1
|
Perras FA, Carnahan SL, Lo WS, Ward CJ, Yu J, Huang W, Rossini AJ. Hybrid quantum-classical simulations of magic angle spinning dynamic nuclear polarization in very large spin systems. J Chem Phys 2022; 156:124112. [DOI: 10.1063/5.0086530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Solid-state nuclear magnetic resonance can be enhanced using unpaired electron spins with a method known as dynamic nuclear polarization (DNP). Fundamentally, DNP involves ensembles of thousands of spins, a scale that is difficult to match computationally. This scale prevents us from gaining a complete understanding of the spin dynamics and applying simulations to design sample formulations. We recently developed an ab initio model capable of calculating DNP enhancements in systems of up to ∼1000 nuclei; however, this scale is insufficient to accurately simulate the dependence of DNP enhancements on radical concentration or magic angle spinning (MAS) frequency. We build on this work by using ab initio simulations to train a hybrid model that makes use of a rate matrix to treat nuclear spin diffusion. We show that this model can reproduce the MAS rate and concentration dependence of DNP enhancements and build-up time constants. We then apply it to predict the DNP enhancements in core–shell metal-organic-framework nanoparticles and reveal new insights into the composition of the particles’ shells.
Collapse
Affiliation(s)
| | - Scott L. Carnahan
- Ames Laboratory, U.S. DOE, Ames, Iowa 50011, USA
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Wei-Shang Lo
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Charles J. Ward
- Ames Laboratory, U.S. DOE, Ames, Iowa 50011, USA
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Jiaqi Yu
- Ames Laboratory, U.S. DOE, Ames, Iowa 50011, USA
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Wenyu Huang
- Ames Laboratory, U.S. DOE, Ames, Iowa 50011, USA
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Aaron J. Rossini
- Ames Laboratory, U.S. DOE, Ames, Iowa 50011, USA
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
2
|
Ghassemi N, Poulhazan A, Deligey F, Mentink-Vigier F, Marcotte I, Wang T. Solid-State NMR Investigations of Extracellular Matrixes and Cell Walls of Algae, Bacteria, Fungi, and Plants. Chem Rev 2021; 122:10036-10086. [PMID: 34878762 DOI: 10.1021/acs.chemrev.1c00669] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular matrixes (ECMs), such as the cell walls and biofilms, are important for supporting cell integrity and function and regulating intercellular communication. These biomaterials are also of significant interest to the production of biofuels and the development of antimicrobial treatment. Solid-state nuclear magnetic resonance (ssNMR) and magic-angle spinning-dynamic nuclear polarization (MAS-DNP) are uniquely powerful for understanding the conformational structure, dynamical characteristics, and supramolecular assemblies of carbohydrates and other biomolecules in ECMs. This review highlights the recent high-resolution investigations of intact ECMs and native cells in many organisms spanning across plants, bacteria, fungi, and algae. We spotlight the structural principles identified in ECMs, discuss the current technical limitation and underexplored biochemical topics, and point out the promising opportunities enabled by the recent advances of the rapidly evolving ssNMR technology.
Collapse
Affiliation(s)
- Nader Ghassemi
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Alexandre Poulhazan
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States.,Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
3
|
Rodin B, Ivanov K. Representation of population exchange at level anti-crossings. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2020; 1:347-365. [PMID: 38111911 PMCID: PMC10726024 DOI: 10.5194/mr-1-347-2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2023]
Abstract
A theoretical framework is proposed to describe the spin dynamics driven by coherent spin mixing at level anti-crossings (LACs). We briefly introduce the LAC concept and propose to describe the spin dynamics using a vector of populations of the diabatic eigenstates. In this description, each LAC gives rise to a pairwise redistribution of eigenstate populations, allowing one to construct the total evolution operator of the spin system. Additionally, we take into account that in the course of spin evolution a "rotation" of the eigenstate basis case take place. The approach is illustrated by a number of examples, dealing with magnetic field inversion, cross-polarization, singlet-state nuclear magnetic resonance and parahydrogen-induced polarization.
Collapse
Affiliation(s)
- Bogdan A. Rodin
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk, 630090, Russia
- Physics Department, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Konstantin L. Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk, 630090, Russia
- Physics Department, Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
4
|
Perras FA, Raju M, Carnahan SL, Akbarian D, van Duin ACT, Rossini AJ, Pruski M. Full-Scale Ab Initio Simulation of Magic-Angle-Spinning Dynamic Nuclear Polarization. J Phys Chem Lett 2020; 11:5655-5660. [PMID: 32453582 DOI: 10.1021/acs.jpclett.0c00955] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Theoretical models aimed at describing magic-angle-spinning (MAS) dynamic nuclear polarization (DNP) NMR have great potential in facilitating the in silico design of DNP polarizing agents and formulations. These models must typically face a trade-off between the accuracy of a strict quantum mechanical description and the need for using realistically large spin systems, for instance, using phenomenological models. Here, we show that the use of aggressive state-space restrictions and an optimization strategy allows full-scale ab initio MAS-DNP simulations of spin systems containing thousands of nuclei. Our simulations are shown to reproduce experimental DNP enhancements quantitatively, including their MAS rate dependence, for both frozen solutions and solid materials. They also reveal the importance of a previously unrecognized structural feature found in some polarizing agents that helps minimize the sensitivity losses imposed by the spin diffusion barrier.
Collapse
Affiliation(s)
| | - Muralikrishna Raju
- U.S. DOE, Ames Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Scott L Carnahan
- U.S. DOE, Ames Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Dooman Akbarian
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Adri C T van Duin
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Aaron J Rossini
- U.S. DOE, Ames Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Marek Pruski
- U.S. DOE, Ames Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
5
|
Rankin AGM, Trébosc J, Pourpoint F, Amoureux JP, Lafon O. Recent developments in MAS DNP-NMR of materials. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 101:116-143. [PMID: 31189121 DOI: 10.1016/j.ssnmr.2019.05.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 05/03/2023]
Abstract
Solid-state NMR spectroscopy is a powerful technique for the characterization of the atomic-level structure and dynamics of materials. Nevertheless, the use of this technique is often limited by its lack of sensitivity, which can prevent the observation of surfaces, defects or insensitive isotopes. Dynamic Nuclear Polarization (DNP) has been shown to improve by one to three orders of magnitude the sensitivity of NMR experiments on materials under Magic-Angle Spinning (MAS), at static magnetic field B0 ≥ 5 T, conditions allowing for the acquisition of high-resolution spectra. The field of DNP-NMR spectroscopy of materials has undergone a rapid development in the last ten years, spurred notably by the availability of commercial DNP-NMR systems. We provide here an in-depth overview of MAS DNP-NMR studies of materials at high B0 field. After a historical perspective of DNP of materials, we describe the DNP transfers under MAS, the transport of polarization by spin diffusion and the various contributions to the overall sensitivity of DNP-NMR experiments. We discuss the design of tailored polarizing agents and the sample preparation in the case of materials. We present the DNP-NMR hardware and the influence of key experimental parameters, such as microwave power, magnetic field, temperature and MAS frequency. We give an overview of the isotopes that have been detected by this technique, and the NMR methods that have been combined with DNP. Finally, we show how MAS DNP-NMR has been applied to gain new insights into the structure of organic, hybrid and inorganic materials with applications in fields, such as health, energy, catalysis, optoelectronics etc.
Collapse
Affiliation(s)
- Andrew G M Rankin
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - Julien Trébosc
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France; Univ. Lille, CNRS-FR2638, Fédération Chevreul, F-59000 Lille, France
| | - Frédérique Pourpoint
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France; Bruker Biospin, 34 rue de l'industrie, F-67166, Wissembourg, France
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France; Institut Universitaire de France, 1 rue Descartes, F-75231, Paris, France.
| |
Collapse
|
6
|
Purea A, Reiter C, Dimitriadis AI, de Rijk E, Aussenac F, Sergeyev I, Rosay M, Engelke F. Improved waveguide coupling for 1.3 mm MAS DNP probes at 263 GHz. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 302:43-49. [PMID: 30953925 DOI: 10.1016/j.jmr.2019.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
We consider the geometry of a radially irradiated microwave beam in MAS DNP NMR probes and its impact on DNP enhancement. Two related characteristic features are found to be relevant: (i) the focus of the microwave beam on the DNP MAS sample and (ii) the microwave magnetic field magnitude in the sample. We present a waveguide coupler setup that enables us to significantly improve beam focus and field magnitude in 1.3 mm MAS DNP probes at a microwave frequency of 263 GHz, which results in an increase of the DNP enhancement by a factor of 2 compared to previous standard hardware setups. We discuss the implications of improved coupling and its potential to enable cutting-edge applications, such as pulsed high-field DNP and the use of low-power solid-state microwave sources.
Collapse
|
7
|
Leavesley A, Jain S, Kamniker I, Zhang H, Rajca S, Rajca A, Han S. Maximizing NMR signal per unit time by facilitating the e-e-n cross effect DNP rate. Phys Chem Chem Phys 2018; 20:27646-27657. [PMID: 30375593 PMCID: PMC6370975 DOI: 10.1039/c8cp04909b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dynamic nuclear polarization (DNP) efficiency is critically dependent on the properties of the radical, solvent, and solute constituting the sample system. In this study, we focused on the three spin e-e-n cross effect (CE)'s influence on the nuclear longitudinal relaxation time constant T1n, the build-up time constants of nuclear magnetic resonance (NMR) signal, TDNP and DNP-enhancement of NMR signal. The dipolar interaction strength between the electron spins driving the e-e-n process was systematically modulated using mono-, di-, tri-, and dendritic-nitroxide radicals, while maintaining a constant global electron spin concentration of 10 mM. Experimental results showed that an increase in electron spin clustering led to an increased electron spin depolarization, as mapped by electron double resonance (ELDOR), and a dramatically shortened T1n and TDNP time constants under static and magic angle spinning (MAS) conditions. A theoretical analysis reveals that strong e-e interactions, caused by electron spin clustering, increase the CE rate. The three spin e-e-n CE is a hitherto little recognized mechanism for shortening T1n and TDNP in solid-state NMR experiments at cryogenic temperatures, and offers a design principle to enhance the effective CE DNP enhancement per unit time. Fast CE rates will benefit DNP at liquid helium temperatures, or at higher magnetic fields and pulsed DNP, where slow e-e-n polarization transfer rate is a key bottleneck to achieving maximal DNP performance.
Collapse
Affiliation(s)
- Alisa Leavesley
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA
| | - Sheetal Jain
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA
| | - Ilia Kamniker
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA
| | - Hui Zhang
- Department of Chemistry, University of Nebraska, Lincoln, NE
| | - Suchada Rajca
- Department of Chemistry, University of Nebraska, Lincoln, NE
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, NE
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA
- Department of Chemical Engineering, University of California, Santa Barbara, CA
| |
Collapse
|
8
|
Jain SK, Mathies G, Griffin RG. Off-resonance NOVEL. J Chem Phys 2017; 147:164201. [PMID: 29096491 PMCID: PMC5659863 DOI: 10.1063/1.5000528] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/10/2017] [Indexed: 11/14/2022] Open
Abstract
Dynamic nuclear polarization (DNP) is theoretically able to enhance the signal in nuclear magnetic resonance (NMR) experiments by a factor γe/γn, where γ's are the gyromagnetic ratios of an electron and a nuclear spin. However, DNP enhancements currently achieved in high-field, high-resolution biomolecular magic-angle spinning NMR are well below this limit because the continuous-wave DNP mechanisms employed in these experiments scale as ω0-n where n ∼ 1-2. In pulsed DNP methods, such as nuclear orientation via electron spin-locking (NOVEL), the DNP efficiency is independent of the strength of the main magnetic field. Hence, these methods represent a viable alternative approach for enhancing nuclear signals. At 0.35 T, the NOVEL scheme was demonstrated to be efficient in samples doped with stable radicals, generating 1H NMR enhancements of ∼430. However, an impediment in the implementation of NOVEL at high fields is the requirement of sufficient microwave power to fulfill the on-resonance matching condition, ω0I = ω1S, where ω0I and ω1S are the nuclear Larmor and electron Rabi frequencies, respectively. Here, we exploit a generalized matching condition, which states that the effective Rabi frequency, ω1Seff, matches ω0I. By using this generalized off-resonance matching condition, we generate 1H NMR signal enhancement factors of 266 (∼70% of the on-resonance NOVEL enhancement) with ω1S/2π = 5 MHz. We investigate experimentally the conditions for optimal transfer of polarization from electrons to 1H both for the NOVEL mechanism and the solid-effect mechanism and provide a unified theoretical description for these two historically distinct forms of DNP.
Collapse
Affiliation(s)
- Sheetal K Jain
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Guinevere Mathies
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Robert G Griffin
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
9
|
Perras FA, Sadow A, Pruski M. In Silico Design of DNP Polarizing Agents: Can Current Dinitroxides Be Improved? Chemphyschem 2017; 18:2279-2287. [DOI: 10.1002/cphc.201700299] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/07/2017] [Indexed: 12/18/2022]
Affiliation(s)
| | - Aaron Sadow
- US DOE Ames Laboratory Ames IA 50011 USA
- Department of Chemistry Iowa State University Ames IA 50011 USA
| | - Marek Pruski
- US DOE Ames Laboratory Ames IA 50011 USA
- Department of Chemistry Iowa State University Ames IA 50011 USA
| |
Collapse
|
10
|
Salnikov ES, Abel S, Karthikeyan G, Karoui H, Aussenac F, Tordo P, Bechinger B, Ouari O. Dynamic Nuclear Polarization/Solid-State NMR Spectroscopy of Membrane Polypeptides: Free-Radical Optimization for Matrix-Free Lipid Bilayer Samples. Chemphyschem 2017; 18:2103-2113. [PMID: 28574169 DOI: 10.1002/cphc.201700389] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/24/2017] [Indexed: 01/07/2023]
Abstract
Dynamic nuclear polarization (DNP) boosts the sensitivity of NMR spectroscopy by orders of magnitude and makes investigations previously out of scope possible. For magic-angle-spinning (MAS) solid-state NMR spectroscopy studies, the samples are typically mixed with biradicals dissolved in a glass-forming solvent and are investigated at cryotemperatures. Herein, we present new biradical polarizing agents developed for matrix-free samples such as supported lipid bilayers, which are systems widely used for the investigation of membrane polypeptides of high biomedical importance. A series of 11 biradicals with different structures, geometries, and physicochemical properties were comprehensively tested for DNP performance in lipid bilayers, some of them developed specifically for DNP investigations of membranes. The membrane-anchored biradicals PyPol-C16, AMUPOL-cholesterol, and bTurea-C16 were found to exhibit improved g-tensor alignment, inter-radical distance, and dispersion. Consequently, these biradicals show the highest signal enhancement factors so far obtained for matrix-free membranes or other matrix-free samples and may potentially shorten NMR acquisition times by three orders of magnitude. Furthermore, the optimal biradical-to-lipid ratio, sample deuteration, and membrane lipid composition were determined under static and MAS conditions. To rationalize biradical performance better, DNP enhancement was measured by using the 13 C and 15 N signals of lipids and a peptide as a function of the biradical concentration, DNP build-up time, resonance line width, quenching effect, microwave power, and MAS frequency.
Collapse
Affiliation(s)
- Evgeniy S Salnikov
- Institut de chimie, UMR 7177, Université de Strasbourg/CNRS, 4, rue Blaise Pascal, 67070, Strasbourg, France
| | - Sébastien Abel
- Aix Marseille Univ, CNRS, ICR UMR 7273, 13013, Marseille, France
| | | | - Hakim Karoui
- Aix Marseille Univ, CNRS, ICR UMR 7273, 13013, Marseille, France
| | - Fabien Aussenac
- Bruker Biospin, 34, rue de l'industrie, 67166, Wissembourg, France
| | - Paul Tordo
- Aix Marseille Univ, CNRS, ICR UMR 7273, 13013, Marseille, France
| | - Burkhard Bechinger
- Institut de chimie, UMR 7177, Université de Strasbourg/CNRS, 4, rue Blaise Pascal, 67070, Strasbourg, France
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR UMR 7273, 13013, Marseille, France
| |
Collapse
|
11
|
Pylaeva S, Ivanov KL, Baldus M, Sebastiani D, Elgabarty H. Molecular Mechanism of Overhauser Dynamic Nuclear Polarization in Insulating Solids. J Phys Chem Lett 2017; 8:2137-2142. [PMID: 28445055 DOI: 10.1021/acs.jpclett.7b00561] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Dynamic nuclear polarization (DNP), a technique that significantly enhances NMR signals, is experiencing a renaissance owing to enormous methodological developments. In the heart of DNP is a polarization transfer mechanism that endows nuclei with much larger electronic spin polarization. Polarization transfer via the Overhauser effect (OE) is traditionally known to be operative only in liquids and conducting solids. Very recently, surprisingly strong OE-DNP in insulating solids has been reported, with a DNP efficiency that increases with the magnetic field strength. Here we offer an explanation for these perplexing observations using a combination of molecular dynamics and spin dynamics simulations. Our approach elucidates the underlying molecular stochastic motion, provides cross-relaxation rates, explains the observed sign of the NMR enhancement, and estimates the role of nuclear spin diffusion. The presented theoretical description opens the door for rational design of novel polarizing agents for OE-DNP in insulating solids.
Collapse
Affiliation(s)
- Svetlana Pylaeva
- Chemistry Department, MLU Halle-Wittenberg , 06120 Halle (Saale), Germany
| | - Konstantin L Ivanov
- International Tomography Center SB RAS , Novosibirsk 630090, Russia
- Novosibirsk State University , Novosibirsk 630090, Russia
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University , 3584 CH Utrecht, The Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University , 3584 CH Utrecht, The Netherlands
| | - Daniel Sebastiani
- Chemistry Department, MLU Halle-Wittenberg , 06120 Halle (Saale), Germany
| | - Hossam Elgabarty
- Chemistry Department, MLU Halle-Wittenberg , 06120 Halle (Saale), Germany
| |
Collapse
|
12
|
Chen H, Maryasov AG, Rogozhnikova OY, Trukhin DV, Tormyshev VM, Bowman MK. Electron spin dynamics and spin-lattice relaxation of trityl radicals in frozen solutions. Phys Chem Chem Phys 2016; 18:24954-65. [PMID: 27560644 PMCID: PMC5482570 DOI: 10.1039/c6cp02649d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron spin-lattice relaxation of two trityl radicals, d24-OX063 and Finland trityl, were studied under conditions relevant to their use in dissolution dynamic nuclear polarization (DNP). The dependence of relaxation kinetics on temperature up to 100 K and on concentration up to 60 mM was obtained at X- and W-bands (0.35 and 3.5 Tesla, respectively). The relaxation is quite similar at both bands and for both trityl radicals. At concentrations typical for DNP, relaxation is mediated by excitation transfer and spin-diffusion to fast-relaxing centers identified as triads of trityl radicals that spontaneously form in the frozen samples. These centers relax by an Orbach-Aminov mechanism and determine the relaxation, saturation and electron spin dynamics during DNP.
Collapse
Affiliation(s)
- Hanjiao Chen
- Department of Chemistry, The University of Alabama, Box 870336, Tuscaloosa, Alabama 35487-0336, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Akbey Ü, Oschkinat H. Structural biology applications of solid state MAS DNP NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 269:213-224. [PMID: 27095695 DOI: 10.1016/j.jmr.2016.04.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
Dynamic Nuclear Polarization (DNP) has long been an aim for increasing sensitivity of nuclear magnetic resonance (NMR) spectroscopy, delivering spectra in shorter experiment times or of smaller sample amounts. In recent years, it has been applied in magic angle spinning (MAS) solid-state NMR to a large range of samples, including biological macromolecules and functional materials. New research directions in structural biology can be envisaged by DNP, facilitating investigations on very large complexes or very heterogeneous samples. Here we present a summary of state of the art DNP MAS NMR spectroscopy and its applications to structural biology, discussing the technical challenges and factors affecting DNP performance.
Collapse
Affiliation(s)
- Ümit Akbey
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Høegh-Guldbergs Gade 6B, 8000 Aarhus C, Denmark; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
| | - Hartmut Oschkinat
- Leibniz Institute für Molekulare Pharmakologie (FMP), NMR Supported Structural Biology, Robert Roessle Str. 10, 13125 Berlin, Germany.
| |
Collapse
|
14
|
Sosnovsky DV, Jeschke G, Matysik J, Vieth HM, Ivanov KL. Level crossing analysis of chemically induced dynamic nuclear polarization: Towards a common description of liquid-state and solid-state cases. J Chem Phys 2016; 144:144202. [DOI: 10.1063/1.4945341] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Denis V. Sosnovsky
- International Tomography Centre of SB RAS, Institutskaya 3a, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia
| | - Gunnar Jeschke
- Institut für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, D-04103 Leipzig, Germany
| | - Hans-Martin Vieth
- International Tomography Centre of SB RAS, Institutskaya 3a, 630090, Novosibirsk, Russia
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Konstantin L. Ivanov
- International Tomography Centre of SB RAS, Institutskaya 3a, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia
| |
Collapse
|
15
|
Siaw TA, Leavesley A, Lund A, Kaminker I, Han S. A versatile and modular quasi optics-based 200GHz dual dynamic nuclear polarization and electron paramagnetic resonance instrument. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 264:131-153. [PMID: 26920839 PMCID: PMC4770585 DOI: 10.1016/j.jmr.2015.12.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 05/12/2023]
Abstract
Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3T) and cryogenic temperatures (∼ 2-90K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the "DNP power curve", i.e. the microwave (MW) power dependence of DNP enhancement, the "DNP spectrum", i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum, and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 and 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the QO MW bridge will provide an efficient means to collect DNP data that is crucial for understanding the relationship between experimental and sample conditions, and the DNP performance. The modularity of this instrumental platform is suitable for future upgrades and extensions to include new experimental capabilities to meet contemporary DNP needs, including the simultaneous operation of two or more MW sources, time domain DNP, electron double resonance measurements, pulsed EPR operation, or simply the implementation of higher power MW amplifiers.
Collapse
Affiliation(s)
- Ting Ann Siaw
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, United States
| | - Alisa Leavesley
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, United States
| | - Alicia Lund
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, United States
| | - Ilia Kaminker
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, United States.
| |
Collapse
|
16
|
Mathies G, Caporini MA, Michaelis VK, Liu Y, Hu KN, Mance D, Zweier JL, Rosay M, Baldus M, Griffin RG. Efficient Dynamic Nuclear Polarization at 800 MHz/527 GHz with Trityl-Nitroxide Biradicals. Angew Chem Int Ed Engl 2015; 54:11770-4. [PMID: 26268156 PMCID: PMC5407364 DOI: 10.1002/anie.201504292] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/16/2015] [Indexed: 11/08/2022]
Abstract
Cross-effect (CE) dynamic nuclear polarization (DNP) is a rapidly developing technique that enhances the signal intensities in magic-angle spinning (MAS) NMR spectra. We report CE DNP experiments at 211, 600, and 800 MHz using a new series of biradical polarizing agents referred to as TEMTriPols, in which a nitroxide (TEMPO) and a trityl radical are chemically tethered. The TEMTriPol molecule with the optimal performance yields a record (1) H NMR signal enhancement of 65 at 800 MHz at a concentration of 10 mM in a glycerol/water solvent matrix. The CE DNP enhancement for the TEMTriPol biradicals does not decrease as the magnetic field is increased in the manner usually observed for bis-nitroxides. Instead, the relatively strong exchange interaction between the trityl and nitroxide moieties determines the magnetic field at which the optimum enhancement is observed.
Collapse
Affiliation(s)
- Guinevere Mathies
- Francis Bitter Magnet Laboratory, Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139 (USA).
| | - Marc A Caporini
- Bruker BioSpin Corporation, 15 Fortune Drive, Billerica, MA 01821 (USA)
- Current address: Amgen Inc., 360 Binney Street, Cambridge, MA 02142 (USA)
| | - Vladimir K Michaelis
- Francis Bitter Magnet Laboratory, Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139 (USA)
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling, Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070 (China).
- Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210 (USA).
| | - Kan-Nian Hu
- Francis Bitter Magnet Laboratory, Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139 (USA)
- Current address: Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210 (USA)
| | - Deni Mance
- NMR Spectroscopy, Department of Chemistry, Faculty of Science, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht (The Netherlands)
| | - Jay L Zweier
- Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210 (USA)
| | - Melanie Rosay
- Bruker BioSpin Corporation, 15 Fortune Drive, Billerica, MA 01821 (USA)
| | - Marc Baldus
- NMR Spectroscopy, Department of Chemistry, Faculty of Science, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht (The Netherlands)
| | - Robert G Griffin
- Francis Bitter Magnet Laboratory, Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139 (USA).
| |
Collapse
|
17
|
Mathies G, Caporini MA, Michaelis VK, Liu Y, Hu KN, Mance D, Zweier JL, Rosay M, Baldus M, Griffin RG. Efficient Dynamic Nuclear Polarization at 800 MHz/527 GHz with Trityl-Nitroxide Biradicals. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504292] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Mentink-Vigier F, Akbey Ü, Oschkinat H, Vega S, Feintuch A. Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 258:102-20. [PMID: 26232770 DOI: 10.1016/j.jmr.2015.07.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 07/01/2015] [Accepted: 07/04/2015] [Indexed: 05/06/2023]
Abstract
Magic Angle Spinning (MAS) combined with Dynamic Nuclear Polarization (DNP) has been proven in recent years to be a very powerful method for increasing solid-state NMR signals. Since the advent of biradicals such as TOTAPOL to increase the nuclear polarization new classes of radicals, with larger molecular weight and/or different spin properties have been developed. These have led to unprecedented signal gain, with varying results for different experimental parameters, in particular the microwave irradiation strength, the static field, and the spinning frequency. Recently it has been demonstrated that sample spinning imposes DNP enhancement processes that differ from the active DNP mechanism in static samples as upon sample spinning the DNP enhancements are the results of energy level anticrossings occurring periodically during each rotor cycle. In this work we present experimental results with regards to the MAS frequency dependence of the DNP enhancement profiles of four nitroxide-based radicals at two different sets of temperature, 110 and 160K. In fact, different magnitudes of reduction in enhancement are observed with increasing spinning frequency. Our simulation code for calculating MAS-DNP powder enhancements of small model spin systems has been improved to extend our studies of the influence of the interaction and relaxation parameters on powder enhancements. To achieve a better understanding we simulated the spin dynamics of a single three-spin system {ea-eb-n} during its steady state rotor periods and used the Landau-Zener formula to characterize the influence of the different anti-crossings on the polarizations of the system and their necessary action for reaching steady state conditions together with spin relaxation processes. Based on these model calculations we demonstrate that the maximum steady state nuclear polarization cannot become larger than the maximum polarization difference between the two electrons during the steady state rotor cycle. This study also shows the complexity of the MAS-DNP process and therefore the necessity to rely on numerical simulations for understanding parametric dependencies of the enhancements. Finally an extension of the spin system up to five spins allowed us to probe the first steps of the transfer of polarization from the nuclei coupled to the electrons to further away nuclei, demonstrating a decrease in the spin-diffusion barrier under MAS conditions.
Collapse
Affiliation(s)
| | - Ümit Akbey
- Leibniz-Institut für Molekulare Pharmakologie (FMP), NMR Supported Structural Biology, Robert Roessle Str. 10, 13125 Berlin, Germany; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Høegh-Guldbergs Gade 6B, Building: 1630, Room: 106, 8000 Aarhus C, Denmark; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Hartmut Oschkinat
- Leibniz-Institut für Molekulare Pharmakologie (FMP), NMR Supported Structural Biology, Robert Roessle Str. 10, 13125 Berlin, Germany
| | - Shimon Vega
- Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Akiva Feintuch
- Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
19
|
Mance D, Gast P, Huber M, Baldus M, Ivanov KL. The magnetic field dependence of cross-effect dynamic nuclear polarization under magic angle spinning. J Chem Phys 2015; 142:234201. [DOI: 10.1063/1.4922219] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Deni Mance
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Peter Gast
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO Box 9504, 2300 RA Leiden, The Netherlands
| | - Martina Huber
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO Box 9504, 2300 RA Leiden, The Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Konstantin L. Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia and Novosibirsk State University, Pirogova 2, Novosibirsk 63009, Russia
| |
Collapse
|
20
|
Hovav Y, Kaminker I, Shimon D, Feintuch A, Goldfarb D, Vega S. The electron depolarization during dynamic nuclear polarization: measurements and simulations. Phys Chem Chem Phys 2015; 17:226-44. [DOI: 10.1039/c4cp03825h] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Measurements and simulations of the electron spin polarization along the EPR spectrum of TEMPOL and trityl radicals, under DNP conditions.
Collapse
Affiliation(s)
- Y. Hovav
- Weizmann Institute of Science
- Rehovot
- Israel
| | | | - D. Shimon
- Weizmann Institute of Science
- Rehovot
- Israel
| | | | | | - S. Vega
- Weizmann Institute of Science
- Rehovot
- Israel
| |
Collapse
|
21
|
Thurber KR, Tycko R. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves. J Chem Phys 2014; 140:184201. [PMID: 24832263 PMCID: PMC4032438 DOI: 10.1063/1.4874341] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/21/2014] [Indexed: 01/17/2023] Open
Abstract
We report solid state (13)C and (1)H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, (1)H and cross-polarized (13)C NMR signals from (15)N,(13)C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.
Collapse
Affiliation(s)
- Kent R Thurber
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| |
Collapse
|