risk of NPC, which was partly mediated by the oral microbiome. These findings might help us to understand the potential mechanism of oral hygiene influencing the risk of NPC via the microbiome.
Collapse
Affiliation(s)
- Qiao-Yun Liu
- School of Public Health, Sun Yat-sen University, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yan-Xia Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hua Diao
- School of Public Health, Sun Yat-sen University, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yan Du
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yi-Wei Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jin-Ru Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Wei-Hua Jia
- School of Public Health, Sun Yat-sen University, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Correspondence: ; Tel.: +86-020-87342327
| |
Collapse
|