1
|
Esmaeilzadeh A, Mohammadi V, Elahi R, Rezakhani N. The role of heat shock proteins (HSPs) in type 2 diabetes mellitus pathophysiology. J Diabetes Complications 2023; 37:108564. [PMID: 37852076 DOI: 10.1016/j.jdiacomp.2023.108564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 10/20/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by sustained hyperglycemia caused by impaired insulin signaling and secretion. Metabolic stress, caused by an inappropriate diet, is one of the major hallmarks provoking inflammation, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction. Heat shock proteins (HSPs) are a group of highly conserved proteins that have a crucial role in chaperoning damaged and misfolded proteins to avoid disruption of cellular homeostasis under stress conditions. To do this, HSPs interact with diverse intra-and extracellular pathways among which are the insulin signaling, insulin secretion, and apoptosis pathways. Therefore, HSP dysfunction, e.g. HSP70, may lead to disruption of the pathways responsible for insulin secretion and uptake. Consistently, the altered expression of other HSPs and genetic polymorphisms in HSP-producing genes in diabetic subjects has made HSPs hot research in T2DM. This paper provides a comprehensive overview of the role of different HSPs in T2DM pathogenesis, affected cellular pathways, and the potential therapeutic strategies targeting HSPs in T2DM.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Vahid Mohammadi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Negin Rezakhani
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
2
|
Heat shock proteins in adaptation to physical activity. UKRAINIAN BIOCHEMICAL JOURNAL 2022. [DOI: 10.15407/ubj94.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The review article presents the author’s model of one of the blocks of the integrated adaptation mechanism to physical activity and the accompanying moderate heat effects. The participation of heat shock proteins in the stabilization of the tertiary structure and in the restoration of the function of proteins damaged by temperature and physical stressors but performing catalytic, transport, reception or protective role and being involved in the processes of contraction- relaxation and muscle and bone tissue remodeling is discussed.
Collapse
|
3
|
Alpha B-Crystallin in Muscle Disease Prevention: The Role of Physical Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031147. [PMID: 35164412 PMCID: PMC8840510 DOI: 10.3390/molecules27031147] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022]
Abstract
HSPB5 or alpha B-crystallin (CRYAB), originally identified as lens protein, is one of the most widespread and represented of the human small heat shock proteins (sHSPs). It is greatly expressed in tissue with high rates of oxidative metabolism, such as skeletal and cardiac muscles, where HSPB5 dysfunction is associated with a plethora of human diseases. Since HSPB5 has a major role in protecting muscle tissues from the alterations of protein stability (i.e., microfilaments, microtubules, and intermediate filament components), it is not surprising that this sHSP is specifically modulated by exercise. Considering the robust content and the protective function of HSPB5 in striated muscle tissues, as well as its specific response to muscle contraction, it is then realistic to predict a specific role for exercise-induced modulation of HSPB5 in the prevention of muscle diseases caused by protein misfolding. After offering an overview of the current knowledge on HSPB5 structure and function in muscle, this review aims to introduce the reader to the capacity that different exercise modalities have to induce and/or activate HSPB5 to levels sufficient to confer protection, with the potential to prevent or delay skeletal and cardiac muscle disorders.
Collapse
|
4
|
D’Amico D, Fiore R, Caporossi D, Di Felice V, Cappello F, Dimauro I, Barone R. Function and Fiber-Type Specific Distribution of Hsp60 and αB-Crystallin in Skeletal Muscles: Role of Physical Exercise. BIOLOGY 2021; 10:biology10020077. [PMID: 33494467 PMCID: PMC7911561 DOI: 10.3390/biology10020077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/19/2022]
Abstract
Simple Summary Skeletal muscle represents about 40% of the body mass in humans and it is a copious and plastic tissue, rich in proteins that are subject to continuous rearrangements. Physical exercise is considered a physiological stressor for different organs, in particular for skeletal muscle, and it is a factor able to stimulate the cellular remodeling processes related to the phenomenon of adaptation. All cells respond to various stress conditions by up-regulating the expression and/or activation of a group of proteins called heat shock proteins (HSPs). Although their expression is induced by several stimuli, they are commonly recognized as HSPs due to the first experiments showing their increased transcription after application of heat shock. These proteins are molecular chaperones mainly involved in assisting protein transport and folding, assembling multimolecular complexes, and triggering protein degradation by proteasome. Among the HSPs, a special attention needs to be devoted to Hsp60 and αB-crystallin, proteins constitutively expressed in the skeletal muscle, where they are known to be important in muscle physiopathology. Therefore, here we provide a critical update on their role in skeletal muscle fibers after physical exercise, highlighting the control of their expression, their biological function, and their specific distribution within skeletal muscle fiber-types. Abstract Skeletal muscle is a plastic and complex tissue, rich in proteins that are subject to continuous rearrangements. Skeletal muscle homeostasis can be affected by different types of stresses, including physical activity, a physiological stressor able to stimulate a robust increase in different heat shock proteins (HSPs). The modulation of these proteins appears to be fundamental in facilitating the cellular remodeling processes related to the phenomenon of training adaptations such as hypertrophy, increased oxidative capacity, and mitochondrial activity. Among the HSPs, a special attention needs to be devoted to Hsp60 and αB-crystallin (CRYAB), proteins constitutively expressed in the skeletal muscle, where their specific features could be highly relevant in understanding the impact of different volumes of training regimes on myofiber types and in explaining the complex picture of exercise-induced mechanical strain and damaging conditions on fiber population. This knowledge could lead to a better personalization of training protocols with an optimal non-harmful workload in populations of individuals with different needs and healthy status. Here, we introduce for the first time to the reader these peculiar HSPs from the perspective of exercise response, highlighting the control of their expression, biological function, and specific distribution within skeletal muscle fiber-types.
Collapse
Affiliation(s)
- Daniela D’Amico
- Human Anatomy Section, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (D.D.); (V.D.F.)
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX 77554, USA
| | - Roberto Fiore
- Postgraduate School of Sports Medicine, University Hospital of Palermo, 90127 Palermo, Italy;
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy;
| | - Valentina Di Felice
- Human Anatomy Section, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (D.D.); (V.D.F.)
| | - Francesco Cappello
- Human Anatomy Section, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (D.D.); (V.D.F.)
- Euro-Mediterranean Institutes of Science and Technology (IEMEST), 90139 Palermo, Italy
- Correspondence: (F.C.); (I.D.); (R.B.); Tel.: +39-091-2386-5823 (F.C. & R.B.); +39-06-3673-3562 (I.D.)
| | - Ivan Dimauro
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy;
- Correspondence: (F.C.); (I.D.); (R.B.); Tel.: +39-091-2386-5823 (F.C. & R.B.); +39-06-3673-3562 (I.D.)
| | - Rosario Barone
- Human Anatomy Section, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (D.D.); (V.D.F.)
- Correspondence: (F.C.); (I.D.); (R.B.); Tel.: +39-091-2386-5823 (F.C. & R.B.); +39-06-3673-3562 (I.D.)
| |
Collapse
|
5
|
Are Heat Shock Proteins an Important Link between Type 2 Diabetes and Alzheimer Disease? Int J Mol Sci 2020; 21:ijms21218204. [PMID: 33147803 PMCID: PMC7662599 DOI: 10.3390/ijms21218204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes (T2D) and Alzheimer’s disease (AD) are growing in prevalence worldwide. The development of T2D increases the risk of AD disease, while AD patients can show glucose imbalance due to an increased insulin resistance. T2D and AD share similar pathological features and underlying mechanisms, including the deposition of amyloidogenic peptides in pancreatic islets (i.e., islet amyloid polypeptide; IAPP) and brain (β-Amyloid; Aβ). Both IAPP and Aβ can undergo misfolding and aggregation and accumulate in the extracellular space of their respective tissues of origin. As a main response to protein misfolding, there is evidence of the role of heat shock proteins (HSPs) in moderating T2D and AD. HSPs play a pivotal role in cell homeostasis by providing cytoprotection during acute and chronic metabolic stresses. In T2D and AD, intracellular HSP (iHSP) levels are reduced, potentially due to the ability of the cell to export HSPs to the extracellular space (eHSP). The increase in eHSPs can contribute to oxidative damage and is associated with various pro-inflammatory pathways in T2D and AD. Here, we review the role of HSP in moderating T2D and AD, as well as propose that these chaperone proteins are an important link in the relationship between T2D and AD.
Collapse
|
6
|
Ma WX, Li CY, Tao R, Wang XP, Yan LJ. Reductive Stress-Induced Mitochondrial Dysfunction and Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5136957. [PMID: 32566086 PMCID: PMC7277050 DOI: 10.1155/2020/5136957] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/26/2020] [Accepted: 05/12/2020] [Indexed: 02/05/2023]
Abstract
The goal of this review was to summarize reported studies focusing on cellular reductive stress-induced mitochondrial dysfunction, cardiomyopathy, dithiothreitol- (DTT-) induced reductive stress, and reductive stress-related free radical reactions published in the past five years. Reductive stress is considered to be a double-edged sword in terms of antioxidation and disease induction. As many underlying mechanisms are still unclear, further investigations are obviously warranted. Nonetheless, reductive stress is thought to be caused by elevated levels of cellular reducing power such as NADH, glutathione, and NADPH; and this area of research has attracted increasing attention lately. Albeit, we think there is a need to conduct further studies in identifying more indicators of the risk assessment and prevention of developing heart damage as well as exploring more targets for cardiomyopathy treatment. Hence, it is expected that further investigation of underlying mechanisms of reductive stress-induced mitochondrial dysfunction will provide novel insights into therapeutic approaches for ameliorating reductive stress-induced cardiomyopathy.
Collapse
Affiliation(s)
- Wei-Xing Ma
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center (UNTHSC), Fort Worth, Texas 76107, USA
- Qingdao University of Science and Technology, 266042 Qingdao, Shandong, China
| | - Chun-Yan Li
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center (UNTHSC), Fort Worth, Texas 76107, USA
- Shantou University Medical College, 515041 Shantou, Guangdong, China
| | - Ran Tao
- Qingdao Municipal Center for Disease Control & Prevention, 266034 Qingdao, Shandong, China
| | - Xin-Ping Wang
- Qingdao University of Science and Technology, 266042 Qingdao, Shandong, China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center (UNTHSC), Fort Worth, Texas 76107, USA
| |
Collapse
|
7
|
Caolo V, Roblain Q, Lecomte J, Carai P, Peters L, Cuijpers I, Robinson EL, Derks K, Sergeys J, Noël A, Jones EAV, Moons L, Heymans S. Resistance to retinopathy development in obese, diabetic and hypertensive ZSF1 rats: an exciting model to identify protective genes. Sci Rep 2018; 8:11922. [PMID: 30093686 PMCID: PMC6085379 DOI: 10.1038/s41598-018-29812-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the major complications of diabetes, which eventually leads to blindness. Up to date, no animal model has yet shown all the co-morbidities often observed in DR patients. Here, we investigated whether obese 42 weeks old ZSF1 rat, which spontaneously develops diabetes, hypertension and obesity, would be a suitable model to study DR. Although arteriolar tortuosity increased in retinas from obese as compared to lean (hypertensive only) ZSF1 rats, vascular density pericyte coverage, microglia number, vascular morphology and retinal thickness were not affected by diabetes. These results show that, despite high glucose levels, obese ZSF1 rats did not develop DR. Such observations prompted us to investigate whether the expression of genes, possibly able to contain DR development, was affected. Accordingly, mRNA sequencing analysis showed that genes (i.e. Npy and crystallins), known to have a protective role, were upregulated in retinas from obese ZSF1 rats. Lack of retina damage, despite obesity, hypertension and diabetes, makes the 42 weeks of age ZSF1 rats a suitable animal model to identify genes with a protective function in DR. Further characterisation of the identified genes and downstream pathways could provide more therapeutic targets for the treat DR.
Collapse
Affiliation(s)
- Vincenza Caolo
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium.
| | - Quentin Roblain
- Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Julie Lecomte
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Paolo Carai
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium
| | - Linsey Peters
- Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Ilona Cuijpers
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium.,Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Emma Louise Robinson
- Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Kasper Derks
- Department of Genetics and Cell Biology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Jurgen Sergeys
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - Agnès Noël
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Elizabeth A V Jones
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - Stephane Heymans
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium.,Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,The Netherlands Heart Institute, Nl-HI, Utrecht, The Netherlands
| |
Collapse
|
8
|
Dimauro I, Antonioni A, Mercatelli N, Caporossi D. The role of αB-crystallin in skeletal and cardiac muscle tissues. Cell Stress Chaperones 2018; 23:491-505. [PMID: 29190034 PMCID: PMC6045558 DOI: 10.1007/s12192-017-0866-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 12/25/2022] Open
Abstract
All organisms and cells respond to various stress conditions such as environmental, metabolic, or pathophysiological stress by generally upregulating, among others, the expression and/or activation of a group of proteins called heat shock proteins (HSPs). Among the HSPs, special attention has been devoted to the mutations affecting the function of the αB-crystallin (HSPB5), a small heat shock protein (sHsp) playing a critical role in the modulation of several cellular processes related to survival and stress recovery, such as protein degradation, cytoskeletal stabilization, and apoptosis. Because of the emerging role in general health and disease conditions, the main objective of this mini-review is to provide a brief account on the role of HSPB5 in mammalian muscle physiopathology. Here, we report the current known state of the regulation and localization of HSPB5 in skeletal and cardiac tissue, making also a critical summary of all human HSPB5 mutations known to be strictly associated to specific skeletal and cardiac diseases, such as desmin-related myopathies (DRM), dilated (DCM) and restrictive (RCM) cardiomyopathy. Finally, pointing to putative strategies for HSPB5-based therapy to prevent or counteract these forms of human muscular disorders.
Collapse
Affiliation(s)
- Ivan Dimauro
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Ambra Antonioni
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Neri Mercatelli
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| |
Collapse
|
9
|
Reddy VS, Madala SK, Trinath J, Reddy GB. Extracellular small heat shock proteins: exosomal biogenesis and function. Cell Stress Chaperones 2018; 23:441-454. [PMID: 29086335 PMCID: PMC5904088 DOI: 10.1007/s12192-017-0856-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022] Open
Abstract
Small heat shock proteins (sHsps) belong to the family of heat shock proteins (Hsps): some are induced in response to multiple stressful events to protect the cells while others are constitutively expressed. Until now, it was believed that Hsps, including sHsps, are present inside the cells and perform intracellular functions. Interestingly, several groups recently reported the extracellular presence of Hsps, and sHsps have also been detected in sera/cerebrospinal fluids in various pathological conditions. Secretion into the extracellular milieu during many pathological conditions suggests additional or novel functions of sHsps in addition to their intracellular properties. Extracellular sHsps are implicated in cell-cell communication, activation of immune cells, and promoting anti-inflammatory and anti-platelet responses. Interestingly, exogenous administration of sHsps showed therapeutic effects in multiple disease models implying that extracellular sHsps are beneficial in pathological conditions. sHsps do not possess signal sequence and, hence, are not exported through the classical Endoplasmic reticulum-Golgi complex (ER-Golgi) secretory pathway. Further, export of sHsps is not inhibited by ER-Golgi secretory pathway inhibitors implying the involvement of a nonclassical secretory pathway in sHsp export. In lieu, lysoendosomal and exosomal pathways have been proposed for the export of sHsps. Heat shock protein 27 (Hsp27), αB-crystallin (αBC), and Hsp20 are shown to be exported by exosomes. Exosomes packaged with sHsps have beneficial effects in in vivo disease models. However, secretion mechanisms and therapeutic use of sHsps have not been elucidated in detail. Therefore, this review aimed at highlighting the current understanding of sHsps (Hsp27, αBC, and Hsp20) in the extracellular medium.
Collapse
Affiliation(s)
- V Sudhakar Reddy
- Biochemistry Division, National Institute of Nutrition, Tarnaka, Jamai-Osmania, Hyderabad, 500007, India.
| | - Satish K Madala
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jamma Trinath
- Department of Biological Sciences, BITS-Pilani, 500078, Hyderabad Campus, Hyderabad, Telangana, India
| | - G Bhanuprakash Reddy
- Biochemistry Division, National Institute of Nutrition, Tarnaka, Jamai-Osmania, Hyderabad, 500007, India.
| |
Collapse
|
10
|
Muraleva NA, Devyatkin VA, Kolosova NG. Phosphorylation of αB-crystallin in the myocardium: Analysis of relations with aging and cardiomyopathy. Exp Gerontol 2017; 95:26-33. [PMID: 28502773 DOI: 10.1016/j.exger.2017.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 12/11/2022]
Abstract
Phosphorylation is a major post-translational modification of αB-crystallin (CryaB) and determines this protein's chaperone activity, intracellular distribution, translocation, and cytoprotective functions. Phosphorylation of CryaB manifests itself as either beneficial or deleterious consequences depending on the extent of phosphorylation and interaction with the cytoskeleton. Herein, for the first time, we compared the age-related alterations of the expression and phosphorylation (on Ser59: pS59) of CryaB in the myocardium of Wistar and senescence-accelerated OXYS rats. The latters, as we demonstrated here, develop cardiomyopathy by the age of 12 months against the background of hypertension. Rats at the age of 20 days, 3, 12, and 24 months were used. The expression of CryaB mRNA (studied by RT-PCR) and of the CryaB protein (analyzed by western blotting) increased with age in the myocardium of both Wistar and OXYS rats, but only at the age of 24 months did their levels become lower in OXYS rats. Phosphorylation of CryaB increased with age in all rats. There was no association of cardiomyopathy with the pS59-CryaB amount in the detergent-soluble fraction either. Moreover, immunostaining of the myocardium revealed that the amount of pS59-CryaB was greater in OXYS rats than in the control animals. This phenomenon was the result of translocation of pS59-CryaB from the detergent-soluble protein fraction to the detergent-insoluble one. The amount of pS59-CryaB in striated sarcomeres (detergent-insoluble) of the myocardium increased with age in both strains but faster in the myocardium of OXYS rats, and its accumulation preceded the development of cardiomyopathy. Translocation of phosphorylated CryaB to sarcomeres affects functional and structural properties (of cardiomyocytes) that are crucial for contractile function and myofibrillar organization and may be an important component of an endogenous mechanism of aging of the myocardium.
Collapse
Affiliation(s)
| | - Vasiliy A Devyatkin
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - Nataliya G Kolosova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
11
|
Reddy KA, Kumar PU, Srinivasulu M, Triveni B, Sharada K, Ismail A, Reddy GB. Overexpression and enhanced specific activity of aldoketo reductases (AKR1B1 & AKR1B10) in human breast cancers. Breast 2016; 31:137-143. [PMID: 27855345 DOI: 10.1016/j.breast.2016.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 10/25/2022] Open
Abstract
The incidence of breast cancer in India is on the rise and is rapidly becoming the primary cancer in Indian women. The aldoketo reductase (AKR) family has more than 190 proteins including aldose reductase (AKR1B1) and aldose reductase like protein (AKR1B10). Apart from liver cancer, the status of AKR1B1 and AKR1B10 with respect to their expression and activity has not been reported in other human cancers. We studied the specific activity and expression of AKR1B1 and AKR1B10 in breast non tumor and tumor tissues and in the blood. Fresh post-surgical breast cancer and non-cancer tissues and blood were collected from the subjects who were admitted for surgical therapy. Malignant, benign and pre-surgical chemotherapy samples were evaluated by histopathology scoring. Expression of AKR1B1 and AKR1B10 was carried out by immunoblotting and immunohistochemistry (IHC) while specific activity was determined spectrophotometrically. The specific activity of AKR1B1 was significantly higher in red blood cells (RBC) in all three grades of primary surgical and post-chemotherapy samples. Specific activity of both AKR1B1 and AKR1B10 increased in tumor samples compared to their corresponding non tumor samples (primary surgical and post-chemotherapy). Immunoblotting and IHC data also indicated overexpression of AKR1B1 in all grades of tumors compared to their corresponding non tumor samples. There was no change in the specific activity of AKR1B1 in benign samples compared to all grades of tumor and non-tumors.
Collapse
Affiliation(s)
| | - P Uday Kumar
- National Institute of Nutrition, Hyderabad, India
| | | | - B Triveni
- MNJ Institute of Oncology, Hyderabad, India
| | - K Sharada
- National Institute of Nutrition, Hyderabad, India
| | | | | |
Collapse
|
12
|
Bakthisaran R, Akula KK, Tangirala R, Rao CM. Phosphorylation of αB-crystallin: Role in stress, aging and patho-physiological conditions. Biochim Biophys Acta Gen Subj 2015; 1860:167-82. [PMID: 26415747 DOI: 10.1016/j.bbagen.2015.09.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND αB-crystallin, once thought to be a lenticular protein, is ubiquitous and has critical roles in several cellular processes that are modulated by phosphorylation. Serine residues 19, 45 and 59 of αB-crystallin undergo phosphorylation. Phosphorylation of S45 is mediated by p44/42 MAP kinase, whereas S59 phosphorylation is mediated by MAPKAP kinase-2. Pathway involved in S19 phosphorylation is not known. SCOPE OF REVIEW The review highlights the role of phosphorylation in (i) oligomeric structure, stability and chaperone activity, (ii) cellular processes such as apoptosis, myogenic differentiation, cell cycle regulation and angiogenesis, and (iii) aging, stress, cardiomyopathy-causing αB-crystallin mutants, and in other diseases. MAJOR CONCLUSIONS Depending on the context and extent of phosphorylation, αB-crystallin seems to confer beneficial or deleterious effects. Phosphorylation alters structure, stability, size distribution and dynamics of the oligomeric assembly, thus modulating chaperone activity and various cellular processes. Phosphorylated αB-crystallin has a tendency to partition to the cytoskeleton and hence to the insoluble fraction. Low levels of phosphorylation appear to be protective, while hyperphosphorylation has negative implications. Mutations in αB-crystallin, such as R120G, Q151X and 464delCT, associated with inherited myofibrillar myopathy lead to hyperphosphorylation and intracellular inclusions. An ongoing study in our laboratory with phosphorylation-mimicking mutants indicates that phosphorylation of R120GαB-crystallin increases its propensity to aggregate. GENERAL SIGNIFICANCE Phosphorylation of αB-crystallin has dual role that manifests either beneficial or deleterious consequences depending on the extent of phosphorylation and interaction with cytoskeleton. Considering that disease-causing mutants of αB-crystallin are hyperphosphorylated, moderation of phosphorylation may be a useful strategy in disease management. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Raman Bakthisaran
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Kranthi Kiran Akula
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ramakrishna Tangirala
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ch Mohan Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.
| |
Collapse
|
13
|
Reddy VS, Reddy GB. Role of crystallins in diabetic complications. Biochim Biophys Acta Gen Subj 2015; 1860:269-77. [PMID: 25988654 DOI: 10.1016/j.bbagen.2015.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/05/2015] [Accepted: 05/10/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Crystallins are the major structural proteins of vertebrate eye lens responsible for maintaining the refractive index of the lens. However, recent studies suggest that they also have a functional significance in non-lenticular tissues. Prolonged uncontrolled diabetes results in the development of macro and microvascular complications that are the leading causes of morbidity and mortality in diabetic patients all over the world. SCOPE OF REVIEW Recent studies have shown that crystallins play an instrumental role in diabetes and its complications. Therefore, this review highlights the current data on the impact of chronic hyperglycemia on expression, distribution, glycation, phosphorylation, chaperone-like function and, anti-apoptotic activity of crystallins. Furthermore, we discussed the insights for developing therapeutic strategies for diabetic complications including natural agents, peptides, and pharmacological chaperones that modulate or mimic chaperone activity of α-crystallins. MAJOR CONCLUSIONS Upregulation of crystallins appears to be a common feature of chronic diabetes. Further, chronic hyperglycemia induces the glycation and phosphorylation of crystallins, mainly α-crystallins and thereby alters their properties. The disturbed interaction of αB-crystallin with various apoptotic mediators including Bax and caspases is also an important factor for increased cell death in diabetes. Numerous dietary agents, peptides, and chemical chaperones prevent apoptosis and the loss of chaperone activity in diabetes. GENERAL SIGNIFICANCE Understanding the role of crystallins will aid in developing therapeutic strategies for alleviating pathophysiological conditions such as protein aggregation, inflammation, oxidative stress and apoptosis associated with chronic complications of diabetes including cataract, retinopathy, and cardiomyopathy. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Vadde Sudhakar Reddy
- Biochemistry Division, National Institute of Nutrition, Hyderabad 500 007, India
| | - G Bhanuprakash Reddy
- Biochemistry Division, National Institute of Nutrition, Hyderabad 500 007, India.
| |
Collapse
|