1
|
Wang Y, Mandumula S, Lees WJ. A growth type pathway for improving the folding of BPTI. Org Biomol Chem 2024; 22:7180-7186. [PMID: 39157954 DOI: 10.1039/d4ob00802b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The in vitro oxidative folding of the protein bovine pancreatic trypsin inhibitor (BPTI) with oxidized dithiothreitol or glutathione has served as a paradigm for protein folding but could take weeks at physiological pH because of the need to escape from kinetic traps via a rearrangement type pathway. The two major kinetic traps are called N' and N* and contain two of the three native disulfide bonds, which occur between residues 5 and 55, 30 and 51, and 14 and 38. N' is missing the disulfide bond between residues 5 and 55 while N* is missing the disulfide bond between residues 30 and 51. By determining rate constant for the reactions of the kinetic traps N* and N' and their mixed disulfides with glutathione and glutathione disulfide, many for the first time, we demonstrate that growth type pathways are feasible and could even be more efficient than rearrangement type pathways. Thus, formally unproductive pathways became productive. Interestingly, under physiological redox conditions both rearrangement and growth type pathways are important highlighting the redundancy of oxidative protein folding. With the new set of rate constants, modeling indicated that in vitro oxidative protein folding of BPTI via a growth type pathway using an oxidation, reduction and oxidation cycle would significantly improve protein folding efficiency, albeit under non-physiological redox conditions. With these changing conditions 91 ± 2% of native BPTI was achieved in 12 h compared to 83% native protein in 24 h using our previous best conditions of 5 mM GSSG and 5 mM GSH. Therefore, changing redox conditions via an oxidation, reduction and oxidation cycle may become an additional methodology for enhancing in vitro protein folding in aqueous solution.
Collapse
Affiliation(s)
- Yingsong Wang
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - Shweta Mandumula
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - Watson J Lees
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
2
|
He Y, Takei T, Moroder L, Hojo H. Unexpected diselenide metathesis in selenocysteine-substituted biologically active peptides. Org Biomol Chem 2024. [PMID: 39028035 DOI: 10.1039/d4ob00921e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Substitution of disulfide bonds with a diselenide bonds in peptides and proteins is an often-used strategy to increase the stability of naturally occurring peptides and proteins. In this paper, diselenide metathesis between model diselenide dimer peptides, as well as that in diselenide(s)-substituted biologically active peptides, were analyzed. Surprisingly, depending on the tertiary structure of the peptides, we observed that the metathesis reaction occurs under physiological conditions even in the absence of reducing agents, light and heating.
Collapse
Affiliation(s)
- Ying He
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
| | - Toshiki Takei
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
| | - Luis Moroder
- Max-Planck-Institute of Biochemistry, Martinsried 82152, Germany
| | - Hironobu Hojo
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
3
|
Zhao Z, Laps S, Gichtin JS, Metanis N. Selenium chemistry for spatio-selective peptide and protein functionalization. Nat Rev Chem 2024; 8:211-229. [PMID: 38388838 DOI: 10.1038/s41570-024-00579-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
The ability to construct a peptide or protein in a spatio-specific manner is of great interest for therapeutic and biochemical research. However, the various functional groups present in peptide sequences and the need to perform chemistry under mild and aqueous conditions make selective protein functionalization one of the greatest synthetic challenges. The fascinating paradox of selenium (Se) - being found in both toxic compounds and also harnessed by nature for essential biochemical processes - has inspired the recent exploration of selenium chemistry for site-selective functionalization of peptides and proteins. In this Review, we discuss such approaches, including metal-free and metal-catalysed transformations, as well as traceless chemical modifications. We report their advantages, limitations and applications, as well as future research avenues.
Collapse
Affiliation(s)
- Zhenguang Zhao
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Shay Laps
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jacob S Gichtin
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Norman Metanis
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
4
|
Upadhyay A, Kumar Jha R, Batabyal M, Dutta T, Koner AL, Kumar S. Janus -faced oxidant and antioxidant profiles of organo diselenides. Dalton Trans 2021; 50:14576-14594. [PMID: 34590653 DOI: 10.1039/d1dt01565f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To date, organoseleniums are pre-eminent for peroxide decomposition and radical quenching antioxidant activities. On the contrary, here, a series of Janus-faced aminophenolic diselenides have been prepared from substituted 2-iodoaniline and selenium powder using copper-catalyzed methodology. Subsequently, condensation with substituted salicylaldehyde afforded the Schiff base, which on reduction, yielded the desired substituted aminophenolic diselenides in 72%-88% yields. The generation of reactive oxygen species (ROS) from oxygen gas by the synthesized aminophenolic diselenides was studied by analyzing the oxidation of dichlorofluorescein diacetate (DCFDA) dye and para-nitro-thiophenol by fluorescence and UV-Visible spectroscopic methods. Furthermore, density functional theory calculations and crystal structure analysis revealed the role of functional amine and hydroxyl sites present in the Janus-faced organoselenium catalyst for the activation of molecular oxygen, where NH and phenolic groups bring the oxygen molecule close to the catalyst by N-H⋯O and O-H⋯O intermolecular interactions. Additionally, these functionalities stabilize the selenium-centered radical in the formed transition states. Antioxidant activities of the synthesized diselenides have been explored as the catalyst for the decomposition of hydrogen peroxide using benzenethiol sacrificial co-reductant by a well-established thiol assay. Radical quenching antioxidant activity was studied by the quenching of DPPH radicals at 516 nm by UV-Visible spectroscopy. The structure activity correlation suggests that the electron-rich phenol and electron-rich and sterically hindered selenium center enhance the oxidizing property of the aminophenolic diselenides. Janus-faced diselenides were also evaluated for their cytotoxic effect on HeLa cancer cells via MTT assay, which suggests that the compounds are effective at 15-18 μM concentration against cancer cells. Moreover, the combination with therapeutic anticancer drugs Erlotinib and Doxorubicin showed promising cytotoxicity at the nanomolar concentration (8-28 nM), which is sufficient to suppress the growth of the cancer cells.
Collapse
Affiliation(s)
- Aditya Upadhyay
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Monojit Batabyal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Tanoy Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Apurba Lal Koner
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| |
Collapse
|
5
|
Zhao Z, Shimon D, Metanis N. Chemoselective Copper-Mediated Modification of Selenocysteines in Peptides and Proteins. J Am Chem Soc 2021; 143:12817-12824. [PMID: 34346673 DOI: 10.1021/jacs.1c06101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Highly valuable bioconjugated molecules must be synthesized through efficient, chemoselective chemical modifications of peptides and proteins. Herein, we report the chemoselective modification of peptides and proteins via a reaction between selenocysteine residues and aryl/alkyl radicals. In situ radical generation from hydrazine substrates and copper ions proceeds rapidly in an aqueous buffer at near neutral pH (5-8), providing a variety of Se-modified linear and cyclic peptides and proteins conjugated to aryl and alkyl molecules, and to affinity label tag (biotin). This chemistry opens a new avenue for chemical protein modifications.
Collapse
Affiliation(s)
- Zhenguang Zhao
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem 91904, Israel
| | - Daphna Shimon
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem 91904, Israel
| | - Norman Metanis
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
6
|
Diselenide crosslinks for enhanced and simplified oxidative protein folding. Commun Chem 2021; 4:30. [PMID: 36697775 PMCID: PMC9814483 DOI: 10.1038/s42004-021-00463-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/29/2021] [Indexed: 01/28/2023] Open
Abstract
The in vitro oxidative folding of proteins has been studied for over sixty years, providing critical insight into protein folding mechanisms. Hirudin, the most potent natural inhibitor of thrombin, is a 65-residue protein with three disulfide bonds, and is viewed as a folding model for a wide range of disulfide-rich proteins. Hirudin's folding pathway is notorious for its highly heterogeneous intermediates and scrambled isomers, limiting its folding rate and yield in vitro. Aiming to overcome these limitations, we undertake systematic investigation of diselenide bridges at native and non-native positions and investigate their effect on hirudin's folding, structure and activity. Our studies demonstrate that, regardless of the specific positions of these substitutions, the diselenide crosslinks enhanced the folding rate and yield of the corresponding hirudin analogues, while reducing the complexity and heterogeneity of the process. Moreover, crystal structure analysis confirms that the diselenide substitutions maintained the overall three-dimensional structure of the protein and left its function virtually unchanged. The choice of hirudin as a study model has implications beyond its specific folding mechanism, demonstrating the high potential of diselenide substitutions in the design, preparation and characterization of disulfide-rich proteins.
Collapse
|
7
|
Arai K, Iwaoka M. Flexible Folding: Disulfide-Containing Peptides and Proteins Choose the Pathway Depending on the Environments. Molecules 2021; 26:E195. [PMID: 33401729 PMCID: PMC7794709 DOI: 10.3390/molecules26010195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 11/18/2022] Open
Abstract
In the last few decades, development of novel experimental techniques, such as new types of disulfide (SS)-forming reagents and genetic and chemical technologies for synthesizing designed artificial proteins, is opening a new realm of the oxidative folding study where peptides and proteins can be folded under physiologically more relevant conditions. In this review, after a brief overview of the historical and physicochemical background of oxidative protein folding study, recently revealed folding pathways of several representative peptides and proteins are summarized, including those having two, three, or four SS bonds in the native state, as well as those with odd Cys residues or consisting of two peptide chains. Comparison of the updated pathways with those reported in the early years has revealed the flexible nature of the protein folding pathways. The significantly different pathways characterized for hen-egg white lysozyme and bovine milk α-lactalbumin, which belong to the same protein superfamily, suggest that the information of protein folding pathways, not only the native folded structure, is encoded in the amino acid sequence. The application of the flexible pathways of peptides and proteins to the engineering of folded three-dimensional structures is an interesting and important issue in the new realm of the current oxidative protein folding study.
Collapse
Affiliation(s)
| | - Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan;
| |
Collapse
|
8
|
Narayan M. Revisiting the Formation of a Native Disulfide Bond: Consequences for Protein Regeneration and Beyond. Molecules 2020; 25:molecules25225337. [PMID: 33207635 PMCID: PMC7697891 DOI: 10.3390/molecules25225337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022] Open
Abstract
Oxidative protein folding involves the formation of disulfide bonds and the regeneration of native structure (N) from the fully reduced and unfolded protein (R). Oxidative protein folding studies have provided a wealth of information on underlying physico-chemical reactions by which disulfide-bond-containing proteins acquire their catalytically active form. Initially, we review key events underlying oxidative protein folding using bovine pancreatic ribonuclease A (RNase A), bovine pancreatic trypsin inhibitor (BPTI) and hen-egg white lysozyme (HEWL) as model disulfide bond-containing folders and discuss consequential outcomes with regard to their folding trajectories. We re-examine the findings from the same studies to underscore the importance of forming native disulfide bonds and generating a “native-like” structure early on in the oxidative folding pathway. The impact of both these features on the regeneration landscape are highlighted by comparing ideal, albeit hypothetical, regeneration scenarios with those wherein a native-like structure is formed relatively “late” in the R→N trajectory. A special case where the desired characteristics of oxidative folding trajectories can, nevertheless, stall folding is also discussed. The importance of these data from oxidative protein folding studies is projected onto outcomes, including their impact on the regeneration rate, yield, misfolding, misfolded-flux trafficking from the endoplasmic reticulum (ER) to the cytoplasm, and the onset of neurodegenerative disorders.
Collapse
Affiliation(s)
- Mahesh Narayan
- The Department of Chemistry and Biochemistry, The University of Texas as El Paso, El Paso, TX 79968, USA
| |
Collapse
|
9
|
Upadhyay A, Batabyal M, Kanika, Kumar S. Organoseleniums: Generated and Exploited in Oxidative Reactions. CHEM LETT 2020. [DOI: 10.1246/cl.200015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Aditya Upadhyay
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, Madhya Pradesh India
| | - Monojit Batabyal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, Madhya Pradesh India
| | - Kanika
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, Madhya Pradesh India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, Madhya Pradesh India
| |
Collapse
|
10
|
Metanis N, Notis Dardashti R, Mousa R, Weil-Ktorza O. Miklós Bodanszky Award Lecture: Selective chalcogen chemistry to study protein science. J Pept Sci 2019; 25:e3204. [PMID: 31407415 DOI: 10.1002/psc.3204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022]
Abstract
In recent decades, chemical protein synthesis and the development of chemoselective reactions-including ligation reactions-have led to significant breakthroughs in protein science. Among them are a better understanding of protein structure-function relationships, the study of protein posttranslational modifications, exploration of protein design, unnatural amino acid incorporation, and the study of therapeutic proteins and protein folding. Chalcogen chemistry, especially that of sulfur and selenium, is quite rich, and we have witnessed continuous progress in this field in recent years. In this short review, we will instead summarize three stories that we have recently presented on chalcogen chemistry and its impact on protein science, which was presented in the Miklós Bodanszky Award Lecture at the 35th European Peptide Society Meeting in Dublin, Ireland, 26 August 2018.
Collapse
Affiliation(s)
- Norman Metanis
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Reem Mousa
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orit Weil-Ktorza
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
11
|
Weil-Ktorza O, Rege N, Lansky S, Shalev DE, Shoham G, Weiss MA, Metanis N. Substitution of an Internal Disulfide Bridge with a Diselenide Enhances both Foldability and Stability of Human Insulin. Chemistry 2019; 25:8513-8521. [PMID: 31012517 PMCID: PMC6861001 DOI: 10.1002/chem.201900892] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/12/2019] [Indexed: 11/12/2022]
Abstract
Insulin analogues, mainstays in the modern treatment of diabetes mellitus, exemplify the utility of protein engineering in molecular pharmacology. Whereas chemical syntheses of the individual A and B chains were accomplished in the early 1960s, their combination to form native insulin remains inefficient because of competing disulfide pairing and aggregation. To overcome these limitations, we envisioned an alternative approach: pairwise substitution of cysteine residues with selenocysteine (Sec, U). To this end, CysA6 and CysA11 (which form the internal intrachain A6-A11 disulfide bridge) were each replaced with Sec. The A chain[C6U, C11U] variant was prepared by solid-phase peptide synthesis; while sulfitolysis of biosynthetic human insulin provided wild-type B chain-di-S-sulfonate. The presence of selenium atoms at these sites markedly enhanced the rate and fidelity of chain combination, thus solving a long-standing challenge in chemical insulin synthesis. The affinity of the Se-insulin analogue for the lectin-purified insulin receptor was indistinguishable from that of WT-insulin. Remarkably, the thermodynamic stability of the analogue at 25 °C, as inferred from guanidine denaturation studies, was augmented (ΔΔGu ≈0.8 kcal mol-1 ). In accordance with such enhanced stability, reductive unfolding of the Se-insulin analogue and resistance to enzymatic cleavage by Glu-C protease occurred four times more slowly than that of WT-insulin. 2D-NMR and X-ray crystallographic studies demonstrated a native-like three-dimensional structure in which the diselenide bridge was accommodated in the hydrophobic core without steric clash.
Collapse
Affiliation(s)
- Orit Weil-Ktorza
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem, 91904, Israel
| | - Nischay Rege
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Shifra Lansky
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem, 91904, Israel
| | - Deborah E Shalev
- Wolfson Center for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem, 91904, Israel
| | - Gil Shoham
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem, 91904, Israel
| | - Michael A Weiss
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, 44106, USA
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Norman Metanis
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem, 91904, Israel
| |
Collapse
|
12
|
Mousa R, Lansky S, Shoham G, Metanis N. BPTI folding revisited: switching a disulfide into methylene thioacetal reveals a previously hidden path. Chem Sci 2018; 9:4814-4820. [PMID: 29910933 PMCID: PMC5982216 DOI: 10.1039/c8sc01110a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/01/2018] [Indexed: 01/07/2023] Open
Abstract
The folding mechanism of the model protein bovine pancreatic trypsin inhibitor was revisited. By switching the solvent exposed disulfide bond with methylene thioacetal we uncovered a hidden pathway in its folding mechanism. In addition, this moiety enhanced protein stability while fully maintaining the protein structure and biological function.
Bovine pancreatic trypsin inhibitor (BPTI) is a 58-residue protein that is stabilized by three disulfide bonds at positions 5–55, 14–38 and 30–51. Widely studied for about 50 years, BPTI represents a folding model for many disulfide-rich proteins. In the study described below, we replaced the solvent exposed 14–38 disulfide bond with a methylene thioacetal bridge in an attempt to arrest the folding pathway of the protein at its two well-known intermediates, N′ and N*. The modified protein was expected to be unable to undergo the rate-determining step in the widely accepted BPTI folding mechanism: the opening of the 14–38 disulfide bond followed by rearrangements that leads to the native state, N. Surprisingly, instead of halting BPTI folding at N′ and N*, we uncovered a hidden pathway involving a direct reaction between the N* intermediate and the oxidizing reagent glutathione (GSSG) to form the disulfide-mixed intermediate N*–SG, which spontaneously folds into N. On the other hand, N′ was unable to fold into N. In addition, we found that the methylene thioacetal bridge enhances BPTI stability while fully maintaining its structure and biological function. These findings suggest a general strategy for enhancing protein stability without compromising on function or structure, suggesting potential applications for future therapeutic protein production.
Collapse
Affiliation(s)
- Reem Mousa
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem , 91904 , Israel .
| | - Shifra Lansky
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem , 91904 , Israel .
| | - Gil Shoham
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem , 91904 , Israel .
| | - Norman Metanis
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem , 91904 , Israel .
| |
Collapse
|
13
|
Arai K, Ueno H, Asano Y, Chakrabarty G, Shimodaira S, Mugesh G, Iwaoka M. Protein Folding in the Presence of Water-Soluble Cyclic Diselenides with Novel Oxidoreductase and Isomerase Activities. Chembiochem 2017; 19:207-211. [PMID: 29197144 DOI: 10.1002/cbic.201700624] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Indexed: 01/29/2023]
Abstract
The protein disulfide isomerase (PDI) family, found in the endoplasmic reticulum (ER) of the eukaryotic cell, catalyzes the formation and cleavage of disulfide bonds and thereby helps in protein folding. A decrease in PDI activity under ER stress conditions leads to protein misfolding, which is responsible for the progression of various human diseases, such as Alzheimer's, Parkinson's, diabetes mellitus, and atherosclerosis. Here we report that water-soluble cyclic diselenides mimic the multifunctional activity of the PDI family by facilitating oxidative folding, disulfide formation/reduction, and repair of the scrambled disulfide bonds in misfolded proteins.
Collapse
Affiliation(s)
- Kenta Arai
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Haruhito Ueno
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Yuki Asano
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Gaurango Chakrabarty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Shingo Shimodaira
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| |
Collapse
|
14
|
Mousa R, Notis Dardashti R, Metanis N. Selen und Selenocystein in der Proteinchemie. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706876] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Reem Mousa
- The Institute of Chemistry; The Hebrew University of Jerusalem; Edmond J. Safra, Givat Ram Jerusalem 91904 Israel
| | - Rebecca Notis Dardashti
- The Institute of Chemistry; The Hebrew University of Jerusalem; Edmond J. Safra, Givat Ram Jerusalem 91904 Israel
| | - Norman Metanis
- The Institute of Chemistry; The Hebrew University of Jerusalem; Edmond J. Safra, Givat Ram Jerusalem 91904 Israel
| |
Collapse
|
15
|
Mousa R, Notis Dardashti R, Metanis N. Selenium and Selenocysteine in Protein Chemistry. Angew Chem Int Ed Engl 2017; 56:15818-15827. [PMID: 28857389 DOI: 10.1002/anie.201706876] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Indexed: 01/22/2023]
Abstract
Selenocysteine, the selenium-containing analogue of cysteine, is the twenty-first proteinogenic amino acid. Since its discovery almost fifty years ago, it has been exploited in unnatural systems even more often than in natural systems. Selenocysteine chemistry has attracted the attention of many chemists in the field of chemical biology owing to its high reactivity and resulting potential for various applications such as chemical modification, chemical protein (semi)synthesis, and protein folding, to name a few. In this Minireview, we will focus on the chemistry of selenium and selenocysteine and their utility in protein chemistry.
Collapse
Affiliation(s)
- Reem Mousa
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem, 91904, Israel
| | - Rebecca Notis Dardashti
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem, 91904, Israel
| | - Norman Metanis
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem, 91904, Israel
| |
Collapse
|
16
|
Shimodaira S, Asano Y, Arai K, Iwaoka M. Selenoglutathione Diselenide: Unique Redox Reactions in the GPx-Like Catalytic Cycle and Repairing of Disulfide Bonds in Scrambled Protein. Biochemistry 2017; 56:5644-5653. [PMID: 29022711 DOI: 10.1021/acs.biochem.7b00751] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Selenoglutathione (GSeH) is a selenium analogue of naturally abundant glutathione (GSH). In this study, this water-soluble small tripeptide was synthesized in a high yield (up to 98%) as an oxidized diselenide form, i.e., GSeSeG (1), by liquid-phase peptide synthesis (LPPS). Obtained 1 was applied to the investigation of the glutathione peroxidase (GPx)-like catalytic cycle. The important intermediates, i.e., GSe- and GSeSG, besides GSeO2H were characterized by 77Se NMR spectroscopy. Thiol exchange of GSeSG with various thiols, such as cysteine and dithiothreitol, was found to promote the conversion to GSe- significantly. In addition, disproportionation of GSeSR to 1 and RSSR, which would be initiated by heterolytic cleavage of the Se-S bond and catalyzed by the generated selenolate, was observed. On the basis of these redox behaviors, it was proposed that the heterolytic cleavage of the Se-S bond can be facilitated by the interaction between the Se atom and an amino or aromatic group, which is present at the GPx active site. On the other hand, when a catalytic amount of 1 was reacted with scrambled 4S species of RNase A in the presence of NADPH and glutathione reductase, native protein was efficiently regenerated, suggesting a potential use of 1 to repair misfolded proteins through reduction of the non-native SS bonds.
Collapse
Affiliation(s)
- Shingo Shimodaira
- Department of Chemistry, School of Science, Tokai University , Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan
| | - Yuki Asano
- Department of Chemistry, School of Science, Tokai University , Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan
| | - Kenta Arai
- Department of Chemistry, School of Science, Tokai University , Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan
| | - Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University , Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan
| |
Collapse
|
17
|
Reddy PS, Metanis N. Small molecule diselenide additives for in vitro oxidative protein folding. Chem Commun (Camb) 2016; 52:3336-9. [PMID: 26822519 DOI: 10.1039/c5cc10451c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The in vitro oxidative folding of disulfide-rich proteins can be challenging. Here we show a new class of small molecule diselenides, which can be easily prepared from inexpensive starting materials, used to enhance oxidative protein folding. These compounds were tested on a model protein, bovine pancreatic trypsin inhibitor. Two of the tested diselenides showed considerable improvement over glutathione and were on par with the previously described selenoglutathione.
Collapse
Affiliation(s)
- Post Sai Reddy
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Norman Metanis
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
18
|
Metanis N, Hilvert D. Natural and synthetic selenoproteins. Curr Opin Chem Biol 2014; 22:27-34. [DOI: 10.1016/j.cbpa.2014.09.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/07/2014] [Accepted: 09/08/2014] [Indexed: 12/11/2022]
|
19
|
Metanis N, Hilvert D. Harnessing selenocysteine reactivity for oxidative protein folding. Chem Sci 2014; 6:322-325. [PMID: 28757941 PMCID: PMC5514408 DOI: 10.1039/c4sc02379j] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 09/22/2014] [Indexed: 01/06/2023] Open
Abstract
Turbo-charged folding with selenium: targeted replacement of cysteines in proteins with selenocysteines is a valuable strategy for increasing the rates of oxidative protein folding, altering folding mechanisms, and rescuing kinetically trapped intermediates.
Although oxidative folding of disulfide-rich proteins is often sluggish, this process can be significantly enhanced by targeted replacement of cysteines with selenocysteines. In this study, we examined the effects of a selenosulfide and native versus nonnative diselenides on the folding rates and mechanism of bovine pancreatic trypsin inhibitor. Our results show that such sulfur-to-selenium substitutions alter the distribution of key folding intermediates and enhance their rates of interconversion in a context-dependent manner.
Collapse
Affiliation(s)
- Norman Metanis
- Laboratory of Organic Chemistry , ETH Zürich , 8093 Zürich , Switzerland .
| | - Donald Hilvert
- Laboratory of Organic Chemistry , ETH Zürich , 8093 Zürich , Switzerland .
| |
Collapse
|
20
|
Lees WJ. Going non-native to improve oxidative protein folding. Chembiochem 2012; 13:1725-7. [PMID: 22764127 DOI: 10.1002/cbic.201200288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Watson J Lees
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St., Miami, FL 33172, USA.
| |
Collapse
|
21
|
Metanis N, Hilvert D. Strategic Use of Non-Native Diselenide Bridges to Steer Oxidative Protein Folding. Angew Chem Int Ed Engl 2012; 51:5585-8. [DOI: 10.1002/anie.201109129] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Indexed: 11/07/2022]
|
22
|
Metanis N, Hilvert D. Strategic Use of Non-Native Diselenide Bridges to Steer Oxidative Protein Folding. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201109129] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|