1
|
Ma Z, Huang Z, Liao Y, Mao J, Yang J, Dai Q, Liu R, Wang H, Tao H, Liu T. Deciphering the δ-Lactam Formation and lron-Reducing Activity of Spinactins from Saccharopolyspora spinosa. Org Lett 2025; 27:565-570. [PMID: 39780528 DOI: 10.1021/acs.orglett.4c04109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The cyclic structure of non-ribosomal peptides (NRPs) is critical for enhancing their stability and bioactivity, which highlights the importance of exploring NRP cyclization enzymes for natural product discovery. Thioesterases (TEs) are crucial enzymes that catalyze the formation of various lactams, including macrolactams, β-lactams, and γ-lactams; however, their potential to produce other lactam types remains largely unexplored. In this study, we identified spinactin A (1) and novel derivatives, spinactin B-E (2-5), from Saccharopolyspora spinosa NRRL 18395 and characterized the biosynthetic enzymes involved, particularly a unique TE SncF, responsible for δ-lactam formation. Remarkably, compound 1 exhibited lower cytotoxicity and superior iron-reducing activity than United States Food and Drug Administration (FDA)-approved iron chelators deferiprone (DFP) and deferoxamine (DFO), indicating its potential for treating iron overload disorders, especially in beta-propeller protein-associated neurodegeneration (BPAN) cells. These findings highlight TEs' roles in expanding the repertoire of δ-lactam-containing NRPs with therapeutic potential.
Collapse
Affiliation(s)
- Zhengning Ma
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhelan Huang
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Yunfei Liao
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Jiaqi Mao
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Jing Yang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Quan Dai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Ran Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huijun Wang
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Hui Tao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Department of Otolaryngology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Wuhan Hesheng Technology Company, Limited, Wuhan 430074, China
| |
Collapse
|
2
|
Li W, Wang H, Lv G, Wang J, Li J. Regulation of drought stress on nutrient cycle and metabolism of rhizosphere microorganisms in desert riparian forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176148. [PMID: 39260483 DOI: 10.1016/j.scitotenv.2024.176148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Microbial communities in desert riparian forest ecosystems have developed unique adaptive strategies to thrive in harsh habitats shaped by prolonged exposure to abiotic stressors. However, the influence of drought stress on the functional and metabolic characteristics of soil rhizosphere microorganisms remains unknown. Therefore, this study aimed to investigate the effects of drought stress on soil biogeochemistry and metabolism and analyze the relationship between the biogeochemical cycle processes and network of differentially-expressed metabolites. Using metagenomics and metabolomics, this study explored the microbial functional cycle and differential metabolic pathways within desert riparian forests. The predominant biogeochemical cycles in the study area were the Carbon and Nitrogen cycles, comprising 78.90 % of C, N, Phosphorus, Sulfur and Iron cycles. Drought led to increased soil C fixation, reduced C degradation and methane metabolism, weakened denitrification, and decreased N fixation. Furthermore, drought can disrupt iron homeostasis and reduce its absorption. The differential metabolic pathways of drought stress include flavonoid biosynthesis, arachidonic acid metabolism, steroid hormone biosynthesis, and starch and sucrose degradation. Network analysis of functional genes and metabolism revealed a pronounced competitive relationship between the C cycle and metabolic network, whereas the Fe cycle and metabolic network promoted each other, optimizing resource utilization. Partial least squares analysis revealed that drought hindered the expression and metabolic processes and functional genes, whereas the rhizosphere environment facilitated metabolic expression and the functional genes. The rhizosphere effect primarily promoted metabolic processes indirectly through soil enzyme activities. The integrated multi-omics analysis further revealed that the effects of drought and the rhizosphere play a predominant role in shaping soil functional potential and the accumulation of metabolites. These insights deepen our comprehension of desert riparian forest ecosystems and offer strong support for the functionality of nutrient cycling and metabolite dynamics.
Collapse
Affiliation(s)
- Wenjing Li
- College of Ecology and Environment, Xinjiang University, Urumqi, Xinjiang 830046, PR China; Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, Xinjiang 830046, PR China
| | - Hengfang Wang
- College of Ecology and Environment, Xinjiang University, Urumqi, Xinjiang 830046, PR China; Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, Xinjiang 830046, PR China
| | - Guanghui Lv
- College of Ecology and Environment, Xinjiang University, Urumqi, Xinjiang 830046, PR China; Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, Xinjiang 830046, PR China.
| | - Jinlong Wang
- College of Ecology and Environment, Xinjiang University, Urumqi, Xinjiang 830046, PR China; Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, Xinjiang 830046, PR China
| | - Jianhao Li
- College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, PR China
| |
Collapse
|
3
|
Schlüter L, Hansen KØ, Isaksson J, Andersen JH, Hansen EH, Kalinowski J, Schneider YKH. Discovery of thiazostatin D/E using UPLC-HR-MS2-based metabolomics and σ-factor engineering of Actinoplanes sp. SE50/110. Front Bioeng Biotechnol 2024; 12:1497138. [PMID: 39654828 PMCID: PMC11626248 DOI: 10.3389/fbioe.2024.1497138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
As the natural producer of acarbose, Actinoplanes sp. SE50/110 has high industrial relevance. Like most Actinobacteria, the strain carries several more putative biosynthetic gene clusters (BGCs) to produce further natural products, which are to be discovered. Applying a metabolomics-guided approach, we tentatively identified five further compounds that are produced by the strain: watasemycin, thiazostatin, isopyochelin, pulicatin, and aerugine. A comparison of the genomic context allowed the identification of the putative BGC, which is highly similar to the watasemycin biosynthetic gene cluster of Streptomyces venezuelae. In addition to the identified molecules, a thiazostatin-like compound was found. Isolation and structure elucidation with 1D and 2D NMR and HRMS were applied. The fraction containing m/z 369.0929 [M + H]+ comprised two highly similar compounds identified as thiazostatin D and thiazostatin E. The compounds possessed the same phenol-thiazole-thiazole molecular scaffold as the previously reported thiazostatin and watasemycin and have anti-proliferative activity against the breast adenocarcinoma cell line MCF7 and human melanoma cell line A2058, while no activity again the non-malignant immortalized fibroblast cell line MRC-5 was observed. We further showed that the manipulation of global transcriptional regulators, with sigH (ACSP50_0507) and anti-anti-σ factor coding ACSP50_0284 as an example, enabled the production manipulation of the 2-hydroxyphenylthiazoline family molecules. While the manipulation of sigH enabled the shift in the peak intensities between the five products of this pathway, ACSP50_0284 manipulation prevented their production. The production of a highly polar compound with m/z 462.1643 [M + H]+ and calculated elemental composition C19H27NO12 was activated under the ACSP50_0284 expression and is exclusively produced by the engineered strain.
Collapse
Affiliation(s)
- Laura Schlüter
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Kine Østnes Hansen
- Department of Pharmacy, Faculty of Medicine and Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Johan Isaksson
- Department of Pharmacy, Faculty of Medicine and Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Jeanette Hammer Andersen
- Marbio, Faculty for Fisheries, Biosciences and Economy, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Espen Holst Hansen
- Marbio, Faculty for Fisheries, Biosciences and Economy, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
- Technology Platform Genomics, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | | |
Collapse
|
4
|
Babar S, Baloch A, Qasim M, Wang J, Wang X, Li Y, Khalid S, Jiang C. Unearthing the soil-bacteria nexus to enhance potassium bioavailability for global sustainable agriculture: A mechanistic preview. Microbiol Res 2024; 288:127885. [PMID: 39236472 DOI: 10.1016/j.micres.2024.127885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/02/2024] [Accepted: 08/25/2024] [Indexed: 09/07/2024]
Abstract
Established as a plant macronutrient, potassium (K) substantially bestows plant growth and thus, global food production. It is absorbed by plants as potassium cation (K+) from soil solution, which is enriched through slow-release from soil minerals or addition of soluble fertilizers. Contribution of bioavailable K+ from soil is usually insignificant (< 2 %), although the earth's crust is rich in K-bearing minerals. However, K is fixed largely in interlayer spaces of K-bearing minerals, which can be released by K-solubilizing bacteria (KSB) such as Bacillus, Pseudomonas, Enterobacter, and Acidithiobacillus. The underlying mechanisms of K dissolution by KSB include acidolysis, ion exchange reactions, chelation, complexolysis, and release of various organic and inorganic acids such as citric, oxalic, acetic, gluconic, and tartaric acids. These acids cause disintegration of K-bearing minerals and bring K+ into soil solution that becomes available to the plants. Current literature review updates the scientific information about microbial species, factors, and mechanisms governing the bio-intrusion of K-bearing minerals. Moreover, it explores the potential of KSB not only for K-solubilization but also to enhance bioavailability of phosphorus, nitrogen, and micronutrients, as well as its other beneficial impact on plant growth. Thus, in the context of sustainable agricultural production and global food security, utilization of KSB may facilitate plant nutrient availability, conserve natural resources, and reduce environmental impacts caused by chemical fertilizers.
Collapse
Affiliation(s)
- Saba Babar
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Amanullah Baloch
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Muhammad Qasim
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Jiyuan Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiangling Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yuxuan Li
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Sarmand Khalid
- Key Laboratory of Horticulture Plant Biology of Ministry of Education, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Cuncang Jiang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
5
|
Xie B, Wei X, Wan C, Zhao W, Song R, Xin S, Song K. Exploring the Biological Pathways of Siderophores and Their Multidisciplinary Applications: A Comprehensive Review. Molecules 2024; 29:2318. [PMID: 38792179 PMCID: PMC11123847 DOI: 10.3390/molecules29102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Siderophores are a class of small molecules renowned for their high iron binding capacity, essential for all life forms requiring iron. This article provides a detailed review of the diverse classifications, and biosynthetic pathways of siderophores, with a particular emphasis on siderophores synthesized via nonribosomal peptide synthetase (NRPS) and non-NRPS pathways. We further explore the secretion mechanisms of siderophores in microbes and plants, and their role in regulating bioavailable iron levels. Beyond biological functions, the applications of siderophores in medicine, agriculture, and environmental sciences are extensively discussed. These applications include biological pest control, disease treatment, ecological pollution remediation, and heavy metal ion removal. Through a comprehensive analysis of the chemical properties and biological activities of siderophores, this paper demonstrates their wide prospects in scientific research and practical applications, while also highlighting current research gaps and potential future directions.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuquan Xin
- School of Life Science, Changchun Normal University, Changchun 130032, China; (B.X.); (X.W.); (C.W.); (W.Z.); (R.S.)
| | - Kai Song
- School of Life Science, Changchun Normal University, Changchun 130032, China; (B.X.); (X.W.); (C.W.); (W.Z.); (R.S.)
| |
Collapse
|