1
|
Antoszczak M, Müller S, Cañeque T, Colombeau L, Dusetti N, Santofimia-Castaño P, Gaillet C, Puisieux A, Iovanna JL, Rodriguez R. Iron-Sensitive Prodrugs That Trigger Active Ferroptosis in Drug-Tolerant Pancreatic Cancer Cells. J Am Chem Soc 2022; 144:11536-11545. [PMID: 35696539 DOI: 10.1021/jacs.2c03973] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Persister cancer cells represent rare populations of cells resistant to therapy. Cancer cells can exploit epithelial-mesenchymal plasticity to adopt a drug-tolerant state that does not depend on genetic alterations. Small molecules that can interfere with cell plasticity or kill cells in a cell state-dependent manner are highly sought after. Salinomycin has been shown to kill cancer cells in the mesenchymal state by sequestering iron in lysosomes, taking advantage of the iron addiction of this cell state. Here, we report the chemo- and stereoselective synthesis of a series of structurally complex small molecule chimeras of salinomycin derivatives and the iron-reactive dihydroartemisinin. We show that these chimeras accumulate in lysosomes and can react with iron to release bioactive species, thereby inducing ferroptosis in drug-tolerant pancreatic cancer cells and biopsy-derived organoids of pancreatic ductal adenocarcinoma. This work paves the way toward the development of new cancer medicines acting through active ferroptosis.
Collapse
Affiliation(s)
- Michał Antoszczak
- Department of Chemical Biology, Institut Curie, CNRS UMR 3666, INSERM U1143, PSL Université, 26 rue d'Ulm, 75005 Paris, France
| | - Sebastian Müller
- Department of Chemical Biology, Institut Curie, CNRS UMR 3666, INSERM U1143, PSL Université, 26 rue d'Ulm, 75005 Paris, France
| | - Tatiana Cañeque
- Department of Chemical Biology, Institut Curie, CNRS UMR 3666, INSERM U1143, PSL Université, 26 rue d'Ulm, 75005 Paris, France
| | - Ludovic Colombeau
- Department of Chemical Biology, Institut Curie, CNRS UMR 3666, INSERM U1143, PSL Université, 26 rue d'Ulm, 75005 Paris, France
| | - Nelson Dusetti
- CRCM, CNRS UMR 7258, INSERM U1068, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, France
| | - Patricia Santofimia-Castaño
- CRCM, CNRS UMR 7258, INSERM U1068, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, France
| | - Christine Gaillet
- Department of Chemical Biology, Institut Curie, CNRS UMR 3666, INSERM U1143, PSL Université, 26 rue d'Ulm, 75005 Paris, France
| | - Alain Puisieux
- Department of Chemical Biology, Institut Curie, CNRS UMR 3666, INSERM U1143, PSL Université, 26 rue d'Ulm, 75005 Paris, France
| | - Juan Lucio Iovanna
- CRCM, CNRS UMR 7258, INSERM U1068, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, France
| | - Raphaël Rodriguez
- Department of Chemical Biology, Institut Curie, CNRS UMR 3666, INSERM U1143, PSL Université, 26 rue d'Ulm, 75005 Paris, France
| |
Collapse
|
2
|
Rezayatmand H, Razmkhah M, Razeghian-Jahromi I. Drug resistance in cancer therapy: the Pandora's Box of cancer stem cells. Stem Cell Res Ther 2022; 13:181. [PMID: 35505363 PMCID: PMC9066908 DOI: 10.1186/s13287-022-02856-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/14/2022] [Indexed: 12/18/2022] Open
Abstract
Drug resistance is the main culprit of failure in cancer therapy that may lead to cancer relapse. This resistance mostly originates from rare, but impactful presence of cancer stem cells (CSCs). Ability to self-renewal and differentiation into heterogeneous cancer cells, and harboring morphologically and phenotypically distinct cells are prominent features of CSCs. Also, CSCs substantially contribute to metastatic dissemination. They possess several mechanisms that help them to survive even after exposure to chemotherapy drugs. Although chemotherapy is able to destroy the bulk of tumor cells, CSCs are left almost intact, and make tumor entity resistant to treatment. Eradication of a tumor mass needs complete removal of tumor cells as well as CSCs. Therefore, it is important to elucidate key features underlying drug resistance raised by CSCs in order to apply effective treatment strategies. However, the challenging point that threatens safety and specificity of chemotherapy is the common characteristics between CSCs and normal peers such as signaling pathways and markers. In the present study, we tried to present a comprehensive appraisal on CSCs, mechanisms of their drug resistance, and recent therapeutic methods targeting this type of noxious cells.
Collapse
Affiliation(s)
| | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Razeghian-Jahromi
- Cardiovascular Research Center, Shiraz University of Medical Sciences, 3rd Floor, Mohammad Rasoolallah Research Tower, Namazi Hospital, Shiraz, Iran.
| |
Collapse
|
3
|
Plays M, Müller S, Rodriguez R. Chemistry and biology of ferritin. Metallomics 2021; 13:6244244. [PMID: 33881539 PMCID: PMC8083198 DOI: 10.1093/mtomcs/mfab021] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Iron is an essential element required by cells and has been described as a key player in ferroptosis. Ferritin operates as a fundamental iron storage protein in cells forming multimeric assemblies with crystalline iron cores. We discuss the latest findings on ferritin structure and activity and its link to cell metabolism and ferroptosis. The chemistry of iron, including its oxidation states, is important for its biological functions, its reactivity, and the biology of ferritin. Ferritin can be localized in different cellular compartments and secreted by cells with a variety of functions depending on its spatial context. Here, we discuss how cellular ferritin localization is tightly linked to its function in a tissue-specific manner, and how impairment of iron homeostasis is implicated in diseases, including cancer and coronavirus disease 2019. Ferritin is a potential biomarker and we discuss latest research where it has been employed for imaging purposes and drug delivery.
Collapse
Affiliation(s)
- Marina Plays
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75005 Paris, France.,Centre national de la recherche scientifique UMR 3666, Paris, France.,Institut national de la santé et de la recherche médicale U1143, Paris, France.,PSL Université Paris, Paris, France
| | - Sebastian Müller
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75005 Paris, France.,Centre national de la recherche scientifique UMR 3666, Paris, France.,Institut national de la santé et de la recherche médicale U1143, Paris, France.,PSL Université Paris, Paris, France
| | - Raphaël Rodriguez
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75005 Paris, France.,Centre national de la recherche scientifique UMR 3666, Paris, France.,Institut national de la santé et de la recherche médicale U1143, Paris, France.,PSL Université Paris, Paris, France
| |
Collapse
|
4
|
Keratin nanoparticles and photodynamic therapy enhance the anticancer stem cells activity of salinomycin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111899. [DOI: 10.1016/j.msec.2021.111899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/23/2020] [Accepted: 01/17/2021] [Indexed: 12/20/2022]
|
5
|
Maucort C, Di Giorgio A, Azoulay S, Duca M. Differentiation of Cancer Stem Cells by Using Synthetic Small Molecules: Toward New Therapeutic Strategies against Therapy Resistance. ChemMedChem 2020; 16:14-29. [PMID: 32803855 DOI: 10.1002/cmdc.202000251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/19/2020] [Indexed: 12/12/2022]
Abstract
Despite the existing arsenal of anti-cancer drugs, 10 million people die each year worldwide due to cancers; this highlights the need to discover new therapies based on innovative modes of action against these pathologies. Current chemotherapies are based on the use of cytotoxic agents, targeted drugs, monoclonal antibodies or immunotherapies that are able to reduce or stop the proliferation of cancer cells. However, tumor eradication is often hampered by the presence of resistant cells called cancer stem-like cells or cancer stem cells (CSCs). Several strategies have been proposed to specifically target CSCs such as the use of CSC-specific antibodies, small molecules able to target CSC signaling pathways or drugs able to induce CSC differentiation rendering them sensitive to classical chemotherapy. These latter compounds are the focus of the present review, which aims to report recent advances in anticancer-differentiation strategies. This therapeutic approach was shown to be particularly promising for eradicating tumors in which CSCs are the main reason for therapeutic failure. This general view of the chemistry and mechanism of action of compounds inducing the differentiation of CSCs could be particularly useful for a broad range of researchers working in the field of anticancer therapies as the combination of compounds that induce differentiation with classical chemotherapy could represent a successful approach for future therapeutic applications.
Collapse
Affiliation(s)
- Chloé Maucort
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 28 avenue Valrose, 06108, Nice, France
| | - Audrey Di Giorgio
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 28 avenue Valrose, 06108, Nice, France
| | - Stéphane Azoulay
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 28 avenue Valrose, 06108, Nice, France
| | - Maria Duca
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 28 avenue Valrose, 06108, Nice, France
| |
Collapse
|
6
|
Elgendy SM, Alyammahi SK, Alhamad DW, Abdin SM, Omar HA. Ferroptosis: An emerging approach for targeting cancer stem cells and drug resistance. Crit Rev Oncol Hematol 2020; 155:103095. [PMID: 32927333 DOI: 10.1016/j.critrevonc.2020.103095] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 02/08/2023] Open
Abstract
Resistance to chemotherapeutic agents remains a major challenge in the fierce battle against cancer. Cancer stem cells (CSCs) are a small population of cells in tumors that possesses the ability to self-renew, initiate tumors, and cause resistance to conventional anticancer agents. Targeting this population of cells was proven as a promising approach to eliminate cancer recurrence and improve the clinical outcome. CSCs are less susceptible to death by classical anticancer agents inducing apoptosis. CSCs can be eradicated by ferroptosis, which is a non-apoptotic-regulated mechanism of cell death. The induction of ferroptosis is an attractive strategy to eliminate tumors due to its ability to selectively target aggressive CSCs. The current review critically explored the crosstalk and regulatory pathways controlling ferroptosis, which can selectively induce CSCs death. In addition, successful chemotherapeutic agents that achieve better therapeutic outcomes through the induction of ferroptosis in CSCs were discussed to highlight their promising clinical impact.
Collapse
Affiliation(s)
- Sara M Elgendy
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Shatha K Alyammahi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Dima W Alhamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Shifaa M Abdin
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
7
|
Pádua D, Figueira P, Ribeiro I, Almeida R, Mesquita P. The Relevance of Transcription Factors in Gastric and Colorectal Cancer Stem Cells Identification and Eradication. Front Cell Dev Biol 2020; 8:442. [PMID: 32626705 PMCID: PMC7314965 DOI: 10.3389/fcell.2020.00442] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
Gastric and colorectal cancers have a high incidence and mortality worldwide. The presence of cancer stem cells (CSCs) within the tumor mass has been indicated as the main reason for tumor relapse, metastasis and therapy resistance, leading to poor overall survival. Thus, the elimination of CSCs became a crucial goal for cancer treatment. The identification of these cells has been performed by using cell-surface markers, a reliable approach, however it lacks specificity and usually differs among tumor type and in some cases even within the same type. In theory, the ideal CSC markers are those that are required to maintain their stemness features. The knowledge that CSCs exhibit characteristics comparable to normal stem cells that could be associated with the expression of similar transcription factors (TFs) including SOX2, OCT4, NANOG, KLF4 and c-Myc, and signaling pathways such as the Wnt/β-catenin, Hedgehog (Hh), Notch and PI3K/AKT/mTOR directed the attention to the use of these similarities to identify and target CSCs in different tumor types. Several studies have demonstrated that the abnormal expression of some TFs and the dysregulation of signaling pathways are associated with tumorigenesis and CSC phenotype. The disclosure of common and appropriate biomarkers for CSCs will provide an incredible tool for cancer prognosis and treatment. Therefore, this review aims to gather the new insights in gastric and colorectal CSC identification specially by using TFs as biomarkers and divulge promising drugs that have been found and tested for targeting these cells.
Collapse
Affiliation(s)
- Diana Pádua
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Paula Figueira
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Inês Ribeiro
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Raquel Almeida
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Patrícia Mesquita
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| |
Collapse
|
8
|
Turcu AL, Versini A, Khene N, Gaillet C, Cañeque T, Müller S, Rodriguez R. DMT1 Inhibitors Kill Cancer Stem Cells by Blocking Lysosomal Iron Translocation. Chemistry 2020; 26:7369-7373. [DOI: 10.1002/chem.202000159] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/19/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Andreea L. Turcu
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC) Facultat de Farmàcia i Ciències de l'Alimentació i Institut de Biomedicina University of Barcelona Av. Joan XXIII 27–31 08028 Barcelona Spain
| | - Antoine Versini
- Institut Curie 26 rue d'Ulm 75248 Paris Cedex 05 France
- PSL Université 60 rue Mazarine 75006 Paris France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666 INSERM U1143 75248 Paris Cedex 05 France
| | - Nadjib Khene
- Institut Curie 26 rue d'Ulm 75248 Paris Cedex 05 France
- PSL Université 60 rue Mazarine 75006 Paris France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666 INSERM U1143 75248 Paris Cedex 05 France
| | - Christine Gaillet
- Institut Curie 26 rue d'Ulm 75248 Paris Cedex 05 France
- PSL Université 60 rue Mazarine 75006 Paris France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666 INSERM U1143 75248 Paris Cedex 05 France
| | - Tatiana Cañeque
- Institut Curie 26 rue d'Ulm 75248 Paris Cedex 05 France
- PSL Université 60 rue Mazarine 75006 Paris France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666 INSERM U1143 75248 Paris Cedex 05 France
| | - Sebastian Müller
- Institut Curie 26 rue d'Ulm 75248 Paris Cedex 05 France
- PSL Université 60 rue Mazarine 75006 Paris France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666 INSERM U1143 75248 Paris Cedex 05 France
| | - Raphaël Rodriguez
- Institut Curie 26 rue d'Ulm 75248 Paris Cedex 05 France
- PSL Université 60 rue Mazarine 75006 Paris France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666 INSERM U1143 75248 Paris Cedex 05 France
| |
Collapse
|
9
|
Versini A, Colombeau L, Hienzsch A, Gaillet C, Retailleau P, Debieu S, Müller S, Cañeque T, Rodriguez R. Salinomycin Derivatives Kill Breast Cancer Stem Cells by Lysosomal Iron Targeting. Chemistry 2020; 26:7416-7424. [DOI: 10.1002/chem.202000335] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/19/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Antoine Versini
- Institut Curie 26 rue d'Ulm 75248 Paris Cedex 05 France
- PSL Université 60 rue Mazarine 75006 Paris France
- Chemical Biology of Cancer Laboratory CNRS UMR 3666, INSERM U1143 France
| | - Ludovic Colombeau
- Institut Curie 26 rue d'Ulm 75248 Paris Cedex 05 France
- PSL Université 60 rue Mazarine 75006 Paris France
- Chemical Biology of Cancer Laboratory CNRS UMR 3666, INSERM U1143 France
| | - Antje Hienzsch
- Institut Curie 26 rue d'Ulm 75248 Paris Cedex 05 France
- PSL Université 60 rue Mazarine 75006 Paris France
- Chemical Biology of Cancer Laboratory CNRS UMR 3666, INSERM U1143 France
- Present address: ABX Advanced Biochemical Compounds Heinrich-Glaeser-Str. 10–14 01454 Radeberg Germany
| | - Christine Gaillet
- Institut Curie 26 rue d'Ulm 75248 Paris Cedex 05 France
- PSL Université 60 rue Mazarine 75006 Paris France
- Chemical Biology of Cancer Laboratory CNRS UMR 3666, INSERM U1143 France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 Université Paris-Sud, Université Paris-Saclay 1 av. de la Terrasse 91198 Gif-sur-Yvette France
| | - Sylvain Debieu
- Institut Curie 26 rue d'Ulm 75248 Paris Cedex 05 France
- PSL Université 60 rue Mazarine 75006 Paris France
- Chemical Biology of Cancer Laboratory CNRS UMR 3666, INSERM U1143 France
| | - Sebastian Müller
- Institut Curie 26 rue d'Ulm 75248 Paris Cedex 05 France
- PSL Université 60 rue Mazarine 75006 Paris France
- Chemical Biology of Cancer Laboratory CNRS UMR 3666, INSERM U1143 France
| | - Tatiana Cañeque
- Institut Curie 26 rue d'Ulm 75248 Paris Cedex 05 France
- PSL Université 60 rue Mazarine 75006 Paris France
- Chemical Biology of Cancer Laboratory CNRS UMR 3666, INSERM U1143 France
| | - Raphaël Rodriguez
- Institut Curie 26 rue d'Ulm 75248 Paris Cedex 05 France
- PSL Université 60 rue Mazarine 75006 Paris France
- Chemical Biology of Cancer Laboratory CNRS UMR 3666, INSERM U1143 France
| |
Collapse
|
10
|
Solier S, Müller S, Rodriguez R. Whole-genome mapping of small-molecule targets for cancer medicine. Curr Opin Chem Biol 2020; 56:42-50. [PMID: 31978625 DOI: 10.1016/j.cbpa.2019.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022]
Abstract
Cancers display intratumoral and intertumoral heterogeneity, which poses challenges to small-molecule intervention. Studying drug responses on a whole-genome and transcriptome level using next-generation sequencing has revolutionized our understanding of how small molecules intervene in cells, which helps us to study and potentially predict treatment outcomes. Some small molecules act directly at the genomic level by targeting DNA or chromatin proteins. Here, we review recent advances in establishing whole-genome and transcriptome maps of small-molecule targets, comprising chromatin components or downstream events. We also describe recent advances in studying drug responses using single-cell RNA and DNA sequencing. Furthermore, we discuss how this fundamental research can be taken forward to devise innovative personalized treatment modalities.
Collapse
Affiliation(s)
- Stéphanie Solier
- Institut Curie, 26 rue d'Ulm, 75248, Paris, Cedex 05, France; PSL Université Paris, France; Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, France
| | - Sebastian Müller
- Institut Curie, 26 rue d'Ulm, 75248, Paris, Cedex 05, France; PSL Université Paris, France; Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, France.
| | - Raphaël Rodriguez
- Institut Curie, 26 rue d'Ulm, 75248, Paris, Cedex 05, France; PSL Université Paris, France; Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, France.
| |
Collapse
|
11
|
Czerwonka D, Urbaniak A, Sobczak S, Piña-Oviedo S, Chambers TC, Antoszczak M, Huczyński A. Synthesis and Anticancer Activity of Tertiary Amides of Salinomycin and Their C20-oxo Analogues. ChemMedChem 2019; 15:236-246. [PMID: 31702860 DOI: 10.1002/cmdc.201900593] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Indexed: 12/30/2022]
Abstract
The polyether ionophore salinomycin (SAL) has captured much interest because of its potent activity against cancer cells and cancer stem cells. Our previous studies have indicated that C1/C20 double-modification of SAL is a useful strategy to generate diverse agents with promising biological activity profiles. Thus, herein we describe the synthesis of a new class of SAL analogues that combine key modifications at the C1 and C20 positions. The activity of the obtained SAL derivatives was evaluated using primary acute lymphoblastic leukemia, human breast adenocarcinoma and normal mammary epithelial cells. One single- [N,N-dipropyl amide of salinomycin (5 a)] and two novel double-modified analogues [N,N-dipropyl amide of C20-oxosalinomycin (5 b) and piperazine amide of C20-oxosalinomycin (13 b)] were found to be more potent toward the MDA-MB-231 cell line than SAL or its C20-oxo analogue 2. When select analogues were tested against the NCI-60 human tumor cell line panel, 4 a [N,N-diethyl amide of salinomycin] showed particular activity toward the ovarian cancer cell line SK-OV-3. Additionally, both SAL and 2 were found to be potent ex vivo against human ER/PR+ , Her2- invasive mammary carcinoma, with 2 showing minimal toxicity toward normal epithelial cells. The present findings highlight the therapeutic potential of SAL derivatives for select targeting of different cancer types.
Collapse
Affiliation(s)
- Dominika Czerwonka
- Department of Bioorganic Chemistry Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Alicja Urbaniak
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Szymon Sobczak
- Department of Materials Chemistry Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Sergio Piña-Oviedo
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Timothy C Chambers
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Michał Antoszczak
- Department of Bioorganic Chemistry Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Adam Huczyński
- Department of Bioorganic Chemistry Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| |
Collapse
|
12
|
Antoszczak M, Huczyński A. Salinomycin and its derivatives - A new class of multiple-targeted "magic bullets". Eur J Med Chem 2019; 176:208-227. [PMID: 31103901 DOI: 10.1016/j.ejmech.2019.05.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/23/2022]
Abstract
The history of drug development clearly shows the scale of painstaking effort leading to a finished product - a highly biologically active agent that would be at the same time no or little toxic to human organism. Moreover, the aim of modern drug discovery can move from "one-molecule one-target" concept to more promising "one-molecule multiple-targets" one, particularly in the context of effective fight against cancer and other complex diseases. Gratifyingly, natural compounds are excellent source of potential drug leads. One of such promising naturally-occurring drug candidates is a polyether ionophore - salinomycin (SAL). This compound should be identified as multi-target agent for two reasons. Firstly, SAL combines a broad spectrum of bioactivity, including antibacterial, antifungal, antiviral, antiparasitic and anticancer activity, with high selectivity of action, proving its significant therapeutic potential. Secondly, the multimodal mechanism of action of SAL has been shown to be related to its interactions with multiple molecular targets and signalling pathways that are synergistic for achieving a therapeutic anticancer effect. On the other hand, according to the Paul Ehrlich's "magic bullet" concept, invariably inspiring the scientists working on design of novel target-selective molecules, a very interesting direction of research is rational chemical modification of SAL. Importantly, many of SAL derivatives have been found to be more promising as chemotherapeutics than the native structure. This concise review article is focused both on the possible role of SAL and its selected analogues in future antimicrobial and/or cancer therapy, and on the potential use of SAL as a new class of multiple-targeted "magic bullet" because of its multimodal mechanism of action.
Collapse
Affiliation(s)
- Michał Antoszczak
- Department of Bioorganic Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61‒614, Poznań, Poland
| | - Adam Huczyński
- Department of Bioorganic Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61‒614, Poznań, Poland.
| |
Collapse
|
13
|
Antoszczak M. A medicinal chemistry perspective on salinomycin as a potent anticancer and anti-CSCs agent. Eur J Med Chem 2019; 164:366-377. [DOI: 10.1016/j.ejmech.2018.12.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 01/30/2023]
|
14
|
Tetrahedron Young Investigator Awards: R. A. Shenvi and R. Rodriguez / Max Bergmann Medal: O. Seitz. Angew Chem Int Ed Engl 2019; 58:663. [DOI: 10.1002/anie.201812944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Tetrahedron Young Investigator Awards/Max‐Bergmann‐Medaille für Oliver Seitz. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Müller S, Versini A, Sindikubwabo F, Belthier G, Niyomchon S, Pannequin J, Grimaud L, Cañeque T, Rodriguez R. Metformin reveals a mitochondrial copper addiction of mesenchymal cancer cells. PLoS One 2018; 13:e0206764. [PMID: 30399175 PMCID: PMC6219783 DOI: 10.1371/journal.pone.0206764] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/18/2018] [Indexed: 01/06/2023] Open
Abstract
The clinically approved drug metformin has been shown to selectively kill persister cancer cells through mechanisms that are not fully understood. To provide further mechanistic insights, we developed a drug surrogate that phenocopies metformin and can be labeled in situ by means of click chemistry. Firstly, we found this molecule to be more potent than metformin in several cancer cell models. Secondly, this technology enabled us to provide visual evidence of mitochondrial targeting with this class of drugs. A combination of fluorescence microscopy and cyclic voltammetry indicated that metformin targets mitochondrial copper, inducing the production of reactive oxygen species in this organelle, mitochondrial dysfunction and apoptosis. Importantly, this study revealed that mitochondrial copper is required for the maintenance of a mesenchymal state of human cancer cells, and that metformin can block the epithelial-to-mesenchymal transition, a biological process that normally accounts for the genesis of persister cancer cells, through direct copper targeting.
Collapse
Affiliation(s)
- Sebastian Müller
- Chemical Biology of Cancer Team, Labellisée Ligue Contre le Cancer. PSL Research University, CNRS UMR3666 –INSERM U1143, Institut Curie, Paris, France
| | - Antoine Versini
- Chemical Biology of Cancer Team, Labellisée Ligue Contre le Cancer. PSL Research University, CNRS UMR3666 –INSERM U1143, Institut Curie, Paris, France
| | - Fabien Sindikubwabo
- Chemical Biology of Cancer Team, Labellisée Ligue Contre le Cancer. PSL Research University, CNRS UMR3666 –INSERM U1143, Institut Curie, Paris, France
| | | | - Supaporn Niyomchon
- Chemical Biology of Cancer Team, Labellisée Ligue Contre le Cancer. PSL Research University, CNRS UMR3666 –INSERM U1143, Institut Curie, Paris, France
| | - Julie Pannequin
- IGF, University of Montpellier, CNRS–INSERM, Montpellier, France
| | - Laurence Grimaud
- Sorbonne Universités, UPMC Université Paris 06, PSL Research University, CNRS UMR8640. Ecole Normale Supérieure, Paris, France
| | - Tatiana Cañeque
- Chemical Biology of Cancer Team, Labellisée Ligue Contre le Cancer. PSL Research University, CNRS UMR3666 –INSERM U1143, Institut Curie, Paris, France
- * E-mail: (TC); (RR)
| | - Raphaël Rodriguez
- Chemical Biology of Cancer Team, Labellisée Ligue Contre le Cancer. PSL Research University, CNRS UMR3666 –INSERM U1143, Institut Curie, Paris, France
- * E-mail: (TC); (RR)
| |
Collapse
|
17
|
Versini A, Saier L, Sindikubwabo F, Müller S, Cañeque T, Rodriguez R. Chemical biology of salinomycin. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.07.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Emerging functional markers for cancer stem cell-based therapies: Understanding signaling networks for targeting metastasis. Semin Cancer Biol 2018; 53:90-109. [PMID: 29966677 DOI: 10.1016/j.semcancer.2018.06.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
Abstract
Metastasis is one of the most challenging issues in cancer patient management, and effective therapies to specifically target disease progression are missing, emphasizing the urgent need for developing novel anti-metastatic therapeutics. Cancer stem cells (CSCs) gained fast attention as a minor population of highly malignant cells within liquid and solid tumors that are responsible for tumor onset, self-renewal, resistance to radio- and chemotherapies, and evasion of immune surveillance accelerating recurrence and metastasis. Recent progress in the identification of their phenotypic and molecular characteristics and interactions with the tumor microenvironment provides great potential for the development of CSC-based targeted therapies and radical improvement in metastasis prevention and cancer patient prognosis. Here, we report on newly uncovered signaling mechanisms controlling CSC's aggressiveness and treatment resistance, and CSC-specific agents and molecular therapeutics, some of which are currently under investigation in clinical trials, gearing towards decisive functional CSC intrinsic or surface markers. One special research focus rests upon subverted regulatory pathways such as insulin-like growth factor 1 receptor signaling and its interactors in metastasis-initiating cell populations directly related to the gain of stem cell- and EMT-associated properties, as well as key components of the E2F transcription factor network regulating metastatic progression, microenvironmental changes, and chemoresistance. In addition, the study provides insight into systems biology tools to establish complex molecular relationships behind the emergence of aggressive phenotypes from high-throughput data that rely on network-based analysis and their use to investigate immune escape mechanisms or predict clinical outcome-relevant CSC receptor signaling signatures. We further propose that customized vector technologies could drastically enhance systemic drug delivery to target sites, and summarize recent progress and remaining challenges. This review integrates available knowledge on CSC biology, computational modeling approaches, molecular targeting strategies, and delivery techniques to envision future clinical therapies designed to conquer metastasis-initiating cells.
Collapse
|
19
|
Pützer BM, Solanki M, Herchenröder O. Advances in cancer stem cell targeting: How to strike the evil at its root. Adv Drug Deliv Rev 2017; 120:89-107. [PMID: 28736304 DOI: 10.1016/j.addr.2017.07.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/10/2017] [Accepted: 07/16/2017] [Indexed: 12/18/2022]
Abstract
Cancer progression to metastatic stages is still unmanageable and the promise of effective anti-metastatic therapy remains largely unmet, emphasizing the need to develop novel therapeutics. The special focus here is on cancer stem cells (CSC) as the seed of tumor initiation, epithelial-mesenchymal transition, chemoresistance and, as a consequence, drivers of metastatic dissemination. We report on targeted therapies gearing towards the CSC's internal and membrane-anchored markers using agents such as antibody derivatives, nucleic therapeutics, small molecules and genetic payloads. Another emphasis lies on novel proceedings envisaged to deliver current and prospective therapies to the target sites using newest viral and non-viral vector technologies. In this review, we summarize recent progress and remaining challenges in therapeutic strategies to combat CSC.
Collapse
Affiliation(s)
- Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Biomedical Research Center (BMFZ), Rostock University Medical School, Germany.
| | - Manish Solanki
- Institute of Experimental Gene Therapy and Cancer Research, Biomedical Research Center (BMFZ), Rostock University Medical School, Germany
| | - Ottmar Herchenröder
- Institute of Experimental Gene Therapy and Cancer Research, Biomedical Research Center (BMFZ), Rostock University Medical School, Germany
| |
Collapse
|