1
|
Richard M, Moreau R, Croyal M, Mathiot L, Frénel J, Campone M, Dupont A, Gavard J, André‐Grégoire G, Guével L. Monitoring concentration and lipid signature of plasma extracellular vesicles from HR + metastatic breast cancer patients under CDK4/6 inhibitors treatment. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70013. [PMID: 39691590 PMCID: PMC11650302 DOI: 10.1002/jex2.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 12/19/2024]
Abstract
Extracellular vesicles (EVs) are cell-derived small membrane structures that transport various molecules. They have emerged as potential circulating biomarkers for monitoring responses to cancer therapies. This study aimed to comprehensively characterize plasma-carried EVs in hormone receptor-positive (HR+) metastatic breast cancer (MBC) patients treated with first-line CDK4/6 inhibitors (iCDK4/6) combined with endocrine therapy. MBC patients were classified into three groups based on their response to therapy: resistant, intermediate or sensitive. In a prospective cohort, we monitored the concentration of circulating EVs, analyzed their lipid signature and correlated these factors with treatment response. To facilitate the translation of EV research to clinical practice, we established a three-step procedure: (1) EVs were isolated from plasma using semi-automatized size exclusion chromatography (SEC); (2) EV concentration, termed vesiclemia, was determined by drop counting via interferometric light microscopy (ILM); and (3) EV lipid composition was analyzed by mass spectrometry. ILM-based vesiclemia values were highly fluctuating upon iCDK4/6 treatment, while early increase associated with accelerated progression. Of note, vesiclemia remained a steady parameter over a 1-year period in age-matched healthy women. Additionally, analysis of the EV cargo unveiled a distinct sphingolipid profile, characterized by increased levels of ceramides and sphingomyelins in resistant patients within the first 2 months of treatment. Based on 16 sphingolipid species, sensitive and resistant patients were correctly classified with an overall accuracy of 82%. This specific sphingolipid pattern was exclusively discernible within EVs, and not in plasma, highlighting the significance of EVs in the early prediction of individual responses to iCDK4/6 and disease progression. Overall, this study provides insights of the longitudinal characterization of plasma-borne EVs in both a healthy group and HR+ MBC patients under iCDK4/6 therapies. Combined vesiclemia and EV sphingolipid profile emphasize the promising potential of EVs as non-invasive biomarkers for monitoring early treatment response.
Collapse
Affiliation(s)
- Mathilde Richard
- Team SOAP, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes‐Angers (CRCINA), InsermCNRS, Nantes UniversitéNantesFrance
- Équipe Labellisée Ligue Contre le CancerParisFrance
| | - Rosalie Moreau
- Team SOAP, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes‐Angers (CRCINA), InsermCNRS, Nantes UniversitéNantesFrance
- Équipe Labellisée Ligue Contre le CancerParisFrance
| | - Mikaël Croyal
- Nantes Université, CHU Nantes, CNRS, INSERMNantesFrance
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556NantesFrance
- CRNH‐Ouest Mass Spectrometry Core FacilityNantesFrance
| | - Laurent Mathiot
- Institut de Cancérologie de l'Ouest (ICO), Site Rene GauducheauSaint HerblainFrance
| | | | - Mario Campone
- Institut de Cancérologie de l'Ouest (ICO), Site Rene GauducheauSaint HerblainFrance
| | - Aurélien Dupont
- SFR UMS CNRS 3480, INSERM 018, Biosit biologie, santé, innovation technologiqueRennesFrance
| | - Julie Gavard
- Team SOAP, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes‐Angers (CRCINA), InsermCNRS, Nantes UniversitéNantesFrance
- Équipe Labellisée Ligue Contre le CancerParisFrance
- Institut de Cancérologie de l'Ouest (ICO), Site Rene GauducheauSaint HerblainFrance
| | - Gwennan André‐Grégoire
- Team SOAP, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes‐Angers (CRCINA), InsermCNRS, Nantes UniversitéNantesFrance
- Équipe Labellisée Ligue Contre le CancerParisFrance
- Institut de Cancérologie de l'Ouest (ICO), Site Rene GauducheauSaint HerblainFrance
| | - Laëtitia Guével
- Team SOAP, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes‐Angers (CRCINA), InsermCNRS, Nantes UniversitéNantesFrance
- Équipe Labellisée Ligue Contre le CancerParisFrance
| |
Collapse
|
2
|
Jia W, Yuan J, Zhang J, Li S, Lin W, Cheng B. Bioactive sphingolipids as emerging targets for signal transduction in cancer development. Biochim Biophys Acta Rev Cancer 2024; 1879:189176. [PMID: 39233263 DOI: 10.1016/j.bbcan.2024.189176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Sphingolipids, crucial components of cellular membranes, play a vital role in maintaining cellular structure and signaling integrity. Disruptions in sphingolipid metabolism are increasingly implicated in cancer development. Key bioactive sphingolipids, such as ceramides, sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and glycosphingolipids, profoundly impact tumor biology. They influence the behavior of tumor cells, stromal cells, and immune cells, affecting tumor aggressiveness, angiogenesis, immune modulation, and extracellular matrix remodeling. Furthermore, abnormal expression of sphingolipids and their metabolizing enzymes modulates the secretion of tumor-derived extracellular vesicles (TDEs), which are key players in creating an immunosuppressive tumor microenvironment, remodeling the extracellular matrix, and facilitating oncogenic signaling within in situ tumors and distant pre-metastatic niches (PMNs). Understanding the role of sphingolipids in the biogenesis of tumor-derived extracellular vesicles (TDEs) and their bioactive contents can pave the way for new biomarkers in cancer diagnosis and prognosis, ultimately enhancing comprehensive tumor treatment strategies.
Collapse
Affiliation(s)
- Wentao Jia
- Department of General Practice, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jinbo Zhang
- Department of Pharmacy, Tianjin Rehabilitation and Recuperation Center, Joint Logistics Support Force, Tianjin 300000, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Wanfu Lin
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
3
|
Codini M, Fiorani F, Mandarano M, Cataldi S, Arcuri C, Mirarchi A, Ceccarini MR, Beccari T, Kobayashi T, Tomishige N, Sidoni A, Albi E. Sphingomyelin Metabolism Modifies Luminal A Breast Cancer Cell Line under a High Dose of Vitamin C. Int J Mol Sci 2023; 24:17263. [PMID: 38139092 PMCID: PMC10743617 DOI: 10.3390/ijms242417263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The role of sphingomyelin metabolism and vitamin C in cancer has been widely described with conflicting results ranging from a total absence of effect to possible preventive and/or protective effects. The aim of this study was to establish the possible involvement of sphingomyelin metabolism in the changes induced by vitamin C in breast cancer cells. The MCF7 cell line reproducing luminal A breast cancer and the MDA-MB-231 cell line reproducing triple-negative breast cancer were used. Cell phenotype was tested by estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 expression, and proliferation index percentage. Sphingomyelin was localized by an EGFP-NT-Lys fluorescent probe. Sphingomyelin metabolism was analyzed by RT-PCR, Western blotting and UFLC-MS/MS. The results showed that a high dose of vitamin C produced reduced cell viability, modulated cell cycle related genes, and changed the cell phenotype with estrogen receptor downregulation in MCF7 cell. In these cells, the catabolism of sphingomyelin was promoted with a large increase in ceramide content. No changes in viability and molecular expression were observed in MB231 cells. In conclusion, a high dose of vitamin C induces changes in the luminal A cell line involving sphingomyelin metabolism.
Collapse
Affiliation(s)
- Michela Codini
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (F.F.); (S.C.); (M.R.C.); (T.B.)
| | - Federico Fiorani
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (F.F.); (S.C.); (M.R.C.); (T.B.)
| | - Martina Mandarano
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia, 06126 Perugia, Italy; (M.M.); (A.S.)
| | - Samuela Cataldi
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (F.F.); (S.C.); (M.R.C.); (T.B.)
| | - Cataldo Arcuri
- Section of Anatomy, Department of Medicine and Surgery, University of Perugia, 06126 Perugia, Italy; (C.A.); (A.M.)
| | - Alessandra Mirarchi
- Section of Anatomy, Department of Medicine and Surgery, University of Perugia, 06126 Perugia, Italy; (C.A.); (A.M.)
| | - Maria Rachele Ceccarini
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (F.F.); (S.C.); (M.R.C.); (T.B.)
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (F.F.); (S.C.); (M.R.C.); (T.B.)
| | - Toshihide Kobayashi
- UMR 7021 CNRS, Faculté de Pharmacie, Universitè de Strasbourg, 67401 Illkirch, France; (T.K.); (N.T.)
- Cellular Informatics Laboratory, RIKEN, Wako 351-0198, Saitama, Japan
| | - Nario Tomishige
- UMR 7021 CNRS, Faculté de Pharmacie, Universitè de Strasbourg, 67401 Illkirch, France; (T.K.); (N.T.)
- Cellular Informatics Laboratory, RIKEN, Wako 351-0198, Saitama, Japan
| | - Angelo Sidoni
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia, 06126 Perugia, Italy; (M.M.); (A.S.)
| | - Elisabetta Albi
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (F.F.); (S.C.); (M.R.C.); (T.B.)
| |
Collapse
|