1
|
Razzak I, Naz S, Alinejad-Rokny H, Nguyen TN, Khalifa F. A Cascaded Mutliresolution Ensemble Deep Learning Framework for Large Scale Alzheimer's Disease Detection Using Brain MRIs. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:573-581. [PMID: 36322495 DOI: 10.1109/tcbb.2022.3219032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Alzheimer's is progressive and irreversible type of dementia, which causes degeneration and death of cells and their connections in the brain. AD worsens over time and greatly impacts patients' life and affects their important mental functions, including thinking, the ability to carry on a conversation, and judgment and response to environment. Clinically, there is no single test to effectively diagnose Alzheimer disease. However, computed tomography (CT) and magnetic resonance imaging (MRI) scans can be used to help in AD diagnosis by observing critical changes in the size of different brain areas, typically parietal and temporal lobes areas. In this work, an integrative mulitresolutional ensemble deep learning-based framework is proposed to achieve better predictive performance for the diagnosis of Alzheimer disease. Unlike ResNet, DenseNet and their variants proposed pipeline utilizes PartialNet in a hierarchical design tailored to AD detection using brain MRIs. The advantage of the proposed analysis system is that PartialNet diversified the depth and deep supervision. Additionally, it also incorporates the properties of identity mappings which makes it powerful in better learning due to feature reuse. Besides, the proposed ensemble PartialNet is better in vanishing gradient, diminishing forward-flow with low number of parameters and better training time in comparison to its counter network. The proposed analysis pipeline has been tested and evaluated on benchmark ADNI dataset collected from 379 subjects patients. Quantitative validation of the obtained results documented our framework's capability, outperforming state-of-the-art learning approaches for both multi-and binary-class AD detection.
Collapse
|
2
|
Malik I, Iqbal A, Gu YH, Al-antari MA. Deep Learning for Alzheimer's Disease Prediction: A Comprehensive Review. Diagnostics (Basel) 2024; 14:1281. [PMID: 38928696 PMCID: PMC11202897 DOI: 10.3390/diagnostics14121281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Alzheimer's disease (AD) is a neurological disorder that significantly impairs cognitive function, leading to memory loss and eventually death. AD progresses through three stages: early stage, mild cognitive impairment (MCI) (middle stage), and dementia. Early diagnosis of Alzheimer's disease is crucial and can improve survival rates among patients. Traditional methods for diagnosing AD through regular checkups and manual examinations are challenging. Advances in computer-aided diagnosis systems (CADs) have led to the development of various artificial intelligence and deep learning-based methods for rapid AD detection. This survey aims to explore the different modalities, feature extraction methods, datasets, machine learning techniques, and validation methods used in AD detection. We reviewed 116 relevant papers from repositories including Elsevier (45), IEEE (25), Springer (19), Wiley (6), PLOS One (5), MDPI (3), World Scientific (3), Frontiers (3), PeerJ (2), Hindawi (2), IO Press (1), and other multiple sources (2). The review is presented in tables for ease of reference, allowing readers to quickly grasp the key findings of each study. Additionally, this review addresses the challenges in the current literature and emphasizes the importance of interpretability and explainability in understanding deep learning model predictions. The primary goal is to assess existing techniques for AD identification and highlight obstacles to guide future research.
Collapse
Affiliation(s)
- Isra Malik
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt 44000, Pakistan
| | - Ahmed Iqbal
- Department of Computer Science, Sir Syed Case Institute of Technology, Islamabad 45230, Pakistan
| | - Yeong Hyeon Gu
- Department of Artificial Intelligence and Data Science, College of AI Convergence, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea
| | - Mugahed A. Al-antari
- Department of Artificial Intelligence and Data Science, College of AI Convergence, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
3
|
Epizitone A, Moyane SP, Agbehadji IE. A Data-Driven Paradigm for a Resilient and Sustainable Integrated Health Information Systems for Health Care Applications. J Multidiscip Healthc 2023; 16:4015-4025. [PMID: 38107085 PMCID: PMC10725635 DOI: 10.2147/jmdh.s433299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/02/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction Many transformations and uncertainties, such as the fourth industrial revolution and pandemics, have propelled healthcare acceptance and deployment of health information systems (HIS). External and internal determinants aligning with the global course influence their deployments. At the epic is digitalization, which generates endless data that has permeated healthcare. The continuous proliferation of complex and dynamic healthcare data is the digitalization frontier in healthcare that necessitates attention. Objective This study explores the existing body of information on HIS for healthcare through the data lens to present a data-driven paradigm for healthcare augmentation paramount to attaining a sustainable and resilient HIS. Method Preferred Reporting Items for Systematic Reviews and Meta-Analyses: PRISMA-compliant in-depth literature review was conducted systematically to synthesize and analyze the literature content to ascertain the value disposition of HIS data in healthcare delivery. Results This study details the aspects of a data-driven paradigm for robust and sustainable HIS for health care applications. Data source, data action and decisions, data sciences techniques, serialization of data sciences techniques in the HIS, and data insight implementation and application are data-driven features expounded. These are essential data-driven paradigm building blocks that need iteration to succeed. Discussions Existing literature considers insurgent data in healthcare challenging, disruptive, and potentially revolutionary. This view echoes the current healthcare quandary of good and bad data availability. Thus, data-driven insights are essential for building a resilient and sustainable HIS. People, technology, and tasks dominated prior HIS frameworks, with few data-centric facets. Improving healthcare and the HIS requires identifying and integrating crucial data elements. Conclusion The paper presented a data-driven paradigm for a resilient and sustainable HIS. The findings show that data-driven track and components are essential to improve healthcare using data analytics insights. It provides an integrated footing for data analytics to support and effectively assist health care delivery.
Collapse
Affiliation(s)
- Ayogeboh Epizitone
- ICT and Society Research Group, Department of Information and Corporate Management, Durban University of Technology, Durban, South Africa
| | - Smangele Pretty Moyane
- Department of Information and Corporate Management, Durban University of Technology, Durban, South Africa
| | - Israel Edem Agbehadji
- Centre for Transformative Agricultural and Food Systems, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
4
|
Moguilner S, Whelan R, Adams H, Valcour V, Tagliazucchi E, Ibáñez A. Visual deep learning of unprocessed neuroimaging characterises dementia subtypes and generalises across non-stereotypic samples. EBioMedicine 2023; 90:104540. [PMID: 36972630 PMCID: PMC10066533 DOI: 10.1016/j.ebiom.2023.104540] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/28/2023] Open
Abstract
BACKGROUND Dementia's diagnostic protocols are mostly based on standardised neuroimaging data collected in the Global North from homogeneous samples. In other non-stereotypical samples (participants with diverse admixture, genetics, demographics, MRI signals, or cultural origins), classifications of disease are difficult due to demographic and region-specific sample heterogeneities, lower quality scanners, and non-harmonised pipelines. METHODS We implemented a fully automatic computer-vision classifier using deep learning neural networks. A DenseNet was applied on raw (unpreprocessed) data from 3000 participants (behavioural variant frontotemporal dementia-bvFTD, Alzheimer's disease-AD, and healthy controls; both male and female as self-reported by participants). We tested our results in demographically matched and unmatched samples to discard possible biases and performed multiple out-of-sample validations. FINDINGS Robust classification results across all groups were achieved from standardised 3T neuroimaging data from the Global North, which also generalised to standardised 3T neuroimaging data from Latin America. Moreover, DenseNet also generalised to non-standardised, routine 1.5T clinical images from Latin America. These generalisations were robust in samples with heterogenous MRI recordings and were not confounded by demographics (i.e., were robust in both matched and unmatched samples, and when incorporating demographic variables in a multifeatured model). Model interpretability analysis using occlusion sensitivity evidenced core pathophysiological regions for each disease (mainly the hippocampus in AD, and the insula in bvFTD) demonstrating biological specificity and plausibility. INTERPRETATION The generalisable approach outlined here could be used in the future to aid clinician decision-making in diverse samples. FUNDING The specific funding of this article is provided in the acknowledgements section.
Collapse
Affiliation(s)
- Sebastian Moguilner
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, USA; Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland; Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert Whelan
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, USA; Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - Hieab Adams
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Victor Valcour
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, USA; Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
| | - Enzo Tagliazucchi
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Department of Physics, University of Buenos Aires, Caba, Argentina
| | - Agustín Ibáñez
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, USA; Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland; Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
5
|
Khan R, Akbar S, Mehmood A, Shahid F, Munir K, Ilyas N, Asif M, Zheng Z. A transfer learning approach for multiclass classification of Alzheimer's disease using MRI images. Front Neurosci 2023; 16:1050777. [PMID: 36699527 PMCID: PMC9869687 DOI: 10.3389/fnins.2022.1050777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023] Open
Abstract
Alzheimer's is an acute degenerative disease affecting the elderly population all over the world. The detection of disease at an early stage in the absence of a large-scale annotated dataset is crucial to the clinical treatment for the prevention and early detection of Alzheimer's disease (AD). In this study, we propose a transfer learning base approach to classify various stages of AD. The proposed model can distinguish between normal control (NC), early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI), and AD. In this regard, we apply tissue segmentation to extract the gray matter from the MRI scans obtained from the Alzheimer's Disease National Initiative (ADNI) database. We utilize this gray matter to tune the pre-trained VGG architecture while freezing the features of the ImageNet database. It is achieved through the addition of a layer with step-wise freezing of the existing blocks in the network. It not only assists transfer learning but also contributes to learning new features efficiently. Extensive experiments are conducted and results demonstrate the superiority of the proposed approach.
Collapse
Affiliation(s)
- Rizwan Khan
- Department of Computer Science and Mathematics, Zhejiang Normal University, Jinhua, China,*Correspondence: Rizwan Khan ✉
| | - Saeed Akbar
- School of Computer Science, Huazhong University of Science and Technology, Wuhan, China
| | - Atif Mehmood
- Division of Biomedical Imaging, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm, Sweden,Department of Computer Science, National University of Modern Languages, Islamabad, Pakistan
| | - Farah Shahid
- Department of Computer Science, University of Agriculture, Sub Campus Burewala-Vehari, Faisalabad, Pakistan
| | - Khushboo Munir
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Naveed Ilyas
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - M. Asif
- Department of Radiology, Emory Brain Health Center-Neurosurgery, School of Medicine, Emory University, Atlanta, GA, United States
| | - Zhonglong Zheng
- Department of Computer Science and Mathematics, Zhejiang Normal University, Jinhua, China,Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
6
|
Differential Diagnosis of Alzheimer Disease vs. Mild Cognitive Impairment Based on Left Temporal Lateral Lobe Hypomethabolism on 18F-FDG PET/CT and Automated Classifiers. Diagnostics (Basel) 2022; 12:diagnostics12102425. [PMID: 36292114 PMCID: PMC9601187 DOI: 10.3390/diagnostics12102425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose: We evaluate the ability of Artificial Intelligence with automatic classification methods applied to semi-quantitative data from brain 18F-FDG PET/CT to improve the differential diagnosis between Alzheimer Disease (AD) and Mild Cognitive Impairment (MCI). Procedures: We retrospectively analyzed a total of 150 consecutive patients who underwent diagnostic evaluation for suspected AD (n = 67) or MCI (n = 83). All patients received brain 18F-FDG PET/CT according to the international guidelines, and images were analyzed both Qualitatively (QL) and Quantitatively (QN), the latter by a fully automated post-processing software that produced a z score metabolic map of 25 anatomically different cortical regions. A subset of n = 122 cases with a confirmed diagnosis of AD (n = 53) or MDI (n = 69) by 18–24-month clinical follow-up was finally included in the study. Univariate analysis and three automated classification models (classification tree –ClT-, ridge classifier –RC- and linear Support Vector Machine –lSVM-) were considered to estimate the ability of the z scores to discriminate between AD and MCI cases in. Results: The univariate analysis returned 14 areas where the z scores were significantly different between AD and MCI groups, and the classification accuracy ranged between 74.59% and 76.23%, with ClT and RC providing the best results. The best classification strategy consisted of one single split with a cut-off value of ≈ −2.0 on the z score from temporal lateral left area: cases below this threshold were classified as AD and those above the threshold as MCI. Conclusions: Our findings confirm the usefulness of brain 18F-FDG PET/CT QL and QN analyses in differentiating AD from MCI. Moreover, the combined use of automated classifications models can improve the diagnostic process since its use allows identification of a specific hypometabolic area involved in AD cases in respect to MCI. This data improves the traditional 18F-FDG PET/CT image interpretation and the diagnostic assessment of cognitive disorders.
Collapse
|
7
|
Zhu J, Tan Y, Lin R, Miao J, Fan X, Zhu Y, Liang P, Gong J, He H. Efficient self-attention mechanism and structural distilling model for Alzheimer’s disease diagnosis. Comput Biol Med 2022; 147:105737. [DOI: 10.1016/j.compbiomed.2022.105737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/23/2022] [Accepted: 06/11/2022] [Indexed: 11/27/2022]
|
8
|
Zhu Z, Lu S, Wang SH, Gorriz JM, Zhang YD. DSNN: A DenseNet-Based SNN for Explainable Brain Disease Classification. Front Syst Neurosci 2022; 16:838822. [PMID: 35720439 PMCID: PMC9204288 DOI: 10.3389/fnsys.2022.838822] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/25/2022] [Indexed: 12/20/2022] Open
Abstract
Aims: Brain diseases refer to intracranial tissue and organ inflammation, vascular diseases, tumors, degeneration, malformations, genetic diseases, immune diseases, nutritional and metabolic diseases, poisoning, trauma, parasitic diseases, etc. Taking Alzheimer's disease (AD) as an example, the number of patients dramatically increases in developed countries. By 2025, the number of elderly patients with AD aged 65 and over will reach 7.1 million, an increase of nearly 29% over the 5.5 million patients of the same age in 2018. Unless medical breakthroughs are made, AD patients may increase from 5.5 million to 13.8 million by 2050, almost three times the original. Researchers have focused on developing complex machine learning (ML) algorithms, i.e., convolutional neural networks (CNNs), containing millions of parameters. However, CNN models need many training samples. A small number of training samples in CNN models may lead to overfitting problems. With the continuous research of CNN, other networks have been proposed, such as randomized neural networks (RNNs). Schmidt neural network (SNN), random vector functional link (RVFL), and extreme learning machine (ELM) are three types of RNNs. Methods: We propose three novel models to classify brain diseases to cope with these problems. The proposed models are DenseNet-based SNN (DSNN), DenseNet-based RVFL (DRVFL), and DenseNet-based ELM (DELM). The backbone of the three proposed models is the pre-trained "customize" DenseNet. The modified DenseNet is fine-tuned on the empirical dataset. Finally, the last five layers of the fine-tuned DenseNet are substituted by SNN, ELM, and RVFL, respectively. Results: Overall, the DSNN gets the best performance among the three proposed models in classification performance. We evaluate the proposed DSNN by five-fold cross-validation. The accuracy, sensitivity, specificity, precision, and F1-score of the proposed DSNN on the test set are 98.46% ± 2.05%, 100.00% ± 0.00%, 85.00% ± 20.00%, 98.36% ± 2.17%, and 99.16% ± 1.11%, respectively. The proposed DSNN is compared with restricted DenseNet, spiking neural network, and other state-of-the-art methods. Finally, our model obtains the best results among all models. Conclusions: DSNN is an effective model for classifying brain diseases.
Collapse
Affiliation(s)
- Ziquan Zhu
- School of Computing and Mathematical Sciences, University of Leicester, East Midlands, United Kingdom
| | - Siyuan Lu
- School of Computing and Mathematical Sciences, University of Leicester, East Midlands, United Kingdom
| | - Shui-Hua Wang
- School of Computing and Mathematical Sciences, University of Leicester, East Midlands, United Kingdom
- School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China
| | - Juan Manuel Gorriz
- Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain
| | - Yu-Dong Zhang
- School of Computing and Mathematical Sciences, University of Leicester, East Midlands, United Kingdom
- School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China
- Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin, China
| |
Collapse
|