1
|
Hrubša M, Siatka T, Nejmanová I, Vopršalová M, Kujovská Krčmová L, Matoušová K, Javorská L, Macáková K, Mercolini L, Remião F, Máťuš M, Mladěnka P. Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B 1, B 2, B 3, and B 5. Nutrients 2022; 14:484. [PMID: 35276844 PMCID: PMC8839250 DOI: 10.3390/nu14030484] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
This review summarizes the current knowledge on essential vitamins B1, B2, B3, and B5. These B-complex vitamins must be taken from diet, with the exception of vitamin B3, that can also be synthetized from amino acid tryptophan. All of these vitamins are water soluble, which determines their main properties, namely: they are partly lost when food is washed or boiled since they migrate to the water; the requirement of membrane transporters for their permeation into the cells; and their safety since any excess is rapidly eliminated via the kidney. The therapeutic use of B-complex vitamins is mostly limited to hypovitaminoses or similar conditions, but, as they are generally very safe, they have also been examined in other pathological conditions. Nicotinic acid, a form of vitamin B3, is the only exception because it is a known hypolipidemic agent in gram doses. The article also sums up: (i) the current methods for detection of the vitamins of the B-complex in biological fluids; (ii) the food and other sources of these vitamins including the effect of common processing and storage methods on their content; and (iii) their physiological function.
Collapse
Affiliation(s)
- Marcel Hrubša
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Tomáš Siatka
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Iveta Nejmanová
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Marie Vopršalová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Lenka Kujovská Krčmová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Lenka Javorská
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Macáková
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| | - Fernando Remião
- UCIBIO—Applied Molecular Biosciences Unit, REQUINTE, Toxicology Laboratory, Biological Sciences Department Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marek Máťuš
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovak Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | | |
Collapse
|
2
|
King BF. P2X3 receptors participate in purinergic inhibition of gastrointestinal smooth muscle. Auton Neurosci 2021; 234:102830. [PMID: 34116466 DOI: 10.1016/j.autneu.2021.102830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/11/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
The ATP analogue α,β-meATP is a potent relaxant of gastrointestinal smooth muscle, but its molecular target is uncertain inside the gut. α,β-meATP relaxed the carbachol-precontracted guinea-pig taenia coli in a concentration-dependent manner (EC50, 2.0 ± 0.1 μM). A luciferase-based assay confirmed that α,β-meATP solutions were minimally contaminated with ATP. α,β-meATP-evoked relaxations were inhibited by the competitive P2Y1 antagonist MRS2179 (pA2 = 5.36), but also by the competitive P2X3 antagonist, A-317491 (pA2 = 5.51). When MRS2179 and A-317491 were applied together, residual α,β-meATP responses converted from brief to prolonged relaxations. Sodium nitroprusside (a nitric oxide donor) also caused prolonged relaxations. Immunohistochemistry revealed that P2X3 receptors were present in myenteric ganglion cells and their varicose nerve terminals. The amplitude of α,β-meATP responses was not inhibited by TTX (NaV channel blocker) and ωCgTx (N-type CaV channel blocker). However, responses to α,β-meATP were inhibited by TEA (non-selective K+-channel blocker), indicating that relaxations involved opening K+-channels. The findings of this study are consistent with the conclusion that α,β-meATP stimulates Ca2+-permeable P2X3 receptors on varicose nerve terminals to release inhibitory nucleotides: 1) ATP and β-NAD release results in P2Y1-mediated brief relaxations; 2) another released transmitter (possibly NO) results in prolonged relaxations. Prejunctional P2X3 receptors represent a purinergic feed-forward mechanism to augment the action of inhibitory nerves on gut motility. This positive feed-forward mechanism may counter-balance the known negative feedback mechanism caused by adenosine and prejunctional A1 receptors on inhibitory motor nerves.
Collapse
Affiliation(s)
- Brian F King
- University College London (UCL), Research Department of Neuroscience, Pharmacology & Physiology (NPP), Gower Street, London WC1E 6BT, United Kingdom.
| |
Collapse
|
3
|
Gasparrini M, Sorci L, Raffaelli N. Enzymology of extracellular NAD metabolism. Cell Mol Life Sci 2021; 78:3317-3331. [PMID: 33755743 PMCID: PMC8038981 DOI: 10.1007/s00018-020-03742-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Extracellular NAD represents a key signaling molecule in different physiological and pathological conditions. It exerts such function both directly, through the activation of specific purinergic receptors, or indirectly, serving as substrate of ectoenzymes, such as CD73, nucleotide pyrophosphatase/phosphodiesterase 1, CD38 and its paralog CD157, and ecto ADP ribosyltransferases. By hydrolyzing NAD, these enzymes dictate extracellular NAD availability, thus regulating its direct signaling role. In addition, they can generate from NAD smaller signaling molecules, like the immunomodulator adenosine, or they can use NAD to ADP-ribosylate various extracellular proteins and membrane receptors, with significant impact on the control of immunity, inflammatory response, tumorigenesis, and other diseases. Besides, they release from NAD several pyridine metabolites that can be taken up by the cell for the intracellular regeneration of NAD itself. The extracellular environment also hosts nicotinamide phosphoribosyltransferase and nicotinic acid phosphoribosyltransferase, which inside the cell catalyze key reactions in NAD salvaging pathways. The extracellular forms of these enzymes behave as cytokines, with pro-inflammatory functions. This review summarizes the current knowledge on the extracellular NAD metabolome and describes the major biochemical properties of the enzymes involved in extracellular NAD metabolism, focusing on the contribution of their catalytic activities to the biological function. By uncovering the controversies and gaps in their characterization, further research directions are suggested, also to better exploit the great potential of these enzymes as therapeutic targets in various human diseases.
Collapse
Affiliation(s)
- Massimiliano Gasparrini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Leonardo Sorci
- Division of Bioinformatics and Biochemistry, Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
4
|
Roh E, Park JW, Kang GM, Lee CH, Dugu H, Gil SY, Song DK, Kim HJ, Son GH, Yu R, Kim MS. Exogenous nicotinamide adenine dinucleotide regulates energy metabolism via hypothalamic connexin 43. Metabolism 2018; 88:51-60. [PMID: 30179604 DOI: 10.1016/j.metabol.2018.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/31/2018] [Accepted: 08/29/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Nicotinamide adenine dinucleotide (NAD)-dependent deacetylase SIRT1 is an important regulator of hypothalamic neuronal function. Thus, an adequate hypothalamic NAD content is critical for maintaining normal energy homeostasis. METHODS We investigated whether NAD supplementation increases hypothalamic NAD levels and affects energy metabolism in mice. Furthermore, we investigated the mechanisms underlying the effects of exogenous NAD on central metabolism upon entering the hypothalamus. RESULTS Central and peripheral NAD administration suppressed fasting-induced hyperphagia and weight gain in mice. Extracellular NAD was imported into N1 hypothalamic neuronal cells in a connexin 43-dependent and CD73-independent manner. Consistent with the in vitro data, inhibition of hypothalamic connexin 43 blocked hypothalamic NAD uptake and NAD-induced anorexia. Exogenous NAD suppressed NPY and AgRP transcriptional activity, which was mediated by SIRT1 and FOXO1. CONCLUSIONS Exogenous NAD is effectively transported to the hypothalamus via a connexin 43-dependent mechanism and increases hypothalamic NAD content. Therefore, NAD supplementation is a potential therapeutic method for metabolic disorders characterized by hypothalamic NAD depletion.
Collapse
Affiliation(s)
- Eun Roh
- Department of Biomedical Science, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; Appetite Regulation Laboratory, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jae Woo Park
- Department of Biomedical Science, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; Appetite Regulation Laboratory, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Gil Myoung Kang
- Appetite Regulation Laboratory, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Chan Hee Lee
- Appetite Regulation Laboratory, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hong Dugu
- Department of Biomedical Science, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; Appetite Regulation Laboratory, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - So Young Gil
- Appetite Regulation Laboratory, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Do Kyeong Song
- Appetite Regulation Laboratory, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; Division of Endocrinology and Metabolism, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Hyo Jin Kim
- Department of Biomedical Science, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; Appetite Regulation Laboratory, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Gi Hoon Son
- Department of Biomedical Science, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Min-Seon Kim
- Department of Biomedical Science, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; Appetite Regulation Laboratory, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; Division of Endocrinology and Metabolism, Asan Medical Center, Seoul 05505, Republic of Korea.
| |
Collapse
|
5
|
Akintunde JK, Irondi AE, Ajani EO, Olayemi TV. Neuroprotective effect of dietary black seed flour on key enzymes linked with neuronal signaling molecules in rats exposed to mixture of environmental metals. J Food Biochem 2018. [DOI: 10.1111/jfbc.12573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- J. K. Akintunde
- Toxicology and Safety Unit, Faculty of Public Health, College of Medicine, Department of Environmental Health Sciences; University of Ibadan; Inadan Nigeria
- Department of Biochemistry, School of Basic Medical Sciences, College of Pure and Applied Sciences; Kwara State University; Malete P.M.B 1530 Nigeria
| | - A. E. Irondi
- Department of Biochemistry, School of Basic Medical Sciences, College of Pure and Applied Sciences; Kwara State University; Malete P.M.B 1530 Nigeria
| | - E. O. Ajani
- Department of Biochemistry, School of Basic Medical Sciences, College of Pure and Applied Sciences; Kwara State University; Malete P.M.B 1530 Nigeria
| | - T. V. Olayemi
- Chemistry Unit, Department of Chemical, Physical and Geological, College of Pure and Applied Sciences; Kwara State University; Malete P.M.B 1530 Nigeria
| |
Collapse
|
6
|
Abstract
Nicotinic acid and nicotinamide, collectively referred to as niacin, are nutritional precursors of the bioactive molecules nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP). NAD and NADP are important cofactors for most cellular redox reactions, and as such are essential to maintain cellular metabolism and respiration. NAD also serves as a cosubstrate for a large number of ADP-ribosylation enzymes with varied functions. Among the NAD-consuming enzymes identified to date are important genetic and epigenetic regulators, e.g., poly(ADP-ribose)polymerases and sirtuins. There is rapidly growing knowledge of the close connection between dietary niacin intake, NAD(P) availability, and the activity of NAD(P)-dependent epigenetic regulator enzymes. It points to an exciting role of dietary niacin intake as a central regulator of physiological processes, e.g., maintenance of genetic stability, and of epigenetic control mechanisms modulating metabolism and aging. Insight into the role of niacin and various NAD-related diseases ranging from cancer, aging, and metabolic diseases to cardiovascular problems has shifted our view of niacin as a vitamin to current views that explore its potential as a therapeutic.
Collapse
Affiliation(s)
- James B Kirkland
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
7
|
Vieira C, Ferreirinha F, Magalhães-Cardoso MT, Silva I, Marques P, Correia-de-Sá P. Post-inflammatory Ileitis Induces Non-neuronal Purinergic Signaling Adjustments of Cholinergic Neurotransmission in the Myenteric Plexus. Front Pharmacol 2017; 8:811. [PMID: 29167643 PMCID: PMC5682326 DOI: 10.3389/fphar.2017.00811] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022] Open
Abstract
Uncoupling between ATP overflow and extracellular adenosine formation changes purinergic signaling in post-inflammatory ileitis. Adenosine neuromodulation deficits were ascribed to feed-forward inhibition of ecto-5′-nucleotidase/CD73 by high extracellular adenine nucleotides in the inflamed ileum. Here, we hypothesized that inflammation-induced changes in cellular density may also account to unbalance the release of purines and their influence on [3H]acetylcholine release from longitudinal muscle-myenteric plexus preparations of the ileum of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-treated rats. The population of S100β-positive glial cells increase, whereas Ano-1-positive interstitial cells of Cajal (ICCs) diminished, in the ileum 7-days after the inflammatory insult. In the absence of changes in the density of VAChT-positive cholinergic nerves detected by immunofluorescence confocal microscopy, the inflamed myenteric plexus released smaller amounts of [3H]acetylcholine which also became less sensitive to neuronal blockade by tetrodotoxin (1 μM). Instead, [3H]acetylcholine release was attenuated by sodium fluoroacetate (5 mM), carbenoxolone (10 μM) and A438079 (3 μM), which prevent activation of glial cells, pannexin-1 hemichannels and P2X7 receptors, respectively. Sodium fluoroacetate also decreased ATP overflow without significantly affecting the extracellular adenosine levels, thus indicating that surplus ATP release parallels reactive gliosis in post-inflammatory ileitis. Conversely, loss of ICCs may explain the lower amounts of adenosine detected in TNBS-treated preparations, since blockade of Cav3 (T-type) channels existing in ICCs with mibefradil (3 μM) or inhibition of the equilibrative nucleoside transporter 1 with dipyridamole (0.5 μM), both decreased extracellular adenosine. Data indicate that post-inflammatory ileitis operates a shift on purinergic neuromodulation reflecting the upregulation of ATP-releasing enteric glial cells and the depletion of ICCs accounting for decreased adenosine overflow via equilibrative nucleoside transporters.
Collapse
Affiliation(s)
- Cátia Vieira
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria T Magalhães-Cardoso
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Isabel Silva
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Patrícia Marques
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
8
|
Pakhomov NV, Pustovit KB, Abramochkin DV, Kuz’min VS. The role of diadenosine pentaphosphate and nicotinamide adenine dinucleotide (NAD+) as potential nucleotide comediators in the adrenergic regulation of cardiac function. NEUROCHEM J+ 2017. [DOI: 10.1134/s1819712417010111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Kuzmin VS, Pustovit KB, Abramochkin DV. Effects of exogenous nicotinamide adenine dinucleotide (NAD+) in the rat heart are mediated by P2 purine receptors. J Biomed Sci 2016; 23:50. [PMID: 27350532 PMCID: PMC4924331 DOI: 10.1186/s12929-016-0267-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/17/2016] [Indexed: 12/13/2022] Open
Abstract
Background Recently, NAD+ has been considered as an essential factor, participating in nerve control of physiological functions and intercellular communication. NAD+ also has been supposed as endogenous activator of P1 and P2 purinoreceptors. Effects of extracellular NAD+ remain poorly investigated in cardiac tissue. This study aims to investigate the effects of extracellular NAD+ in different types of supraventricular and ventricular working myocardium from rat and their potential mechanisms. Methods The standard technique of sharp microelectrode action potential recording in cardiac multicellular preparations was used to study the effects of NAD+. Results Extracellular NAD+ induced significant changes in bioelectrical activity of left auricle (LA), right auricle (RA), pulmonary veins (PV) and right ventricular wall (RV) myocardial preparations. 10–100 μM NAD+ produced two opposite effects in LA and RA – quickly developing and transient prolongation of action potentials (AP) and delayed sustained AP shortening, which follows the initial positive effect. In PV and RV only AP shortening was observed in response to NAD+ application. In PV preparations AP shortening induced by NAD+ may be considered as a potential proarrhythmic effect. Revealed cardiotropic effects of NAD+ are likely to be mediated by P2 purine receptors, since P1 blocker DPCPX failed to affect them and P2 antagonist suramin abolished NAD + −induced alterations of electrical activity. P2X receptors may be responsible for NAD + −induced short-lasting AP prolongation, while P2Y receptors mediate persistent AP shortening. The latter effect is partially removed by PLC inhibitor U73122 showing the potential involvement of phosphoinositide signaling pathway in mediation of NAD+ cardiotropic effects. Conclusions Extracellular NAD+ is supposed to be a novel regulator of cardiac electrical activity. P2 receptors represent the main target of NAD+ at least in the rat heart.
Collapse
Affiliation(s)
- Vladislav S Kuzmin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskie gory 1, building 12, Moscow, 119991, Russia.,Department of Physiology, Pirogov Russian National Research Medical University, Ostrovitjanova 1, Moscow, 117997, Russia
| | - Ksenia B Pustovit
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskie gory 1, building 12, Moscow, 119991, Russia.,Department of Physiology, Pirogov Russian National Research Medical University, Ostrovitjanova 1, Moscow, 117997, Russia
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskie gory 1, building 12, Moscow, 119991, Russia. .,Department of Physiology, Pirogov Russian National Research Medical University, Ostrovitjanova 1, Moscow, 117997, Russia.
| |
Collapse
|
10
|
Wang GD, Wang XY, Liu S, Xia Y, Zou F, Qu M, Needleman BJ, Mikami DJ, Wood JD. β-Nicotinamide adenine dinucleotide acts at prejunctional adenosine A1 receptors to suppress inhibitory musculomotor neurotransmission in guinea pig colon and human jejunum. Am J Physiol Gastrointest Liver Physiol 2015; 308:G955-63. [PMID: 25813057 PMCID: PMC4451321 DOI: 10.1152/ajpgi.00430.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/18/2015] [Indexed: 01/31/2023]
Abstract
Intracellular microelectrodes were used to record neurogenic inhibitory junction potentials in the intestinal circular muscle coat. Electrical field stimulation was used to stimulate intramural neurons and evoke contraction of the smooth musculature. Exposure to β-nicotinamide adenine dinucleotide (β-NAD) did not alter smooth muscle membrane potential in guinea pig colon or human jejunum. ATP, ADP, β-NAD, and adenosine, as well as the purinergic P2Y1 receptor antagonists MRS 2179 and MRS 2500 and the adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine, each suppressed inhibitory junction potentials in guinea pig and human preparations. β-NAD suppressed contractile force of twitch-like contractions evoked by electrical field stimulation in guinea pig and human preparations. P2Y1 receptor antagonists did not reverse this action. Stimulation of adenosine A1 receptors with 2-chloro-N6-cyclopentyladenosine suppressed the force of twitch contractions evoked by electrical field stimulation in like manner to the action of β-NAD. Blockade of adenosine A1 receptors with 8-cyclopentyl-1,3-dipropylxanthine suppressed the inhibitory action of β-NAD on the force of electrically evoked contractions. The results do not support an inhibitory neurotransmitter role for β-NAD at intestinal neuromuscular junctions. The data suggest that β-NAD is a ligand for the adenosine A1 receptor subtype expressed by neurons in the enteric nervous system. The influence of β-NAD on intestinal motility emerges from adenosine A1 receptor-mediated suppression of neurotransmitter release at inhibitory neuromuscular junctions.
Collapse
Affiliation(s)
- Guo-Du Wang
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Xi-Yu Wang
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Sumei Liu
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Yun Xia
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio; ,2Department of Anesthesiology, College of Medicine, The Ohio State University, Columbus, Ohio; and
| | - Fei Zou
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Meihua Qu
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Bradley J. Needleman
- 3Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Dean J. Mikami
- 3Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Jackie D. Wood
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| |
Collapse
|
11
|
Mutafova-Yambolieva VN, Durnin L. The purinergic neurotransmitter revisited: a single substance or multiple players? Pharmacol Ther 2014; 144:162-91. [PMID: 24887688 PMCID: PMC4185222 DOI: 10.1016/j.pharmthera.2014.05.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 12/20/2022]
Abstract
The past half century has witnessed tremendous advances in our understanding of extracellular purinergic signaling pathways. Purinergic neurotransmission, in particular, has emerged as a key contributor in the efficient control mechanisms in the nervous system. The identity of the purine neurotransmitter, however, remains controversial. Identifying it is difficult because purines are present in all cell types, have a large variety of cell sources, and are released via numerous pathways. Moreover, studies on purinergic neurotransmission have relied heavily on indirect measurements of integrated postjunctional responses that do not provide direct information for neurotransmitter identity. This paper discusses experimental support for adenosine 5'-triphosphate (ATP) as a neurotransmitter and recent evidence for possible contribution of other purines, in addition to or instead of ATP, in chemical neurotransmission in the peripheral, enteric and central nervous systems. Sites of release and action of purines in model systems such as vas deferens, blood vessels, urinary bladder and chromaffin cells are discussed. This is preceded by a brief discussion of studies demonstrating storage of purines in synaptic vesicles. We examine recent evidence for cell type targets (e.g., smooth muscle cells, interstitial cells, neurons and glia) for purine neurotransmitters in different systems. This is followed by brief discussion of mechanisms of terminating the action of purine neurotransmitters, including extracellular nucleotide hydrolysis and possible salvage and reuptake in the cell. The significance of direct neurotransmitter release measurements is highlighted. Possibilities for involvement of multiple purines (e.g., ATP, ADP, NAD(+), ADP-ribose, adenosine, and diadenosine polyphosphates) in neurotransmission are considered throughout.
Collapse
Affiliation(s)
| | - Leonie Durnin
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, United States
| |
Collapse
|
12
|
Alefishat E, Alexander SPH, Ralevic V. Effects of NAD at purine receptors in isolated blood vessels. Purinergic Signal 2014; 11:47-57. [PMID: 25315718 DOI: 10.1007/s11302-014-9428-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/23/2014] [Indexed: 11/25/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) belongs to the family of naturally occurring adenine dinucleotides, best known for their various intracellular roles. However, there is evidence that they can also be released from cells to act as novel extracellular signalling molecules. Relatively little is known about the extracellular actions of NAD, especially in the cardiovascular system. The present study investigated the actions of NAD in the rat thoracic aorta, porcine coronary artery and porcine mesenteric arteries, mounted in organ baths for isometric tension recording. In the rat thoracic aorta and porcine coronary artery, NAD caused endothelium-independent concentration-dependent vasorelaxations which were unaffected by palmitoylCoA, a P2Y1 receptor antagonist, but which were blocked by CGS15943, a non-selective adenosine receptor antagonist. In the porcine coronary artery, NAD-evoked relaxations were abolished by SCH58261, a selective A2A receptor antagonist. In the rat thoracic aorta, NAD-evoked relaxations were attenuated by A2A receptor antagonism with SCH58261 but were unaffected by an A2B receptor antagonist, MRS1754. In contrast, in the porcine mesenteric artery, NAD-evoked endothelium-independent contractions, which were unaffected by a P2 receptor antagonist, suramin, or by NF449, a P2X1 receptor antagonist, but were attenuated following P2X receptor desensitisation with αβ-meATP. In conclusion, the present results show that NAD can alter vascular tone through actions at purine receptors in three different arteries from two species; its molecular targets differ according to the type of blood vessel.
Collapse
Affiliation(s)
- E Alefishat
- Department of Biopharmaceutics and Clinical Pharmacy Faculty of Pharmacy, University of Jordan, Amman, 11942, Jordan
| | | | | |
Collapse
|
13
|
Burnstock G. Purinergic signalling in the gastrointestinal tract and related organs in health and disease. Purinergic Signal 2014; 10:3-50. [PMID: 24307520 PMCID: PMC3944042 DOI: 10.1007/s11302-013-9397-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 01/04/2023] Open
Abstract
Purinergic signalling plays major roles in the physiology and pathophysiology of digestive organs. Adenosine 5'-triphosphate (ATP), together with nitric oxide and vasoactive intestinal peptide, is a cotransmitter in non-adrenergic, non-cholinergic inhibitory neuromuscular transmission. P2X and P2Y receptors are widely expressed in myenteric and submucous enteric plexuses and participate in sympathetic transmission and neuromodulation involved in enteric reflex activities, as well as influencing gastric and intestinal epithelial secretion and vascular activities. Involvement of purinergic signalling has been identified in a variety of diseases, including inflammatory bowel disease, ischaemia, diabetes and cancer. Purinergic mechanosensory transduction forms the basis of enteric nociception, where ATP released from mucosal epithelial cells by distension activates nociceptive subepithelial primary afferent sensory fibres expressing P2X3 receptors to send messages to the pain centres in the central nervous system via interneurons in the spinal cord. Purinergic signalling is also involved in salivary gland and bile duct secretion.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
14
|
Durnin L, Sanders KM, Mutafova-Yambolieva VN. Differential release of β-NAD(+) and ATP upon activation of enteric motor neurons in primate and murine colons. Neurogastroenterol Motil 2013; 25:e194-204. [PMID: 23279315 PMCID: PMC3578016 DOI: 10.1111/nmo.12069] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND The purinergic component of enteric inhibitory neurotransmission is important for normal motility in the gastrointestinal (GI) tract. Controversies exist about the purine(s) responsible for inhibitory responses in GI muscles: ATP has been assumed to be the purinergic neurotransmitter released from enteric inhibitory motor neurons; however, recent studies demonstrate that β-nicotinamide adenine dinucleotide (β-NAD(+)) and ADP-ribose mimic the inhibitory neurotransmitter better than ATP in primate and murine colons. The study was designed to clarify the sources of purines in colons of Cynomolgus monkeys and C57BL/6 mice. METHODS High-performance liquid chromatography with fluorescence detection was used to analyze purines released by stimulation of nicotinic acetylcholine receptors (nAChR) and serotonergic 5-HT(3) receptors (5-HT(3)R), known to be present on cell bodies and dendrites of neurons within the myenteric plexus. KEY RESULTS Nicotinic acetylcholine receptor or 5-HT(3)R agonists increased overflow of ATP and β-NAD(+) from tunica muscularis of monkey and murine colon. The agonists did not release purines from circular muscles of monkey colon lacking myenteric ganglia. Agonist-evoked overflow of β-NAD(+), but not ATP, was inhibited by tetrodotoxin (0.5 μmol L(-1)) or ω-conotoxin GVIA (50 nmol L(-1)), suggesting that β-NAD(+) release requires nerve action potentials and junctional mechanisms known to be critical for neurotransmission. ATP was likely released from nerve cell bodies in myenteric ganglia and not from nerve terminals of motor neurons. CONCLUSIONS & INFERENCES These results support the conclusion that ATP is not a motor neurotransmitter in the colon and are consistent with the hypothesis that β-NAD(+), or its metabolites, serve as the purinergic inhibitory neurotransmitter.
Collapse
Affiliation(s)
- L Durnin
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557-0575, USA
| | | | | |
Collapse
|
15
|
Goyal RK, Sullivan MP, Chaudhury A. Progress in understanding of inhibitory purinergic neuromuscular transmission in the gut. Neurogastroenterol Motil 2013; 25:203-7. [PMID: 23414428 PMCID: PMC8630810 DOI: 10.1111/nmo.12090] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 01/05/2013] [Indexed: 02/08/2023]
Abstract
Recent studies with genetic deletion of P2Y1 receptor (P2Y1-/-) have clinched its role in enteric purinergic inhibitory neurotransmission and suggested that β-NAD may be the purinergic inhibitory neurotransmitter in the colon. In this issue of the Journal, Gil and colleagues extend their earlier observations to the cecum and gastric antrum, showing that P2Y1 receptor mediated purinergic inhibition may be a general phenomenon in the gut. However, the authors made an unexpected observation in contrast with their earlier findings in the colon that neither the selective P2Y1 receptor antagonist MRS2500, nor P2Y1 receptor deletion, blocked the hyperpolarizing action of β-NAD in the cecum. These observations suggest that β-NAD may be the purinergic inhibitory neurotransmitter in the colon, but not in the cecum. This group had previously reported that the selective P2Y1 receptor antagonist MRS 2179 suppressed the hyperpolarizing action of ATP or ADP. Further studies are now needed to determine whether the hyperpolarizing actions of ATP and ADP are suppressed by the more potent P2Y1 antagonist MRS2500, and in P2Y1-/- mutants to test the intriguing possibility that different purines serve as purinergic inhibitory neurotransmitters in the colon and cecum and perhaps in different parts of the gut. Studies in P2Y1-/- mice will resolve other issues in purinergic neurotransmission including cellular localization of the β-NAD or ATP-activated P2Y1 receptors on either smooth muscle cells or PDGFRα+ fibroblast-like cells, relationship of purinergic to nitrergic neurotransmission and understanding the physiological and clinical importance of purinergic transmission in gastrointestinal motility and its disorders.
Collapse
Affiliation(s)
- R. K. Goyal
- VA Boston HealthCare System and Harvard Medical School; Boston; MA; USA
| | - M. P. Sullivan
- VA Boston HealthCare System and Harvard Medical School; Boston; MA; USA
| | - Arun Chaudhury
- VA Boston HealthCare System and Harvard Medical School; Boston; MA; USA
| |
Collapse
|