1
|
Ludwig BA, Forbes CR, Zondlo NJ. N-Terminal Proline Editing for the Synthesis of Peptides with Mercaptoproline and Selenoproline: Mechanistic Insights Lead to Greater Efficiency in Proline Native Chemical Ligation. ACS Chem Biol 2024; 19:536-550. [PMID: 38324914 DOI: 10.1021/acschembio.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Native chemical ligation (NCL) at proline has been limited by cost and synthetic access. In addition, prior examples of NCL using mercaptoproline have exhibited stalling of the reaction after thioester exchange, due to inefficient S → N acyl transfer. Herein, we develop methods, using inexpensive Boc-4R-hydroxyproline, for the solid-phase synthesis of peptides containing N-terminal 4R-mercaptoproline and 4R-selenoproline. The synthesis proceeds via proline editing on the N-terminus of fully synthesized peptides on the solid phase, converting an N-terminal Boc-4R-hydroxyproline to the 4S-bromoproline, followed by an SN2 reaction with potassium thioacetate or selenobenzoic acid. After cleavage from the resin and deprotection, peptides with functionalized N-terminal proline amino acids were obtained. NCL reactions with mercaptoproline proceeded slowly under standard NCL conditions, with the S-acyl transthioesterification intermediate observed as a major species. Computational investigations indicated that the bicyclic intermediates and transition states for S → N acyl transfer are sufficiently low in energy (10-15 kcal mol-1 above starting material) that ring strain cannot explain the slow S → N acyl transfer. Instead, the bicyclic zwitterionic tetrahedral intermediate has a low barrier for reversion to the S-acyl intermediate, causing reversion to the thioester (reverse reaction) to occur preferentially over elimination to generate the amide (forward reaction). We hypothesized that a buffer capable of general acid and/or general base catalysis could promote S → N acyl transfer and thus achieve greater efficiency in proline NCL. In the presence of 2 M imidazole at pH 6.8, NCL with mercaptoproline proceeded efficiently to generate the peptide with a native amide bond. NCL with selenoproline also proceeded efficiently to generate the desired products when a thiophenol thioester was employed as a ligation partner. After desulfurization or deselenization, the products obtained were identical to those synthesized directly, confirming that the solid-phase proline editing reactions proceeded stereospecifically and without epimerization.
Collapse
Affiliation(s)
- Brice A Ludwig
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Christina R Forbes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Neal J Zondlo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
2
|
Rodríguez-Mayor AV, Peralta-Camacho GJ, Cárdenas-Martínez KJ, García-Castañeda JE. Development of Strategies for Glycopeptide Synthesis: An Overview on the Glycosidic Linkage. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200701121037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycoproteins and glycopeptides are an interesting focus of research, because of
their potential use as therapeutic agents, since they are related to carbohydrate-carbohydrate,
carbohydrate-protein, and carbohydrate-lipid interactions, which are commonly involved in
biological processes. It has been established that natural glycoconjugates could be an important
source of templates for the design and development of molecules with therapeutic applications.
However, isolating large quantities of glycoconjugates from biological sources
with the required purity is extremely complex, because these molecules are found in heterogeneous
environments and in very low concentrations. As an alternative to solving this
problem, the chemical synthesis of glycoconjugates has been developed. In this context,
several methods for the synthesis of glycopeptides in solution and/or solid-phase have been
reported. In most of these methods, glycosylated amino acid derivatives are used as building
blocks for both solution and solid-phase synthesis. The synthetic viability of glycoconjugates is a critical parameter
for allowing their use as drugs to mitigate the impact of microbial resistance and/or cancer. However, the
chemical synthesis of glycoconjugates is a challenge, because these molecules possess multiple reaction sites and
have a very specific stereochemistry. Therefore, it is necessary to design and implement synthetic routes, which
may involve various protection schemes but can be stereoselective, environmentally friendly, and high-yielding.
This review focuses on glycopeptide synthesis by recapitulating the progress made over the last 15 years.
Collapse
|
3
|
Agouridas V, El Mahdi O, Diemer V, Cargoët M, Monbaliu JCM, Melnyk O. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chem Rev 2019; 119:7328-7443. [DOI: 10.1021/acs.chemrev.8b00712] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vangelis Agouridas
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Ouafâa El Mahdi
- Faculté Polydisciplinaire de Taza, University Sidi Mohamed Ben Abdellah, BP 1223 Taza Gare, Morocco
| | - Vincent Diemer
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Marine Cargoët
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Jean-Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis, Department of Chemistry, University of Liège, Building B6a, Room 3/16a, Sart-Tilman, B-4000 Liège, Belgium
| | - Oleg Melnyk
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
4
|
Chaffey PK, Guan X, Li Y, Tan Z. Using Chemical Synthesis To Study and Apply Protein Glycosylation. Biochemistry 2018; 57:413-428. [PMID: 29309128 DOI: 10.1021/acs.biochem.7b01055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Protein glycosylation is one of the most common post-translational modifications and can influence many properties of proteins. Abnormal protein glycosylation can lead to protein malfunction and serious disease. While appreciation of glycosylation's importance is growing in the scientific community, especially in recent years, a lack of homogeneous glycoproteins with well-defined glycan structures has made it difficult to understand the correlation between the structure of glycoproteins and their properties at a quantitative level. This has been a significant limitation on rational applications of glycosylation and on optimizing glycoprotein properties. Through the extraordinary efforts of chemists, it is now feasible to use chemical synthesis to produce collections of homogeneous glycoforms with systematic variations in amino acid sequence, glycosidic linkage, anomeric configuration, and glycan structure. Such a technical advance has greatly facilitated the study and application of protein glycosylation. This Perspective highlights some representative work in this research area, with the goal of inspiring and encouraging more scientists to pursue the glycosciences.
Collapse
Affiliation(s)
- Patrick K Chaffey
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Xiaoyang Guan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Yaohao Li
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Zhongping Tan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| |
Collapse
|
5
|
Modern Extensions of Native Chemical Ligation for Chemical Protein Synthesis. PROTEIN LIGATION AND TOTAL SYNTHESIS I 2014; 362:27-87. [DOI: 10.1007/128_2014_584] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Wang P, Dong S, Shieh JH, Peguero E, Hendrickson R, Moore MAS, Danishefsky SJ. Erythropoietin derived by chemical synthesis. Science 2013; 342:1357-1360. [PMID: 24337294 DOI: 10.1126/science.1245095] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Erythropoietin is a signaling glycoprotein that controls the fundamental process of erythropoiesis, orchestrating the production and maintenance of red blood cells. As administrated clinically, erythropoietin has a polypeptide backbone with complex dishomogeneity in its carbohydrate domains. Here we describe the total synthesis of homogeneous erythropoietin with consensus carbohydrate domains incorporated at all of the native glycosylation sites. The oligosaccharide sectors were built by total synthesis and attached stereospecifically to peptidyl fragments of the wild-type primary sequence, themselves obtained by solid-phase peptide synthesis. The glycopeptidyl constructs were joined by chemical ligation, followed by metal-free dethiylation, and subsequently folded. This homogeneous erythropoietin glycosylated at the three wild-type aspartates with N-linked high-mannose sialic acid-containing oligosaccharides and O-linked glycophorin exhibits Procrit-level in vivo activity in mice.
Collapse
Affiliation(s)
- Ping Wang
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA
| | - Suwei Dong
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA
| | - Jae-Hung Shieh
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA
| | - Elizabeth Peguero
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA
| | - Ronald Hendrickson
- Department of Pharmacology and Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA
| | - Malcolm A S Moore
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA
| | - Samuel J Danishefsky
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA.,Department of Chemistry, Columbia University, Havemeyer Hall, 3000 Broadway, New York, NY 10027, USA
| |
Collapse
|
7
|
Wilson RM, Dong S, Wang P, Danishefsky SJ. The winding pathway to erythropoietin along the chemistry-biology frontier: a success at last. Angew Chem Int Ed Engl 2013; 52:7646-65. [PMID: 23775885 PMCID: PMC4729195 DOI: 10.1002/anie.201301666] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Indexed: 11/09/2022]
Abstract
The total synthesis of a homogeneous erythropoietin (EPO), possessing the native amino acid sequence and chitobiose glycans at each of the three wild-type sites of N glycosylation, has been accomplished in our laboratory. We provide herein an account of our decade-long research effort en route to this formidable target compound. The optimization of the synergy of the two bedrock sciences we now call biology and chemistry was central to the success of the synthesis of EPO.
Collapse
Affiliation(s)
- Rebecca M. Wilson
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065
| | - Suwei Dong
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065
| | - Ping Wang
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065
| | - Samuel J. Danishefsky
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065
- Department of Chemistry, Columbia University, Havemeyer Hall, 3000 Broadway, New York, NY 10027
| |
Collapse
|
8
|
Wilson RM, Dong S, Wang P, Danishefsky SJ. Der gewundene Pfad zum Erythropoietin entlang der Grenze von Chemie und Biologie. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Westerlind U. Synthetic glycopeptides and glycoproteins with applications in biological research. Beilstein J Org Chem 2012; 8:804-18. [PMID: 23015828 PMCID: PMC3388868 DOI: 10.3762/bjoc.8.90] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 05/22/2012] [Indexed: 12/21/2022] Open
Abstract
Over the past few years, synthetic methods for the preparation of complex glycopeptides have been drastically improved. The need for homogenous glycopeptides and glycoproteins with defined chemical structures to study diverse biological phenomena further enhances the development of methodologies. Selected recent advances in synthesis and applications, in which glycopeptides or glycoproteins serve as tools for biological studies, are reviewed. The importance of specific antibodies directed to the glycan part, as well as the peptide backbone has been realized during the development of synthetic glycopeptide-based anti-tumor vaccines. The fine-tuning of native chemical ligation (NCL), expressed protein ligation (EPL), and chemoenzymatic glycosylation techniques have all together enabled the synthesis of functional glycoproteins. The synthesis of structurally defined, complex glycopeptides or glyco-clusters presented on natural peptide backbones, or mimics thereof, offer further possibilities to study protein-binding events.
Collapse
Affiliation(s)
- Ulrika Westerlind
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V., ISAS - Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, D-44227 Dortmund, Germany, Tel: (+49)231-1392 4215
| |
Collapse
|
10
|
Townsend SD, Tan Z, Dong S, Shang S, Brailsford J, Danishefsky SJ. Advances in proline ligation. J Am Chem Soc 2012; 134:3912-6. [PMID: 22332757 PMCID: PMC3306728 DOI: 10.1021/ja212182q] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Application of native chemical ligation logic to the case of an N-terminal proline is described. Two approaches were studied. One involved incorporation of a 3R-substituted thiyl-proline derivative. Improved results were obtained from a 3R-substituted selenol function, incorporated in the context of an oxidized dimer.
Collapse
Affiliation(s)
- Steven D. Townsend
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065
| | - Zhongping Tan
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065
| | - Suwei Dong
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065
| | - Shiying Shang
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065
| | - John Brailsford
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065
| | - Samuel J. Danishefsky
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065
- Department of Chemistry, Columbia University, Havemeyer Hall, 3000 Broadway, New York, NY 10027, (USA)
| |
Collapse
|