1
|
Lu Y, Yi L, Fu Z, Xie J, Cheng Q, Fu Z, Zou Z. Nonclassical crystallization of goethite nanorods in limpet teeth by self-assembly of silica-rich nanoparticles reveals structure-mechanical property relations. J Colloid Interface Sci 2024; 669:64-74. [PMID: 38705113 DOI: 10.1016/j.jcis.2024.04.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/10/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
The intricate organization of goethite nanorods within a silica-rich matrix makes limpet teeth the strongest known natural material. However, the mineralization pathway of goethite in organisms under ambient conditions remains elusive. Here, by investigating the multi-level structure of limpet teeth at different growth stages, it is revealed that the growth of goethite crystals proceeds by the attachment of amorphous nanoparticles, a nonclassical crystallization pathway widely observed during the formation of calcium-based biominerals. Importantly, these nanoparticles contain a high amount of silica, which is gradually expelled during the growth of goethite. Moreover, in mature teeth of limpet, the content of silica correlates with the size of goethite crystals, where smaller goethite crystals are densely packed in the leading part with higher content of silica. Correspondingly, the leading part exhibits higher hardness and elastic modulus. Thus, this study not only reveals the nonclassical crystallization pathway of goethite nanorods in limpet teeth, but also highlights the critical roles of silica in controlling the hierarchical structure and the mechanical properties of limpet teeth, thus providing inspirations for fabricating biomimetic materials with excellent properties.
Collapse
Affiliation(s)
- Yan Lu
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Luyao Yi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zeyao Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jingjing Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Qunfeng Cheng
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Zhengyi Fu
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zhaoyong Zou
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
2
|
Ede SR, Yu H, Sung CH, Kisailus D. Bio-Inspired Functional Materials for Environmental Applications. SMALL METHODS 2024; 8:e2301227. [PMID: 38133492 DOI: 10.1002/smtd.202301227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Indexed: 12/23/2023]
Abstract
With the global population expected to reach 9.7 billion by 2050, there is an urgent need for advanced materials that can address existing and developing environmental issues. Many current synthesis processes are environmentally unfriendly and often lack control over size, shape, and phase of resulting materials. Based on knowledge from biological synthesis and assembly processes, as well as their resulting functions (e.g., photosynthesis, self-healing, anti-fouling, etc.), researchers are now beginning to leverage these biological blueprints to advance bio-inspired pathways for functional materials for water treatment, air purification and sensing. The result has been the development of novel materials that demonstrate enhanced performance and address sustainability. Here, an overview of the progress and potential of bio-inspired methods toward functional materials for environmental applications is provided. The challenges and opportunities for this rapidly expanding field and aim to provide a valuable resource for researchers and engineers interested in developing sustainable and efficient processes and technologies is discussed.
Collapse
Affiliation(s)
- Sivasankara Rao Ede
- Department of Materials Science and Engineering, University of California, Irvine, California, 92697, USA
| | - Haitao Yu
- Department of Materials Science and Engineering, University of California, Irvine, California, 92697, USA
| | - Chao Hsuan Sung
- Department of Materials Science and Engineering, University of California, Irvine, California, 92697, USA
| | - David Kisailus
- Department of Materials Science and Engineering, University of California, Irvine, California, 92697, USA
| |
Collapse
|
3
|
Calcium Phosphate-Based Biomaterials for Bone Repair. J Funct Biomater 2022; 13:jfb13040187. [PMID: 36278657 PMCID: PMC9589993 DOI: 10.3390/jfb13040187] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Traumatic, tumoral, and infectious bone defects are common in clinics, and create a big burden on patient's families and society. Calcium phosphate (CaP)-based biomaterials have superior properties and have been widely used for bone defect repair, due to their similarities to the inorganic components of human bones. The biological performance of CaPs, as a determining factor for their applications, are dependent on their physicochemical properties. Hydroxyapatite (HAP) as the most thermally stable crystalline phase of CaP is mostly used in the form of ceramics or composites scaffolds with polymers. Nanostructured CaPs with large surface areas are suitable for drug/gene delivery systems. Additionally, CaP scaffolds with hierarchical nano-/microstructures have demonstrated excellent ability in promoting bone regeneration. This review focuses on the relationships and interactions between the physicochemical/biological properties of CaP biomaterials and their species, sizes, and morphologies in bone regeneration, including synthesis strategies, structure control, biological behavior, and the mechanisms of CaP in promoting osteogenesis. This review will be helpful for scientists and engineers to further understand CaP-based biomaterials (CaPs), and be useful in developing new high-performance biomaterials for bone repair.
Collapse
|
4
|
Amor M, Faivre D, Corvisier J, Tharaud M, Busigny V, Komeili A, Guyot F. Defining Local Chemical Conditions in Magnetosomes of Magnetotactic Bacteria. J Phys Chem B 2022; 126:2677-2687. [PMID: 35362974 PMCID: PMC9098202 DOI: 10.1021/acs.jpcb.2c00752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Defining chemical properties of intracellular organelles is necessary to determine their function(s) as well as understand and mimic the reactions they host. However, the small size of bacterial and archaeal microorganisms often prevents defining local intracellular chemical conditions in a similar way to what has been established for eukaryotic organelles. This work proposes to use magnetite (Fe3O4) nanocrystals contained in magnetosome organelles of magnetotactic bacteria as reporters of elemental composition, pH, and redox potential of a hypothetical environment at the site of formation of intracellular magnetite. This methodology requires combining recent single-cell mass spectrometry measurements together with elemental composition of magnetite in trace and minor elements. It enables a quantitative characterization of chemical disequilibria of 30 chemical elements between the intracellular and external media of magnetotactic bacteria, revealing strong transfers of elements with active influx or efflux processes that translate into elemental accumulation (Mo, Se, and Sn) or depletion (Sr and Bi) in the bacterial internal medium of up to seven orders of magnitude relative to the extracellular medium. Using this concept, we show that chemical conditions in magnetosomes are compatible with a pH of 7.5-9.5 and a redox potential of -0.25 to -0.6 V.
Collapse
Affiliation(s)
- Matthieu Amor
- Aix-Marseille Université, CEA, CNRS, BIAM, 13108 Saint-Paul-lez-Durance, France.,Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, United States
| | - Damien Faivre
- Aix-Marseille Université, CEA, CNRS, BIAM, 13108 Saint-Paul-lez-Durance, France
| | - Jérôme Corvisier
- Mines ParisTech, PSL Research University, Centre de Géosciences, 35 rue Saint Honoré, Fontainebleau Cedex 77305, France
| | - Mickaël Tharaud
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris F-75005, France
| | - Vincent Busigny
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris F-75005, France.,Institut Universitaire de France, Paris 75005, France
| | - Arash Komeili
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, United States
| | - François Guyot
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Muséum National d'Histoire Naturelle, Sorbonne Université, UMR 7590 CNRS, 61 rue Buffon, 75005 Paris, France
| |
Collapse
|
5
|
Bialas F, Reichinger D, Becker CF. Biomimetic and biopolymer-based enzyme encapsulation. Enzyme Microb Technol 2021; 150:109864. [DOI: 10.1016/j.enzmictec.2021.109864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/02/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022]
|
6
|
Calvo Galve N, Abrishamkar A, Sorrenti A, Di Rienzo L, Satta M, D'Abramo M, Coronado E, de Mello AJ, Mínguez Espallargas G, Puigmartí-Luis J. Exploiting Reaction-Diffusion Conditions to Trigger Pathway Complexity in the Growth of a MOF. Angew Chem Int Ed Engl 2021; 60:15920-15927. [PMID: 33729645 DOI: 10.1002/anie.202101611] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 11/09/2022]
Abstract
Coordination polymers (CPs), including metal-organic frameworks (MOFs), are crystalline materials with promising applications in electronics, magnetism, catalysis, and gas storage/separation. However, the mechanisms and pathways underlying their formation remain largely undisclosed. Herein, we demonstrate that diffusion-controlled mixing of reagents at the very early stages of the crystallization process (i.e., within ≈40 ms), achieved by using continuous-flow microfluidic devices, can be used to enable novel crystallization pathways of a prototypical spin-crossover MOF towards its thermodynamic product. In particular, two distinct and unprecedented nucleation-growth pathways were experimentally observed when crystallization was triggered under microfluidic mixing. Full-atom molecular dynamics simulations also confirm the occurrence of these two distinct pathways during crystal growth. In sharp contrast, a crystallization by particle attachment was observed under bulk (turbulent) mixing. These unprecedented results provide a sound basis for understanding the growth of CPs and open up new avenues for the engineering of porous materials by using out-of-equilibrium conditions.
Collapse
Affiliation(s)
- Néstor Calvo Galve
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/ Catedrático José Beltrán, 2, 46980, Paterna, Spain
| | - Afshin Abrishamkar
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Alessandro Sorrenti
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland.,Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Quimica Teorica i Computacional, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Lorenzo Di Rienzo
- Fondazione Istituto Italiano di Tecnologia (IIT), Center for Life Nano Science, Viale Regina Elena 291, I00161, Roma, Italy
| | - Mauro Satta
- ISMN (CNR) c/o Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Marco D'Abramo
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/ Catedrático José Beltrán, 2, 46980, Paterna, Spain
| | - Andrew J de Mello
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Guillermo Mínguez Espallargas
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/ Catedrático José Beltrán, 2, 46980, Paterna, Spain
| | - Josep Puigmartí-Luis
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland.,Departament de Ciència dels Materials i Química Física and Institut de Quimica Teorica i Computacional, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
7
|
Calvo Galve N, Abrishamkar A, Sorrenti A, Di Rienzo L, Satta M, D'Abramo M, Coronado E, Mello AJ, Mínguez Espallargas G, Puigmartí‐Luis J. Exploiting Reaction‐Diffusion Conditions to Trigger Pathway Complexity in the Growth of a MOF. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Néstor Calvo Galve
- Instituto de Ciencia Molecular (ICMol) Universidad de Valencia C/ Catedrático José Beltrán, 2 46980 Paterna Spain
| | - Afshin Abrishamkar
- Institute of Chemical and Bioengineering Department of Chemistry and Applied Biosciences ETH Zurich 8093 Zurich Switzerland
| | - Alessandro Sorrenti
- Institute of Chemical and Bioengineering Department of Chemistry and Applied Biosciences ETH Zurich 8093 Zurich Switzerland
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Quimica Teorica i Computacional Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain
| | - Lorenzo Di Rienzo
- Fondazione Istituto Italiano di Tecnologia (IIT) Center for Life Nano Science Viale Regina Elena 291 I00161 Roma Italy
| | - Mauro Satta
- ISMN (CNR) c/o Department of Chemistry Sapienza University of Rome P.le Aldo Moro 5 00185 Rome Italy
| | - Marco D'Abramo
- Department of Chemistry Sapienza University of Rome P.le Aldo Moro 5 00185 Rome Italy
| | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol) Universidad de Valencia C/ Catedrático José Beltrán, 2 46980 Paterna Spain
| | - Andrew J. Mello
- Institute of Chemical and Bioengineering Department of Chemistry and Applied Biosciences ETH Zurich 8093 Zurich Switzerland
| | | | - Josep Puigmartí‐Luis
- Institute of Chemical and Bioengineering Department of Chemistry and Applied Biosciences ETH Zurich 8093 Zurich Switzerland
- Departament de Ciència dels Materials i Química Física and Institut de Quimica Teorica i Computacional Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain
- ICREA Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
8
|
Yin X, Griesshaber E, Checa A, Nindiyasari-Behal F, Sánchez-Almazo I, Ziegler A, Schmahl WW. Calcite crystal orientation patterns in the bilayers of laminated shells of benthic rotaliid foraminifera. J Struct Biol 2021; 213:107707. [PMID: 33581285 DOI: 10.1016/j.jsb.2021.107707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022]
Abstract
Shells of calcifying foraminifera play a major role in marine biogeochemical cycles; fossil shells form important archives for paleoenvironment reconstruction. Despite their importance in many Earth science disciplines, there is still little consensus on foraminiferal shell mineralization. Geochemical, biochemical, and physiological studies showed that foraminiferal shell formation might take place through various and diverse mineralization mechanisms. In this study, we contribute to benthic foraminiferal shell calcification through deciphering crystallite organization within the shells. We base our conclusions on results gained from electron backscattered diffraction (EBSD) measurements and describe microstructure/texture characteristics within the laminated shell walls of the benthic, symbiontic foraminifera: Ammonia tepida, Amphistegina lobifera, Amphistegina lessonii. We highlight crystallite assembly patterns obtained on differently oriented cuts and discuss crystallite sizes, morphologies, interlinkages, orientations, and co-orientation strengths. We show that: (i) crystals within benthic foraminiferal shells are mesocrystals, (ii) have dendritic-fractal morphologies and (iii) interdigitate strongly. Based on crystal size, we (iv) differentiate between the two layers that comprise the shells and demonstrate that (v) crystals in the septa have different assemblies relative to those in the shell walls. We highlight that (vi) at junctions of different shell elements the axis of crystal orientation jumps abruptly such that their assembly in EBSD maps has a bimodal distribution. We prove (vii) extensive twin-formation within foraminiferal calcite; we demonstrate (viii) the presence of two twin modes: 60°/[001] and 77°/~[6 -6 1] and visualize their distributions within the shells. In a broader perspective, we draw conclusions on processes that lead to the observed microstructure/texture patterns.
Collapse
Affiliation(s)
- X Yin
- Department für Geo- und Umweltwissenschaften, Ludwig-Maximilians-Universität München, 80333 Munich, Germany.
| | - E Griesshaber
- Department für Geo- und Umweltwissenschaften, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - A Checa
- Departamento de Estratigrafía y Paleontología, Universidad de Granada, Granada, Spain, and Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Armilla, Spain
| | | | - I Sánchez-Almazo
- Centro de Instrumentación Científica, Universidad de Granada, 18071 Granada, Spain
| | - A Ziegler
- Zentrale Einrichtung Elektronenmikroskopie, Universität Ulm, 89081 Ulm, Germany
| | - W W Schmahl
- Department für Geo- und Umweltwissenschaften, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| |
Collapse
|
9
|
Zhou L, Wang G, Du J, Zhao Q, Pei X. 1,1′-Ferrocenedicarboxylic acid/tetrahydrofuran induced precipitation of calcium carbonate with a multi-level structure in water. CrystEngComm 2021. [DOI: 10.1039/d1ce00763g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multi-molecules co-regulate the orderly morphology and structure of CaCO3 precipitates and the influence of ether bonds on the formation of CaCO3 precipitates.
Collapse
Affiliation(s)
- Lihong Zhou
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Environment & Civil Engineering, Chengdu University of Technology, Chengdu 610059, China
- College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, China
| | - Guanghui Wang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Environment & Civil Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Jie Du
- Jiuzhaigou Administrative Bureau, Zhangzha Town, Jiuzhaigou County, Sichuan Province 623402, China
| | - Qinjiang Zhao
- College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, China
| | - Xiang Pei
- College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, China
- School of materials Science and engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
| |
Collapse
|
10
|
Sorrenti A, Jones L, Sevim S, Cao X, deMello AJ, Martí-Gastaldo C, Puigmartí-Luis J. Growing and Shaping Metal-Organic Framework Single Crystals at the Millimeter Scale. J Am Chem Soc 2020; 142:9372-9381. [PMID: 32307978 DOI: 10.1021/jacs.0c01935] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Controlling and understanding the mechanisms that harness crystallization processes is of utmost importance in contemporary materials science and, in particular, in the realm of reticular solids where it still remains a great challenge. In this work, we show that environments mimicking microgravity conditions can harness the size and shape of functional biogenic crystals such as peptide-based metal-organic frameworks (MOFs). In particular, we demonstrate formation of the largest single crystals with controlled nonequilibrium shapes of peptide-based MOFs reported to date (e.g., those featuring curved crystal habits), as opposed to the typical polyhedral microcrystals obtained under bulk crystallization conditions. Such unique nonequilibrium morphologies arise from the interplay between the diffusion-controlled supply of precursors in simulated microgravity environments and the physical constraints imposed during crystal growth. In fact, our method mimics two main strategies of morphogenesis in biomineralization, i.e., spatial and morphological control, both being largely unexplored in the field of self-assembled functional materials. The presented results may open new opportunities to study and understand fundamental questions of relevance to materials science, such as how the size and shape of artificial crystals can influence their properties and functions while providing a strategy to tailor the size and shape of peptide-based MOF single crystals to specific applications.
Collapse
Affiliation(s)
- Alessandro Sorrenti
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Lewis Jones
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Semih Sevim
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Xiaobao Cao
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Andrew J deMello
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Carlos Martí-Gastaldo
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/Catedrático José Beltrán, 2, 46980 Paterna, Spain
| | - Josep Puigmartí-Luis
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| |
Collapse
|
11
|
Guanine crystals regulated by chitin-based honeycomb frameworks for tunable structural colors of sapphirinid copepod, Sapphirina nigromaculata. Sci Rep 2020; 10:2266. [PMID: 32042000 PMCID: PMC7010661 DOI: 10.1038/s41598-020-59090-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/10/2020] [Indexed: 02/03/2023] Open
Abstract
Sapphirinid copepods, which are marine zooplankton, exhibit tunable structural colors originating from a layered structure of guanine crystal plates. In the present study, the coloring portion of adult male of a sapphirinid copepod, Sapphirina nigromaculata, under the dorsal body surface was characterized to clarify the regulation and actuation mechanism of the layered guanine crystals for spectral control. The coloring portions are separated into small domains 70–100 µm wide consisting of an ordered array of stacked hexagonal plates ~1.5 µm wide and ~80 nm thick. We found the presence of chitin-based honeycomb frameworks that are composed of flat compartments regulating the guanine crystal plates. The structural color is deduced to be tuned from blue to achromatic via yellow and purple by changing the interplate distance according to vital observation and optical simulation using a photonic array model. The framework structures are essential for the organization and actuation of the particular photonic arrays for the exhibition of the tunable structural color.
Collapse
|
12
|
Bystrom JL, Pujari-Palmer M. Phosphoserine Functionalized Cements Preserve Metastable Phases, and Reprecipitate Octacalcium Phosphate, Hydroxyapatite, Dicalcium Phosphate, and Amorphous Calcium Phosphate, during Degradation, In Vitro. J Funct Biomater 2019; 10:E54. [PMID: 31783637 PMCID: PMC6963472 DOI: 10.3390/jfb10040054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/15/2023] Open
Abstract
Phosphoserine modified cements (PMC) exhibit unique properties, including strong adhesion to tissues and biomaterials. While TTCP-PMCs remodel into bone in vivo, little is known regarding the bioactivity and physiochemical changes that occur during resorption. In the present study, changes in the mechanical strength and composition were evaluated for 28 days, for three formulations of αTCP based PMCs. PMCs were significantly stronger than unmodified cement (38-49 MPa vs. 10 MPa). Inclusion of wollastonite in PMCs appeared to accelerate the conversion to hydroxyapatite, coincident with slight decrease in strength. In non-wollastonite PMCs the initial compressive strength did not change after 28 days in PBS (p > 0.99). Dissolution/degradation of PMC was evaluated in acidic (pH 2.7, pH 4.0), and supersaturated fluids (simulated body fluid (SBF)). PMCs exhibited comparable mass loss (<15%) after 14 days, regardless of pH and ionic concentration. Electron microscopy, infrared spectroscopy, and X-ray analysis revealed that significant amounts of brushite, octacalcium phosphate, and hydroxyapatite reprecipitated, following dissolution in acidic conditions (pH 2.7), while amorphous calcium phosphate formed in SBF. In conclusion, PMC surfaces remodel into metastable precursors to hydroxyapatite, in both acidic and neutral environments. By tuning the composition of PMCs, durable strength in fluids, and rapid transformation can be obtained.
Collapse
Affiliation(s)
| | - Michael Pujari-Palmer
- Applied Material Science, Department of Engineering, Uppsala University, 75121 Uppsala, Sweden;
| |
Collapse
|
13
|
Gelli R, Ridi F, Baglioni P. The importance of being amorphous: calcium and magnesium phosphates in the human body. Adv Colloid Interface Sci 2019; 269:219-235. [PMID: 31096075 DOI: 10.1016/j.cis.2019.04.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 11/25/2022]
Abstract
This article focuses on the relevance of amorphous calcium (and magnesium) phosphates in living organisms. Although crystalline calcium phosphate (CaP)-based materials are known to constitute the major inorganic constituents of human hard tissues, amorphous CaP-based structures, often in combination with magnesium, are frequently employed by Nature to build up components of our body and guarantee their proper functioning. After a brief description of amorphous calcium phosphate (ACP) formation mechanism and structure, this paper is focused on the stabilization strategies that can be used to enhance the lifetime of the poorly stable amorphous phase. The various locations of our body in which ACP (pure or in combination with Mg2+) can be found (i.e. bone, enamel, small intestine, calciprotein particles and casein micelles) are highlighted, showing how the amorphous nature of ACP is often of paramount importance for the achievement of a specific physiological function. The last section is devoted to ACP-based biomaterials, focusing on how these materials differ from their crystalline counterparts in terms of biological response.
Collapse
|
14
|
Confinement generates single-crystal aragonite rods at room temperature. Proc Natl Acad Sci U S A 2018; 115:7670-7675. [PMID: 29967143 DOI: 10.1073/pnas.1718926115] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The topic of calcite and aragonite polymorphism attracts enormous interest from fields including biomineralization and paleogeochemistry. While aragonite is only slightly less thermodynamically stable than calcite under ambient conditions, it typically only forms as a minor product in additive-free solutions at room temperature. However, aragonite is an abundant biomineral, and certain organisms can selectively generate calcite and aragonite. This fascinating behavior has been the focus of decades of research, where this has been driven by a search for specific organic macromolecules that can generate these polymorphs. However, despite these efforts, we still have a poor understanding of how organisms achieve such selectivity. In this work, we consider an alternative possibility and explore whether the confined volumes in which all biomineralization occurs could also influence polymorph. Calcium carbonate was precipitated within the cylindrical pores of track-etched membranes, where these enabled us to systematically investigate the relationship between the membrane pore diameter and polymorph formation. Aragonite was obtained in increasing quantities as the pore size was reduced, such that oriented single crystals of aragonite were the sole product from additive-free solutions in 25-nm pores and significant quantities of aragonite formed in pores as large as 200 nm in the presence of low concentrations of magnesium and sulfate ions. This effect can be attributed to the effect of the pore size on the ion distribution, which becomes of increasing importance in small pores. These intriguing results suggest that organisms may exploit confinement effects to gain control over crystal polymorph.
Collapse
|
15
|
|
16
|
Abstract
Nature assembles weak organic and inorganic constituents into sophisticated hierarchical structures, forming structural composites that demonstrate impressive combinations of strength and toughness. Two such composites are the nacre structure forming the inner layer of many mollusk shells, whose brick-and-mortar architecture has been the gold standard for biomimetic composites, and the cuticle forming the arthropod exoskeleton, whose helicoidal fiber-reinforced architecture has only recently attracted interest for structural biomimetics. In this review, we detail recent biomimetic efforts for the fabrication of strong and tough composite materials possessing the brick-and-mortar and helicoidal architectures. Techniques discussed for the fabrication of nacre- and cuticle-mimetic structures include freeze casting, layer-by-layer deposition, spray deposition, magnetically assisted slip casting, fiber-reinforced composite processing, additive manufacturing, and cholesteric self-assembly. Advantages and limitations to these processes are discussed, as well as the future outlook on the biomimetic landscape for structural composite materials.
Collapse
Affiliation(s)
- Nicholas A Yaraghi
- Materials Science and Engineering Program, University of California, Riverside, California 92521, USA;
| | - David Kisailus
- Materials Science and Engineering Program, University of California, Riverside, California 92521, USA; .,Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| |
Collapse
|
17
|
Binkley DM, Grandfield K. Advances in Multiscale Characterization Techniques of Bone and Biomaterials Interfaces. ACS Biomater Sci Eng 2017; 4:3678-3690. [PMID: 33429593 DOI: 10.1021/acsbiomaterials.7b00420] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The success of osseointegrated biomaterials often depends on the functional interface between the implant and mineralized bone tissue. Several parallels between natural and synthetic interfaces exist on various length scales from the microscale toward the cellular and the atomic scale structure. Interest lies in the development of more sophisticated methods to probe these hierarchical levels in tissues at both biomaterials interfaces and natural tissue interphases. This review will highlight new and emerging perspectives toward understanding mineralized tissues, particularly bone tissue, and interfaces between bone and engineered biomaterials at multilength scales and with multidimensionality. Emphasis will be placed on highlighting novel and correlative X-ray, ion, and electron beam imaging approaches, such as electron tomography, atom probe tomography, and in situ microscopies, as well as spectroscopic and mechanical characterizations. These less conventional approaches to imaging biomaterials are contributing to the evolution of the understanding of the structure and organization in bone and bone integrating materials.
Collapse
|
18
|
Magnabosco G, Polishchuk I, Pokroy B, Rosenberg R, Cölfen H, Falini G. Synthesis of calcium carbonate in trace water environments. Chem Commun (Camb) 2017; 53:4811-4814. [PMID: 28417115 DOI: 10.1039/c7cc01342f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Calcium carbonate (CaCO3) was synthesized from diverse water-free alcohol solutions, resulting in the formation of vaterite and calcite precipitates, or stable particle suspensions, with the dimensions and morphologies depending upon the conditions used. The obtained results shed light on the importance of solvation during crystallization of CaCO3 and open a novel synthetic route for its precipitation in organic solvents.
Collapse
Affiliation(s)
- Giulia Magnabosco
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
19
|
Yao S, Jin B, Liu Z, Shao C, Zhao R, Wang X, Tang R. Biomineralization: From Material Tactics to Biological Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605903. [PMID: 28229486 DOI: 10.1002/adma.201605903] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/31/2017] [Indexed: 05/23/2023]
Abstract
Biomineralization is an important tactic by which biological organisms produce hierarchically structured minerals with marvellous functions. Biomineralization studies typically focus on the mediation function of organic matrices on inorganic minerals, which helps scientists to design and synthesize bioinspired functional materials. However, the presence of inorganic minerals may also alter the native behaviours of organic matrices and even biological organisms. This progress report discusses the latest achievements relating to biomineralization mechanisms, the manufacturing of biomimetic materials and relevant applications in biological and biomedical fields. In particular, biomineralized vaccines and algae with improved thermostability and photosynthesis, respectively, demonstrate that biomineralization is a strategy for organism evolution via the rational design of organism-material complexes. The successful modification of biological systems using materials is based on the regulatory effect of inorganic materials on organic organisms, which is another aspect of biomineralization control. Unlike previous studies, this study integrates materials and biological science to achieve a more comprehensive view of the mechanisms and applications of biomineralization.
Collapse
Affiliation(s)
- Shasha Yao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Biao Jin
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhaoming Liu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Changyu Shao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Ruibo Zhao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
20
|
Ma K, Zhao H, Zheng X, Sun H, Hu L, Zhu L, Shen Y, Luo T, Dai H, Wang J. NMR studies of the interactions between AMB-1 Mms6 protein and magnetosome Fe3O4 nanoparticles. J Mater Chem B 2017; 5:2888-2895. [DOI: 10.1039/c7tb00570a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
NMR studies demonstrate that, the C-terminal Mms6 undergo conformation change upon magnetosome Fe3O4 crystals binding. The N-terminal hydrophobic packing arranges the DEEVE motifs into a correct assembly and orientation for magnetite crystal recognition.
Collapse
|