1
|
Li W, Wu J, Yan J, Liang X, Li X, He Y, Li B, Zhan F. Mycorrhizal fungi mitigate cadmium leaching losses by decreasing the inorganic cadmium proportion in soil solutions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 289:117505. [PMID: 39667327 DOI: 10.1016/j.ecoenv.2024.117505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) are common in cadmium (Cd)-contaminated soil. However, the effects of AMF on Cd migration in contaminated soil are still poorly understood. A pot experiment involving a control without AMF inoculation (CK), inoculation with AMF (AMF), and bacterial filtrate of the AMF inoculant (LY) was conducted in the present study. AMF caused an increase in total glomalin-related soil protein (T-GRSP) of 12.2 % and in the exudation of low-molecular-weight organic acids (LMWOAs), such as citric acid, malic acid, oxalic acid, and free amino acids, by maize roots of 30.4 %-200.0 % but caused a decrease in the Cd contents of the maize shoots and roots by 53.2 % and 47.2 %, respectively compared those of the CK. Moreover, AMF decreased the Cd concentration in the leachate by 36.0 %-76.3 % by reducing the proportion of Cd2 + and inorganic Cd complexes in the soil solution and leachate by 26.2 %-85.7 %, and increasing the proportion of organic Cd complexes. Structural equation analysis revealed that the GRSP and LMWOAs were the primary factors driving the potential of AMF to reduce Cd leaching loss from polluted soil. The adsorption of Cd ions by quartz sand increased with the application of GRSP and LMWOAs, which resulted in a 27.6 %-69.5 % reduction in Cd leaching loss in the sand column. In the soil with AMF, the proportion of organic-bound Cd increased and the proportion of inorganic-bound Cd decreased by promoting the secretion of LMWOAs via mycelium, thus reducing Cd leaching loss.
Collapse
Affiliation(s)
- Wei Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Jiong Wu
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Jie Yan
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Xinran Liang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaoyi Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Yongmei He
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Bo Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China.
| | - Fangdong Zhan
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
2
|
Ran S, Li H, Yu Y, Zhu T, Dao J, Long S, Cai J, Liu TY, Xu Y. Ecological characteristics of tall fescue and spatially organized communities: Their contribution to mitigating cadmium damage. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135953. [PMID: 39332258 DOI: 10.1016/j.jhazmat.2024.135953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
The threat of cadmium (Cd) stress to agricultural soil environments, as well as their productivity attracting growing global interest. Tall fescue (Festuca arundinacea Schreb.) is a strong candidate for the remediation of heavy metals in soil. However, the joint analysis of Cd tolerance, physiological responses, and multifaceted plant microbiomes in tall fescue fields has not been extensively researched. Therefore, this study employed microbial sequencing (i.e., 16S and ITS sequencing) to investigate the differences in microbial community structure among various plant compartments of Cd-resistant tall fescue (cv. 'Arid3') and Cd-sensitive tall fescue (cv. 'Barrington'). Furthermore, we examined the mechanism of resistance to Cd by introducing three different bacteria and a fungus that were isolated from the 'Arid3' rhizosheath soil. It highlighted the potential application of enriched taxa such as Delftia, Novosphingobium, Cupriavidus and Torula in enhancing the activity of antioxidant defense systems, increasing the production of osmotic regulatory substances, and stimulating the expression of Cd-resistance genes. This ultimately promoted plant growth and enhanced phytoremediation efficiency. This study shed light on the response mechanism of the tall fescue microbiome to Cd stress and underscored the potential of tall fescue-microbe co-culture in the remediation of heavy metal-contaminated areas.
Collapse
Affiliation(s)
- Shuqi Ran
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Hanyu Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yize Yu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Tianqi Zhu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jicao Dao
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Si Long
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Junhao Cai
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Tie-Yuan Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Yuefei Xu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
3
|
Shi M, Hao S, Wang Y, Zhang S, Cui G, Zhang B, Zhou W, Chen H, Wang M. Plant growth-promoting fungi improve tobacco yield and chemical components by reassembling rhizosphere fungal microbiome and recruiting probiotic taxa. ENVIRONMENTAL MICROBIOME 2024; 19:83. [PMID: 39487540 PMCID: PMC11531166 DOI: 10.1186/s40793-024-00629-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Tobacco production faces ongoing challenges due to soil degradation, leading to a persistent decline in yield. Plant growth-promoting fungi (PGPF) have been recognized as an environmentally friendly agricultural strategy. However, many commercial PGPF products exhibit instability due to insufficient environmental compatibility. RESULTS In this study, Penicillium sp. PQxj3 was isolated and assessed for its potential to enhance tobacco productivity under field conditions. The results demonstrated that Penicillium sp. PQxj3 treatment significantly promoted the tobacco growth and improved the crop yield. The height of tobacco in Penicillium sp. PQxj3 treatment group significantly increased by 50.19% and 24.05% compared with CK at exuberant and maturity period (P < 0.05). The average yield of tobacco significantly increased by 36.16% compared to CK (P < 0.05). Fungal microbiome analysis revealed that phylogenetically similar probiotic taxa were recruited by Penicillium sp. PQxj3 and reassembled tobacco rhizosphere fungal microbiome. The key chemical indicators of tobacco such as alkaloid, total sugar, and phosphorus were significantly enhanced in Penicillium sp. PQxj3 treatment. The recruited probiotic taxa (Penicillium brasilianum, Penicillium simplicissimum, Penicillium macrosclerotiorum and Penicillium senticosum) were significantly associated with alkaloid, total sugar etc. (P < 0.05), which were identified as the key drivers for improving the chemical components of tobacco. Transcriptome analysis indicated that Penicillium sp. PQxj3 promoted up-regulation of key functional genes involved in alkaloid, indoleacetic, and gibberellin biosynthesis pathways. CONCLUSION In summary, this study assessed the biopromotion mechanism of PGPF Penicillium sp. PQxj3 linking chemical traits, rhizosphere fungal microbiome, and transcriptome profiling. The findings provide a fundamental basis and a sustainable solution for developing fungal fertilizers to enhance agricultural sustainability.
Collapse
Affiliation(s)
- Mingzi Shi
- College of Life Science, Henan Agricultural University, Henan, 450046, China
| | - Shanghua Hao
- College of Life Science, Henan Agricultural University, Henan, 450046, China
| | - Yuhe Wang
- Department of Genomic and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Sen Zhang
- College of Life Science, Henan Agricultural University, Henan, 450046, China
| | - Guangzhou Cui
- Xinyang City Company of Henan Tobacco Corporation, Henan, 464006, China
| | - Bin Zhang
- Xinyang City Company of Henan Tobacco Corporation, Henan, 464006, China
| | - Wang Zhou
- College of Life Science, Henan Agricultural University, Henan, 450046, China
| | - Hongge Chen
- College of Life Science, Henan Agricultural University, Henan, 450046, China
| | - Mingdao Wang
- College of Life Science, Henan Agricultural University, Henan, 450046, China.
| |
Collapse
|
4
|
Yang M, Song Y, Ma H, Li Z, Ding J, Yin T, Niu K, Sun S, Qi J, Lu G, Fazal A, Yang Y, Wen Z. Unveiling the hidden world: How arbuscular mycorrhizal fungi and its regulated core fungi modify the composition and metabolism of soybean rhizosphere microbiome. ENVIRONMENTAL MICROBIOME 2024; 19:78. [PMID: 39439005 PMCID: PMC11494790 DOI: 10.1186/s40793-024-00624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND The symbiosis between arbuscular mycorrhizal fungi (AMF) and plants often stimulates plant growth, increases agricultural yield, reduces costs, thereby providing significant economic benefits. AMF can also benefit plants through affecting the rhizosphere microbial community, but the underlying mechanisms remain unclear. Using Rhizophagus intraradices as a model AMF species, we assessed how AMF influences the bacterial composition and functional diversity through 16 S rRNA gene sequencing and non-targeted metabolomics analysis in the rhizosphere of aluminum-sensitive soybean that were inoculated with pathogenic fungus Nigrospora oryzae and phosphorus-solubilizing fungus Talaromyces verruculosus in an acidic soil. RESULTS The inoculation of R. intraradices, N. oryzae and T. verruculosus didn't have a significant influence on the levels of soil C, N, and P, or various plant characteristics such as seed weight, crude fat and protein content. However, their inoculation affected the structure, function and nutrient dynamics of the resident bacterial community. The co-inoculation of T. verruculosus and R. intraradices increased the relative abundance of Pseudomonas psychrotolerans, which was capable of N-fixing and was related to cry-for-help theory (plants signal for beneficial microbes when under stress), within the rhizosphere. R. intraradices increased the expression of metabolic pathways associated with the synthesis of unsaturated fatty acids, which was known to enhance plant resistance under adverse environmental conditions. The inoculation of N. oryzae stimulated the stress response inside the soil environment by enriching the polyene macrolide antifungal antibiotic-producing bacterial genus Streptomyces in the root endosphere and upregulating two antibacterial activity metabolic pathways associated with steroid biosynthesis pathways in the rhizosphere. Although inoculation of pathogenic fungus N. oryzae enriched Bradyrhizobium and increased soil urease activity, it had no significant effects on biomass and N content of soybean. Lastly, the host niches exhibited differences in the composition of the bacterial community, with most N-fixing bacteria accumulating in the endosphere and Rhizobium vallis only detected in the endosphere. CONCLUSIONS Our findings demonstrate that intricate interactions between AMF, associated core fungi, and the soybean root-associated ecological niches co-mediate the regulation of soybean growth, the dynamics of rhizosphere soil nutrients, and the composition, function, and metabolisms of the root-associated microbiome in an acidic soil.
Collapse
Affiliation(s)
- Minkai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuhang Song
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Hanke Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhenghua Li
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiawei Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Kechang Niu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Shucun Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Guihua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China
| | - Aliya Fazal
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Zhongling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
5
|
Xu M, Ren M, Yao Y, Liu Q, Che J, Wang X, Xu Q. Biochar decreases cadmium uptake in indica and japonica rice (Oryza sativa L.): Roles of soil properties, iron plaque, cadmium transporter genes and rhizobacteria. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135402. [PMID: 39096632 DOI: 10.1016/j.jhazmat.2024.135402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Biochar is an effective and economical strategy for in situ soil cadmium (Cd) remediation. It is essential to comprehensively investigate how biochar mitigates Cd uptake of the main rice subspecies. A pot experiment was established via adding corn stalk biochar into Cd-contaminated soil growing indica Yangdao 6 (YD) and japonica Nangeng 9108 (9108). 9108 had lower shoot biomass (-17.9%) but higher root biomass (+14.4%) and shoot Cd concentration (+29.4%) than YD. Biochar decreased soil available Cd by 25.2% and shoot Cd concentration by 13.6% through the liming and passivation effects. Biochar also favored Cd mitigation by recruiting Fe reducer, Cd remover and plant growth-promoting rhizobacteria (e.g. Bacteroides, Deferrisomatota, Bacillus and Allorhizobium). Besides, biochar reduced Cd uptake by stimulating iron plaques formation for 9108. Moreover, biochar did not reduce Cd uptake by inhibiting Cd transporter genes' expressions and it increased OsHMA2 expression in YD. In conclusion, biochar had great capacity in mitigating Cd pollution and rice subspecies responded differently to biochar in iron plaque formation and Cd transporter genes. The research established a comprehensive understanding of the mechanisms underlying Cd mitigation by biochar and helped to breed low Cd-accumulated rice cultivars to safeguard rice production.
Collapse
Affiliation(s)
- Meiling Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Meiling Ren
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yu Yao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Qi Liu
- College of Forestry, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jing Che
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Qiao Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
6
|
Dai HY, Zhang XK, Bi Y, Chen D, Long XN, Wu Y, Cao GH, He S. Improvement of Panax notoginseng saponin accumulation triggered by methyl jasmonate under arbuscular mycorrhizal fungi. FRONTIERS IN PLANT SCIENCE 2024; 15:1360919. [PMID: 38545393 PMCID: PMC10965624 DOI: 10.3389/fpls.2024.1360919] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/29/2024] [Indexed: 11/11/2024]
Abstract
Panax notoginseng is a highly valued perennial medicinal herb plant in Yunnan Province, China, and the taproots are the main medicinal parts that are rich in active substances of P. notoginseng saponins. The main purpose of this study is to uncover the physiological and molecular mechanism of Panax notoginseng saponin accumulation triggered by methyl jasmonate (MeJA) under arbuscular mycorrhizal fungi (AMF) by determining physiological indices, high-throughput sequencing and correlation analysis. Physiological results showed that the biomass and saponin contents of P. notoginseng, the concentrations of jasmonic acids (JAs) and the key enzyme activities involved in notoginsenoside biosynthesis significantly increased under AMF or MeJA, but the interactive treatment of AMF and MeJA weakened the effect of AMF, suggesting that a high concentration of endogenous JA have inhibitory effect. Transcriptome sequencing results indicated that differential expressed genes (DEGs) involved in notoginsenoside and JA biosynthesis were significantly enriched in response to AMF induction, e.g., upregulated genes of diphosphocytidyl-2-C-methyl-d-erythritol kinases (ISPEs), cytochrome P450 monooxygenases (CYP450s)_and glycosyltransferases (GTs), while treatments AMF-MeJA and salicylhydroxamic acid (SHAM) decreased the abundance of these DEGs. Interestingly, a high correlation presented between any two of saponin contents, key enzyme activities and expression levels of DEGs. Taken together, the inoculation of AMF can improve the growth and saponin accumulation of P. notoginseng by strengthening the activities of key enzymes and the expression levels of encoding genes, in which the JA regulatory pathway is a key link. This study provides references for implementing ecological planting of P. notoginseng, improving saponin accumulation and illustrating the biosynthesis mechanism.
Collapse
Affiliation(s)
- Hong-Yang Dai
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Kunming Lancang-Mekong Regional R&D Central for the Development Utilization of Traditional Medicine Resources, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- College of Pharmacy, Zhaotong Health Vocational College, Yunnan, Zhaotong, China
| | - Xing-Kai Zhang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Yue Bi
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Di Chen
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Xian-Nv Long
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Yue Wu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Guan-Hua Cao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Kunming Lancang-Mekong Regional R&D Central for the Development Utilization of Traditional Medicine Resources, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Sen He
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Kunming Lancang-Mekong Regional R&D Central for the Development Utilization of Traditional Medicine Resources, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| |
Collapse
|
7
|
Fang S, Cao W, Wu Q, Cheng S, Jin H, Pang H, Zhou A, Feng L, Cao J, Luo J. Dynamic microbiome disassembly and evolution induced by antimicrobial methylisothiazolinone in sludge anaerobic fermentation for volatile fatty acids generation. WATER RESEARCH 2024; 251:121139. [PMID: 38237458 DOI: 10.1016/j.watres.2024.121139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 02/12/2024]
Abstract
In the post-COVID-19 pandemic era, various antimicrobials have emerged and concentrated in waste-activated sludge (WAS), affecting the biological treatment of WAS. However, there is still a knowledge gap in the dynamic response and adaptive mechanism of anaerobic microbiome under exogenous antimicrobial stress. This study found that methylisothiazolinone (MIT, as a typic antimicrobial) caused an interesting lag effect on the volatile fatty acids (VFAs) promotion in the WAS anaerobic fermentation process. MIT was effective to disintegrate the extracellular polymeric substances (EPS), and those functional anaerobic microorganisms were easily exposed and negatively impacted by the MIT interference after the loss of protective barriers. Correspondingly, the ecological interactions and microbial metabolic functions related to VFA biosynthesis (e.g., pyruvate metabolism) were downregulated at the initial stage. The syntrophic consortia gradually adapted to the interference and attenuated the MIT stress by activating chemotaxis and resistance genes (e.g., excreting, binding, and inactivating). Due to the increased bioavailable substrates in the fermentation systems, the dominant microorganisms (i.e., Clostridium and Caloramator) with both VFAs production and MIT-tolerance functions have been domesticated. Moreover, MIT disrupted the syntrophic interaction between acetogens and methanogens and totally suppressed methanogens' metabolic activities. The VFA production derived from WAS anaerobic fermentation was therefore enhanced due to the interference of antimicrobial MIT stress. This work deciphered dynamic changes and adaptive evolution of anaerobic syntrophic consortia in response to antimicrobial stress and provided guidance on the evaluation and control of the ecological risks of exogenous pollutants in WAS treatment.
Collapse
Affiliation(s)
- Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wangbei Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qian Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Song Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Hongqi Jin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Heliang Pang
- School of Environmental and Municipal Engineering, Xi 'an University of Architecture and Technology, Xi 'an 710055, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|