1
|
Falkovich R, Aryal S, Wang J, Sheng M, Bathe M. Synaptic composition, activity, mRNA translation and dynamics in combined single-synapse profiling using multimodal imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620504. [PMID: 39554017 PMCID: PMC11565908 DOI: 10.1101/2024.10.28.620504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The function of neuronal circuits, and its perturbation by psychoactive molecules or disease-associated genetic variants, is governed by the interplay between synapse activity and synaptic protein localization and synthesis across a heterogeneous synapse population. Here, we combine in situ measurement of synaptic multiprotein compositions and activation states, synapse activity in calcium traces or glutamate spiking, and local translation of specific genes, across the same individual synapses. We demonstrate how this high-dimensional data enables identification of interdependencies in the multiprotein-activity network, and causal dissection of complex synaptic phenotypes in disease-relevant chemical and genetic NMDAR loss of function that translate in vivo . We show how this method generalizes to other subcellular systems by deriving mitochondrial protein networks, and, using support vector machines, its value in overcoming animal variability in phenotyping. Integrating multiple synapse information modalities enables deep structure-function characterization of synapse populations and their responses to genetic and chemical perturbations.
Collapse
|
2
|
Ren J, Xiang B, Xueling L, Han X, Yang Z, Zhang M, Zhang Y. Molecular mechanisms of mitochondrial homeostasis regulation in neurons and possible therapeutic approaches for Alzheimer's disease. Heliyon 2024; 10:e36470. [PMID: 39281517 PMCID: PMC11401100 DOI: 10.1016/j.heliyon.2024.e36470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Alzheimer's disease (AD) is a neurological disease with memory loss and cognitive decline, which affects a large proportion of the aging population. Regrettably, there are no drug to reverse or cure AD and drug development for the primary theory of amyloid beta deposition has mostly failed. Therefore, there is an urgent need to investigate novel strategies for preventing AD. Recent studies demonstrate that imbalance of mitochondrial homeostasis is a driver in Aβ accumulation, which can lead to the occurrence and deterioration of cognitive impairment in AD patients. This suggests that regulating neuronal mitochondrial homeostasis may be a new strategy for AD. We summarize the importance of mitochondrial homeostasis in AD neuron and its regulatory mechanisms in this review. In addition, we summarize the results of studies indicating mitochondrial dysfunction in AD subjects, including impaired mitochondrial energy production, oxidative stress, imbalance of mitochondrial protein homeostasis, imbalance of fusion and fission, imbalance of neuronal mitochondrial biogenesis and autophagy, and altered mitochondrial motility, in hope of providing possible therapeutic approaches for AD.
Collapse
Affiliation(s)
- Jiale Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Beibei Xiang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Xueling
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaolu Han
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhen Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mixia Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanjun Zhang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Duangjan C, Irwin RW, Curran SP. Loss of WDR23 proteostasis impacts mitochondrial homeostasis in the mouse brain. Cell Signal 2024; 116:111061. [PMID: 38242270 PMCID: PMC10922948 DOI: 10.1016/j.cellsig.2024.111061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Mitochondrial adaptation is important for stress resistance throughout life. Here we show that WDR23 loss results in an enrichment for genes regulated by nuclear respiratory factor 1 (NRF1), which coordinates mitochondrial biogenesis and respiratory functions, and an increased steady state level of several nuclear coded mitochondrial resident proteins in the brain. Wdr23KO also increases the endogenous levels of insulin degrading enzyme (IDE) and the relaxin-3 peptide (RLN3), both of which have established roles in mediating mitochondrial metabolic and oxidative stress responses. Taken together, these studies reveal an important role for WDR23 as a component of the mitochondrial homeostat in the murine brain.
Collapse
Affiliation(s)
- Chatrawee Duangjan
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave., Los Angeles, CA 90089. USA
| | - Ronald W Irwin
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave., Los Angeles, CA 90089. USA
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave., Los Angeles, CA 90089. USA.
| |
Collapse
|
4
|
Wang W, Gong Z, Wang Y, Zhao Y, Lu Y, Sun R, Zhang H, Shang J, Zhang J. Mutant NOTCH3ECD Triggers Defects in Mitochondrial Function and Mitophagy in CADASIL Cell Models. J Alzheimers Dis 2024; 100:1299-1314. [PMID: 39031358 DOI: 10.3233/jad-240273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Background Cerebral autosomal-dominant arteriopathy with subcortical infarction and leukoencephalopathy (CADASIL) is an inherited small-vessel disease that affects the white matter of the brain. Recent studies have confirmed that the deposition of NOTCH3ECD is the main pathological basis of CADASIL; however, whether different mutations present the same pathological characteristics remains to be further studied. Some studies have found that mitochondrial dysfunction is related to CADASIL; however, the specific effects of NOTCH3ECD on mitochondrial remain to be determined. Objective We aimed to explore the role of mitochondrial dysfunction in CADASIL. Methods We established transgenic human embryonic kidney-293T cell models (involving alterations in cysteine and non-cysteine residues) via lentiviral transfection. Mitochondrial function and structure were assessed using flow cytometry and transmission electron microscopy, respectively. Mitophagy was assessed using western blotting and immunofluorescence. Results We demonstrated that NOTCH3ECD deposition affects mitochondrial morphology and function, and that its protein levels are significantly correlated with mitochondrial quality and can directly bind to mitochondria. Moreover, NOTCH3ECD deposition promoted the induction of autophagy and mitophagy. However, these processes were impaired, leading to abnormal mitochondrial accumulation. Conclusions This study revealed a common pathological feature of NOTCH3ECD deposition caused by different NOTCH3 mutations and provided new insights into the role of NOTCH3ECD in mitochondrial dysfunction and mitophagy.
Collapse
Affiliation(s)
- Wan Wang
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Zhenping Gong
- Department of Neurology, Xinxiang medical university, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yadan Wang
- Department of Neurology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Ying Zhao
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yaru Lu
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Ruihua Sun
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Haohan Zhang
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Junkui Shang
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Jiewen Zhang
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Shang Y, Li Z, Cai P, Li W, Xu Y, Zhao Y, Xia S, Shao Q, Wang H. Megamitochondria plasticity: function transition from adaption to disease. Mitochondrion 2023:S1567-7249(23)00053-3. [PMID: 37276954 DOI: 10.1016/j.mito.2023.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/08/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
As the cell's energy factory and metabolic hub, mitochondria are critical for ATP synthesis to maintain cellular function. Mitochondria are highly dynamic organelles that continuously undergo fusion and fission to alter their size, shape, and position, with mitochondrial fusion and fission being interdependent to maintain the balance of mitochondrial morphological changes. However, in response to metabolic and functional damage, mitochondria can grow in size, resulting in a form of abnormal mitochondrial morphology known as megamitochondria. Megamitochondria are characterized by their considerably larger size, pale matrix, and marginal cristae structure and have been observed in various human diseases. In energy-intensive cells like hepatocytes or cardiomyocytes, the pathological process can lead to the growth of megamitochondria, which can further cause metabolic disorders, cell damage and aggravates the progression of the disease. Nonetheless, megamitochondria can also form in response to short-term environmental stimulation as a compensatory mechanism to support cell survival. However, extended stimulation can reverse the benefits of megamitochondria leading to adverse effects. In this review, we will focus on the findings of the different roles of megamitochondria, and their link to disease development to identify promising clinical therapeutic targets.
Collapse
Affiliation(s)
- Yuxing Shang
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Zhanghui Li
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Peiyang Cai
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Wuhao Li
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Ye Xu
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Yangjing Zhao
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Sheng Xia
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Qixiang Shao
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai'an 223002, Jiangsu, PR China.
| | - Hui Wang
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| |
Collapse
|
6
|
Wedam R, Greer YE, Wisniewski DJ, Weltz S, Kundu M, Voeller D, Lipkowitz S. Targeting Mitochondria with ClpP Agonists as a Novel Therapeutic Opportunity in Breast Cancer. Cancers (Basel) 2023; 15:cancers15071936. [PMID: 37046596 PMCID: PMC10093243 DOI: 10.3390/cancers15071936] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Breast cancer is the most frequently diagnosed malignancy worldwide and the leading cause of cancer mortality in women. Despite the recent development of new therapeutics including targeted therapies and immunotherapy, triple-negative breast cancer remains an aggressive form of breast cancer, and thus improved treatments are needed. In recent decades, it has become increasingly clear that breast cancers harbor metabolic plasticity that is controlled by mitochondria. A myriad of studies provide evidence that mitochondria are essential to breast cancer progression. Mitochondria in breast cancers are widely reprogrammed to enhance energy production and biosynthesis of macromolecules required for tumor growth. In this review, we will discuss the current understanding of mitochondrial roles in breast cancers and elucidate why mitochondria are a rational therapeutic target. We will then outline the status of the use of mitochondria-targeting drugs in breast cancers, and highlight ClpP agonists as emerging mitochondria-targeting drugs with a unique mechanism of action. We also illustrate possible drug combination strategies and challenges in the future breast cancer clinic.
Collapse
Affiliation(s)
- Rohan Wedam
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoshimi Endo Greer
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David J Wisniewski
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah Weltz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manjari Kundu
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Donna Voeller
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Meseguer S, Rubio MP. mt tRFs, New Players in MELAS Disease. Front Physiol 2022; 13:800171. [PMID: 35273517 PMCID: PMC8902416 DOI: 10.3389/fphys.2022.800171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/20/2022] [Indexed: 12/22/2022] Open
Abstract
MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) is an OXPHOS disease mostly caused by the m.3243A>G mutation in the mitochondrial tRNALeu(UUR) gene. Recently, we have shown that the mutation significantly changes the expression pattern of several mitochondrial tRNA-derived small RNAs (mt tsRNAs or mt tRFs) in a cybrid model of MELAS and in fibroblasts from MELAS patients versus control cells. Among them are those derived from mt tRNA LeuUUR containing or not the m.3243A>G mutation (mt 5′-tRF LeuUUR-m.3243A>G and mt 5′-tRF LeuUUR), whose expression levels are, respectively, increased and decreased in both MELAS cybrids and fibroblasts. Here, we asked whether mt 5′-tRF LeuUUR and mt 5′-tRF LeuUUR-m.3243A>G are biologically relevant and whether these mt tRFs are detected in diverse patient samples. Treatment with a mimic oligonucleotide of mt tRNA LeuUUR fragment (mt 5′-tRF LeuUUR) showed a therapeutic potential since it partially restored mitochondrial respiration in MELAS cybrids. Moreover, these mt tRFs could be detected in biofluids like urine and blood. We also investigated the participation of miRNA pathway components Dicer and Ago2 in the mt tRFs biogenesis process. We found that Dicer and Ago2 localize in the mitochondria of MELAS cybrids and that immunoprecipitation of these proteins in cytoplasm and mitochondria fractions revealed an increased mt tRF/mt tRNA ratio in MELAS condition compared to WT. These preliminary results suggest an involvement of Dicer and Ago2 in the mechanism of mt tRF biogenesis and action.
Collapse
Affiliation(s)
- Salvador Meseguer
- Molecular and Cellular Immunology Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Mari-Paz Rubio
- Molecular and Cellular Immunology Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| |
Collapse
|
8
|
Yang Y, Pan L, Zhou Y, Xu R, Miao J, Gao Z, Li D. Damages to biological macromolecules in gonadal subcellular fractions of scallop Chlamys farreri following benzo[a]pyrene exposure: Contribution to inhibiting gonadal development and reducing fertility. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117084. [PMID: 33848904 DOI: 10.1016/j.envpol.2021.117084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/28/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Benzo[a]pyrene (B[a]P), a representative polycyclic aromatic hydrocarbon (PAH) compound in marine ecosystem, has great potential for chronic toxicity to marine animals. It is becoming increasingly apparent that reproductive system is the major target of B[a]P, but the adverse effects of B[a]P on subcellular fractions in bivalve gonads have not been elucidated. Scallops Chlamys farreri are used as the experimental species since they are sensitive to environmental pollutants. This study was conducted to investigate how B[a]P affected the gonadal subcellular fractions, including plasma membrane, nucleus, mitochondria and microsome in scallops, and whether subcellular damages were related to reproductive toxicity. The results showed that mature gametes' counts were significantly decreased in B[a]P-treated scallops. Three biological macromolecules (viz., DNA, lipids and proteins) in gonadal subcellular fractions obtained by differential centrifugation suffered damages, including DNA damage, lipid peroxidation and protein carbonylation in B[a]P treatment groups. Interestingly, mitochondria and microsome were more vulnerable to lipid peroxidation and protein carbonylation than plasma membrane and nucleus, meanwhile males were more susceptible to DNA damage than females under B[a]P exposure. In addition, histological analysis showed that B[a]P delayed gonadal development in C. farreri. To summarize, our results indicated that B[a]P caused damages to biological macromolecules in gonadal subcellular fractions and then induced damages to gonadal tissues of C. farreri, which further inhibited gonadal development and ultimately leaded to reduction in fertility. This study firstly reports the impacts of PAHs on subcellular fractions in bivalves and their relationship with reproductive toxicity. Moreover, exposure of reproductive scallops to B[a]P leads to defects in reproduction, raising concerns on the possible long-term consequences of PAHs for natural populations of bivalves.
Collapse
Affiliation(s)
- Yingying Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Zhongyuan Gao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Dongyu Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
9
|
Abstract
Monocytes play an important role in the host defense against Plasmodium vivax as the main source of inflammatory cytokines and mitochondrial reactive oxygen species (mROS). Here, we show that monocyte metabolism is altered during human P. vivax malaria, with mitochondria playing a major function in this switch. The process involves a reprograming in which the cells increase glucose uptake and produce ATP via glycolysis instead of oxidative phosphorylation. P. vivax infection results in dysregulated mitochondrial gene expression and in altered membrane potential leading to mROS increase rather than ATP production. When monocytes were incubated with P. vivax-infected reticulocytes, mitochondria colocalized with phagolysosomes containing parasites representing an important source mROS. Importantly, the mitochondrial enzyme superoxide dismutase 2 (SOD2) is simultaneously induced in monocytes from malaria patients. Taken together, the monocyte metabolic reprograming with an increased mROS production may contribute to protective responses against P. vivax while triggering immunomodulatory mechanisms to circumvent tissue damage. IMPORTANCE Plasmodium vivax is the most widely distributed causative agent of human malaria. To achieve parasite control, the human immune system develops a substantial inflammatory response that is also responsible for the symptoms of the disease. Among the cells involved in this response, monocytes play an important role. Here, we show that monocyte metabolism is altered during malaria, with its mitochondria playing a major function in this switch. This change involves a reprograming process in which the cells increase glucose uptake and produce ATP via glycolysis instead of oxidative phosphorylation. The resulting altered mitochondrial membrane potential leads to an increase in mitochondrial reactive oxygen species rather than ATP. These data suggest that agents that change metabolism should be investigated and used with caution during malaria.
Collapse
|
10
|
Meseguer S. MicroRNAs and tRNA-Derived Small Fragments: Key Messengers in Nuclear-Mitochondrial Communication. Front Mol Biosci 2021; 8:643575. [PMID: 34026824 PMCID: PMC8138316 DOI: 10.3389/fmolb.2021.643575] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are not only important as energy suppliers in cells but also participate in other biological processes essential for cell growth and survival. They arose from α-proteobacterial predecessors through endosymbiosis and evolved transferring a large part of their genome to the host cell nucleus. Such a symbiotic relationship has been reinforced over time through increasingly complex signaling mechanisms between the host cell and mitochondria. So far, we do not have a complete view of the mechanisms that allow the mitochondria to communicate their functional status to the nucleus and trigger adaptive and compensatory responses. Recent findings place two classes of small non-coding RNAs (sncRNAs), microRNAs (miRNAs), and tRNA-derived small fragments, in such a scenario, acting as key pieces in the mitochondria-nucleus cross-talk. This review highlights the emerging roles and the interrelation of these sncRNAs in different signaling pathways between mitochondria and the host cell. Moreover, we describe in what way alterations of these complex regulatory mechanisms involving sncRNAs lead to diseases associated with mitochondrial dysfunction. In turn, these discoveries provide novel prognostic biomarker candidates and/or potential therapeutic targets.
Collapse
Affiliation(s)
- Salvador Meseguer
- Molecular and Cellular Immunology Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| |
Collapse
|
11
|
Chen Z, Huang L, Tso A, Wang S, Fang X, Ouyang K, Han Z. Mitochondrial Chaperones and Proteases in Cardiomyocytes and Heart Failure. Front Mol Biosci 2021; 8:630332. [PMID: 33937324 PMCID: PMC8082175 DOI: 10.3389/fmolb.2021.630332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Heart failure is one of the leading causes of morbidity and mortality worldwide. In cardiomyocytes, mitochondria are not only essential organelles providing more than 90% of the ATP necessary for contraction, but they also play critical roles in regulating intracellular Ca2+ signaling, lipid metabolism, production of reactive oxygen species (ROS), and apoptosis. Because mitochondrial DNA only encodes 13 proteins, most mitochondrial proteins are nuclear DNA-encoded, synthesized, and transported from the cytoplasm, refolded in the matrix to function alone or as a part of a complex, and degraded if damaged or incorrectly folded. Mitochondria possess a set of endogenous chaperones and proteases to maintain mitochondrial protein homeostasis. Perturbation of mitochondrial protein homeostasis usually precedes disruption of the whole mitochondrial quality control system and is recognized as one of the hallmarks of cardiomyocyte dysfunction and death. In this review, we focus on mitochondrial chaperones and proteases and summarize recent advances in understanding how these proteins are involved in the initiation and progression of heart failure.
Collapse
Affiliation(s)
- Zee Chen
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China.,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Alexandria Tso
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Shijia Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xi Fang
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China.,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Zhen Han
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
12
|
Meseguer S, Navarro-González C, Panadero J, Villarroya M, Boutoual R, Sánchez-Alcázar JA, Armengod ME. The MELAS mutation m.3243A>G alters the expression of mitochondrial tRNA fragments. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1433-1449. [PMID: 31195049 DOI: 10.1016/j.bbamcr.2019.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 04/26/2019] [Accepted: 06/07/2019] [Indexed: 12/20/2022]
Abstract
Recent evidences highlight the importance of mitochondria-nucleus communication for the clinical phenotype of oxidative phosphorylation (OXPHOS) diseases. However, the participation of small non-coding RNAs (sncRNAs) in this communication has been poorly explored. We asked whether OXPHOS dysfunction alters the production of a new class of sncRNAs, mitochondrial tRNA fragments (mt tRFs), and, if so, whether mt tRFs play a physiological role and their accumulation is controlled by the action of mt tRNA modification enzymes. To address these questions, we used a cybrid model of MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes), an OXPHOS disease mostly caused by mutation m.3243A>G in the mitochondrial tRNALeu(UUR) gene. High-throughput analysis of small-RNA-Seq data indicated that m.3243A>G significantly changed the expression pattern of mt tRFs. A functional analysis of potential mt tRFs targets (performed under the assumption that these tRFs act as miRNAs) indicated an association with processes that involve the most common affected tissues in MELAS. We present evidences that mt tRFs may be biologically relevant, as one of them (mt i-tRF GluUUC), likely produced by the action of the nuclease Dicer and whose levels are Ago2 dependent, down-regulates the expression of mitochondrial pyruvate carrier 1 (MPC1), promoting the build-up of extracellular lactate. Therefore, our study underpins the idea that retrograde signaling from mitochondria is also mediated by mt tRFs. Finally, we show that accumulation of mt i-tRF GluUUC depends on the modification status of mt tRNAs, which is regulated by the action of stress-responsive miRNAs on mt tRNA modification enzymes.
Collapse
Affiliation(s)
- Salvador Meseguer
- RNA Modification and Mitochondrial Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Carrer d'Eduardo Primo Yúfera 3, Valencia 46012, Spain.
| | - Carmen Navarro-González
- RNA Modification and Mitochondrial Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Carrer d'Eduardo Primo Yúfera 3, Valencia 46012, Spain.
| | - Joaquin Panadero
- Unidad de Genómica, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A 7ª planta, Valencia 46026, Spain.
| | - Magda Villarroya
- RNA Modification and Mitochondrial Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Carrer d'Eduardo Primo Yúfera 3, Valencia 46012, Spain.
| | - Rachid Boutoual
- RNA Modification and Mitochondrial Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Carrer d'Eduardo Primo Yúfera 3, Valencia 46012, Spain.
| | - Jose Antonio Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain.
| | - M-Eugenia Armengod
- RNA Modification and Mitochondrial Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Carrer d'Eduardo Primo Yúfera 3, Valencia 46012, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) node 721, Madrid 28029, Spain.
| |
Collapse
|
13
|
Imai J, Otani M, Sakai T, Hatta S. Purification of the Membrane Compartment for Endoplasmic Reticulum-associated Degradation of Exogenous Antigens in Cross-presentation. J Vis Exp 2017:55949. [PMID: 28872140 PMCID: PMC5614360 DOI: 10.3791/55949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Dendritic cells (DCs) are highly capable of processing and presenting internalized exogenous antigens upon major histocompatibility class (MHC) I molecules also known as cross-presentation (CP). CP plays an important role not only in the stimulation of naïve CD8+ T cells and memory CD8+ T cells for infectious and tumor immunity but also in the inactivation of self-acting naïve T cells by T cell anergy or T cell deletion. Although the critical molecular mechanism of CP remains to be elucidated, accumulating evidence indicates that exogenous antigens are processed through endoplasmic reticulum-associated degradation (ERAD) after export from non-classical endocytic compartments. Until recently, characterizations of these endocytic compartments were limited because there were no specific molecular markers other than exogenous antigens. The method described here is a new vesicle isolation protocol, which allows for the purification of these endocytic compartments. Using this purified microsome, we reconstituted the ERAD-like transport, ubiquitination, and processing of the exogenous antigen in vitro, suggesting that the ubiquitin-proteasome system processed the exogenous antigen after export from this cellular compartment. This protocol can be further applied to other cell types to clarify the molecular mechanism of CP.
Collapse
Affiliation(s)
- Jun Imai
- Laboratory of Physiological Chemistry, Faculty of Pharmacy, Takasaki University of Health and Welfare;
| | - Mayu Otani
- Laboratory of Physiological Chemistry, Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Takahiro Sakai
- Laboratory of Physiological Chemistry, Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Shinichi Hatta
- Laboratory of Physiological Chemistry, Faculty of Pharmacy, Takasaki University of Health and Welfare
| |
Collapse
|
14
|
Chen YG, Yue HT, Zhang ZZ, Yuan FH, Bi HT, Yuan K, Weng SP, He JG, Chen YH. Identification and characterization of a mitochondrial unfolded protein response transcription factor ATFS-1 in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2016; 54:144-152. [PMID: 26481519 DOI: 10.1016/j.fsi.2015.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/11/2015] [Accepted: 10/12/2015] [Indexed: 06/05/2023]
Abstract
A mitochondrial specific stress response termed mitochondrial unfolded protein response (UPR(mt)) is activated in responding to disturbance of protein homeostasis in mitochondria. The activating transcription factor associated with stress-1 (designated as ATFS-1) is the key regulator of UPR(mt). To investigating the roles of ATFS-1 (LvATFS-1) in Litopenaeus vannamei mitochondrial stress remission and immunity, it's full length cDNA was cloned. The open reading frame of LvATFS-1 was 1, 557 bp in length, deducing to a 268 amino acids protein. LvATFS-1 was highly expressed in muscle, hemocytes and eyestalk. Subcellular location assays showed that N-terminal of LvATFS-1 contained a mitochondrial targeting sequence, which could directed the fused EGFP located to mitochondria. And the C-terminal of LvATFS-1, which had a nuclear localization signal, expressed in nucleus. The in vitro experiments verified that LvATFS-1 could reduced the level of intracellular reactive oxygen species (ROS). And results of real-time RT-PCR indicated that LvATFS-1 might scavenge excess ROS via ROS-eliminating genes regulation. Reporter gene assays showed that LvATFS-1 could upregulated the expression of the antimicrobial peptide genes in Drosophila Schneider 2 cells. Results of real-time RT-PCR showed that Vibrio alginolyticus or white spot syndrome virus (WSSV) infection induced the expression of LvATFS-1. And knocked-down LvATFS-1 by RNAi resulted in a higher cumulative mortality of L. vannamei upon V. alginolyticus or WSSV infection. These results suggested that LvATFS-1 not only rolled in mitochondrial specific stress responding, but also important for L. vannamei immunologic defence.
Collapse
Affiliation(s)
- Yong-Gui Chen
- Key Laboratory of Marine Resources and Coastal Engineering in Guangdong Province, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Hai-Tao Yue
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Ze-Zhi Zhang
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Feng-Hua Yuan
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Hai-Tao Bi
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Kai Yuan
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Shao-Ping Weng
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Jian-Guo He
- Key Laboratory of Marine Resources and Coastal Engineering in Guangdong Province, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Yi-Hong Chen
- Key Laboratory of Marine Resources and Coastal Engineering in Guangdong Province, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China.
| |
Collapse
|
15
|
Wojtkowska M, Buczek D, Stobienia O, Karachitos A, Antoniewicz M, Slocinska M, Makałowski W, Kmita H. The TOM Complex of Amoebozoans: the Cases of the Amoeba Acanthamoeba castellanii and the Slime Mold Dictyostelium discoideum. Protist 2015; 166:349-62. [PMID: 26074248 DOI: 10.1016/j.protis.2015.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 05/10/2015] [Accepted: 05/14/2015] [Indexed: 11/29/2022]
Abstract
Protein import into mitochondria requires a wide variety of proteins, forming complexes in both mitochondrial membranes. The TOM complex (translocase of the outer membrane) is responsible for decoding of targeting signals, translocation of imported proteins across or into the outer membrane, and their subsequent sorting. Thus the TOM complex is regarded as the main gate into mitochondria for imported proteins. Available data indicate that mitochondria of representative organisms from across the major phylogenetic lineages of eukaryotes differ in subunit organization of the TOM complex. The subunit organization of the TOM complex in the Amoebozoa is still elusive, so we decided to investigate its organization in the soil amoeba Acanthamoeba castellanii and the slime mold Dictyostelium discoideum. They represent two major subclades of the Amoebozoa: the Lobosa and Conosa, respectively. Our results confirm the presence of Tom70, Tom40 and Tom7 in the A. castellanii and D. discoideum TOM complex, while the presence of Tom22 and Tom20 is less supported. Interestingly, the Tom proteins display the highest similarity to Opisthokonta cognate proteins, with the exception of Tom40. Thus representatives of two major subclades of the Amoebozoa appear to be similar in organization of the TOM complex, despite differences in their lifestyle.
Collapse
Affiliation(s)
- Małgorzata Wojtkowska
- Adam Mickiewicz University, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Department of Bioenergetics, Poznań, Poland.
| | - Dorota Buczek
- Adam Mickiewicz University, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Department of Bioenergetics, Poznań, Poland; University of Muenster, Faculty of Medicine Institute of Bioinformatics, Muenster, Germany
| | - Olgierd Stobienia
- Adam Mickiewicz University, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Department of Bioenergetics, Poznań, Poland
| | - Andonis Karachitos
- Adam Mickiewicz University, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Department of Bioenergetics, Poznań, Poland
| | - Monika Antoniewicz
- Adam Mickiewicz University, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Department of Bioenergetics, Poznań, Poland
| | - Małgorzata Slocinska
- Adam Mickiewicz University, Faculty of Biology, Institute of Experimental Biology, Department of Animal Physiology and Development, Poznań, Poland
| | - Wojciech Makałowski
- University of Muenster, Faculty of Medicine Institute of Bioinformatics, Muenster, Germany
| | - Hanna Kmita
- Adam Mickiewicz University, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Department of Bioenergetics, Poznań, Poland
| |
Collapse
|
16
|
Baldin C, Valiante V, Krüger T, Schafferer L, Haas H, Kniemeyer O, Brakhage AA. Comparative proteomics of a tor inducible Aspergillus fumigatus mutant reveals involvement of the Tor kinase in iron regulation. Proteomics 2015; 15:2230-43. [PMID: 25728394 DOI: 10.1002/pmic.201400584] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/27/2015] [Accepted: 02/24/2015] [Indexed: 01/20/2023]
Abstract
The Tor (target of rapamycin) kinase is one of the major regulatory nodes in eukaryotes. Here, we analyzed the Tor kinase in Aspergillus fumigatus, which is the most important airborne fungal pathogen of humans. Because deletion of the single tor gene was apparently lethal, we generated a conditional lethal tor mutant by replacing the endogenous tor gene by the inducible xylp-tor gene cassette. By both 2DE and gel-free LC-MS/MS, we found that Tor controls a variety of proteins involved in nutrient sensing, stress response, cell cycle progression, protein biosynthesis and degradation, but also processes in mitochondria, such as respiration and ornithine metabolism, which is required for siderophore formation. qRT-PCR analyses indicated that mRNA levels of ornithine biosynthesis genes were increased under iron limitation. When tor was repressed, iron regulation was lost. In a deletion mutant of the iron regulator HapX also carrying the xylp-tor cassette, the regulation upon iron deprivation was similar to that of the single tor inducible mutant strain. In line, hapX expression was significantly reduced when tor was repressed. Thus, Tor acts either upstream of HapX or independently of HapX as a repressor of the ornithine biosynthesis genes and thereby regulates the production of siderophores.
Collapse
Affiliation(s)
- Clara Baldin
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany.,Institute for Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Vito Valiante
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Lukas Schafferer
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Austria
| | - Hubertus Haas
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Austria
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany.,Institute for Microbiology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
17
|
Mitochondria in health, aging and diseases: the epigenetic perspective. Biogerontology 2015; 16:569-85. [DOI: 10.1007/s10522-015-9562-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 02/19/2015] [Indexed: 01/15/2023]
|
18
|
Baker MJ, Palmer CS, Stojanovski D. Mitochondrial protein quality control in health and disease. Br J Pharmacol 2014; 171:1870-89. [PMID: 24117041 DOI: 10.1111/bph.12430] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/28/2013] [Accepted: 09/01/2013] [Indexed: 12/13/2022] Open
Abstract
Progressive mitochondrial dysfunction is linked with the onset of many age-related pathologies and neurological disorders. Mitochondrial damage can come in many forms and be induced by a variety of cellular insults. To preserve organelle function during biogenesis or times of stress, multiple surveillance systems work to ensure the persistence of a functional mitochondrial network. This review provides an overview of these processes, which collectively contribute to the maintenance of a healthy mitochondrial population, which is critical for cell physiology and survival.
Collapse
Affiliation(s)
- Michael J Baker
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia; ARC Centre of Excellence for Coherent X-ray Science, Melbourne, VIC, Australia
| | | | | |
Collapse
|