1
|
Song L, Wang Y, Feng Y, Peng H, Wang C, Duan J, Liu K, Shen X, Gu W, Qi Y, Jin S, Pang L. Bioinformatics-Based Identification of CircRNA-MicroRNA-mRNA Network for Calcific Aortic Valve Disease. Genet Res (Camb) 2023; 2023:8194338. [PMID: 37234568 PMCID: PMC10208756 DOI: 10.1155/2023/8194338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/13/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Background Calcific aortic valve disease (CAVD) is the most common native valve disease. Valvular interstitial cell (VIC) osteogenic differentiation and valvular endothelial cell (VEC) dysfunction are key steps in CAVD progression. Circular RNA (circRNAs) is involved in regulating osteogenic differentiation with mesenchymal cells and is associated with multiple disease progression, but the function of circRNAs in CAVD remains unknown. Here, we aimed to investigate the effect and potential significance of circRNA-miRNA-mRNA networks in CAVD. Methods Two mRNA datasets, one miRNA dataset, and one circRNA dataset of CAVD downloaded from GEO were used to identify DE-circRNAs, DE-miRNAs, and DE-mRNAs. Based on the online website prediction function, the common mRNAs (FmRNAs) for constructing circRNA-miRNA-mRNA networks were identified. GO and KEGG enrichment analyses were performed on FmRNAs. In addition, hub genes were identified by PPI networks. Based on the expression of each data set, the circRNA-miRNA-hub gene network was constructed by Cytoscape (version 3.6.1). Results 32 DE-circRNAs, 206 DE-miRNAs, and 2170 DE-mRNAs were identified. Fifty-nine FmRNAs were obtained by intersection. The KEGG pathway analysis of FmRNAs was enriched in pathways in cancer, JAK-STAT signaling pathway, cell cycle, and MAPK signaling pathway. Meanwhile, transcription, nucleolus, and protein homodimerization activity were significantly enriched in GO analysis. Eight hub genes were identified based on the PPI network. Three possible regulatory networks in CAVD disease were obtained based on the biological functions of circRNAs including: hsa_circ_0026817-hsa-miR-211-5p-CACNA1C, hsa_circ_0007215-hsa-miR-1252-5p-MECP2, and hsa_circ_0007215-hsa-miR-1343-3p- RBL1. Conclusion The present bionformatics analysis suggests the functional effect for the circRNA-miRNA-mRNA network in CAVD pathogenesis and provides new targets for therapeutics.
Collapse
Affiliation(s)
- Linghong Song
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yubing Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yufei Feng
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Hao Peng
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Chengyan Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Juncang Duan
- Department of Cardiology, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, China
| | - Kejian Liu
- Department of Cardiology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xihua Shen
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| | - Yan Qi
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Pathology, Central People's Hospital of Zhanjiang and Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Shan Jin
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Lijuan Pang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Pathology, Central People's Hospital of Zhanjiang and Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
2
|
Khalil MI, Singh V, King J, De Benedetti A. TLK1-mediated MK5-S354 phosphorylation drives prostate cancer cell motility and may signify distinct pathologies. Mol Oncol 2022; 16:2537-2557. [PMID: 35064619 PMCID: PMC9251878 DOI: 10.1002/1878-0261.13183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/06/2021] [Accepted: 01/19/2022] [Indexed: 12/02/2022] Open
Abstract
Metastases account for the majority of prostate cancer (PCa) deaths, and targeting them is a major goal of systemic therapy. We identified a novel interaction between two kinases: tousled‐like kinase 1 (TLK1) and MAP kinase‐activated protein kinase 5 (MK5) that promotes PCa spread. In PCa progression, TLK1–MK5 signalling appears to increase following antiandrogen treatment and in metastatic castration‐resistant prostate cancer (mCRPC) patients. Determinations of motility rates (2D and 3D) of different TLK1‐ and MK5‐perturbed cells, including knockout (KO) and knockdown (KD), as well as the use of specific inhibitors, showed the importance of these two proteins for in vitro dissemination. We established that TLK1 phosphorylates MK5 on three residues (S160, S354 and S386), resulting in MK5 activation, and additionally, mobility shifts of MK5 also supported its phosphorylation by TLK1 in transfected HEK 293 cells. Expression of MK5‐S354A or kinase‐dead MK5 in MK5‐depleted mouse embryonic fibroblast (MEF) cells failed to restore their motility compared with that of wild‐type (WT) MK5‐rescued MK5−/− MEF cells. A pMK5‐S354 antiserum was used to establish this site as an authentic TLK1 target in androgen‐sensitive human prostate adenocarcinoma (LNCaP) cells, and was used in immunohistochemistry (IHC) studies of age‐related PCa sections from TRAMP (transgenic adenocarcinoma of the mouse prostate) mice and to probe a human tissue microarray (TMA), which revealed pMK5‐S354 level is correlated with disease progression (Gleason score and nodal metastases). In addition, The Cancer Genome Atlas (TCGA) analyses of PCa expression and genome‐wide association study (GWAS) relations identify TLK1 and MK5 as potential drivers of advanced PCa and as markers of mCRPC. Our work suggests that TLK1–MK5 signalling is functionally involved in driving PCa cell motility and clinical features of aggressiveness; hence, disruption of this axis may inhibit the metastatic spread of PCa.
Collapse
Affiliation(s)
| | - Vibha Singh
- Department of Biochemistry and Molecular Biology
| | - Judy King
- Deparment of Pathology and Translational Pathobiology, LSU Health Sciences Center, Shreveport, USA
| | | |
Collapse
|
3
|
Ruiz M, Khairallah M, Dingar D, Vaniotis G, Khairallah RJ, Lauzier B, Thibault S, Trépanier J, Shi Y, Douillette A, Hussein B, Nawaito SA, Sahadevan P, Nguyen A, Sahmi F, Gillis MA, Sirois MG, Gaestel M, Stanley WC, Fiset C, Tardif JC, Allen BG. MK2-Deficient Mice Are Bradycardic and Display Delayed Hypertrophic Remodeling in Response to a Chronic Increase in Afterload. J Am Heart Assoc 2021; 10:e017791. [PMID: 33533257 PMCID: PMC7955338 DOI: 10.1161/jaha.120.017791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Mitogen‐activated protein kinase–activated protein kinase‐2 (MK2) is a protein serine/threonine kinase activated by p38α/β. Herein, we examine the cardiac phenotype of pan MK2‐null (MK2−/−) mice. Methods and Results Survival curves for male MK2+/+ and MK2−/− mice did not differ (Mantel‐Cox test, P=0.580). At 12 weeks of age, MK2−/− mice exhibited normal systolic function along with signs of possible early diastolic dysfunction; however, aging was not associated with an abnormal reduction in diastolic function. Both R‐R interval and P‐R segment durations were prolonged in MK2‐deficient mice. However, heart rates normalized when isolated hearts were perfused ex vivo in working mode. Ca2+ transients evoked by field stimulation or caffeine were similar in ventricular myocytes from MK2+/+ and MK2−/− mice. MK2−/− mice had lower body temperature and an age‐dependent reduction in body weight. mRNA levels of key metabolic genes, including Ppargc1a, Acadm, Lipe, and Ucp3, were increased in hearts from MK2−/− mice. For equivalent respiration rates, mitochondria from MK2−/− hearts showed a significant decrease in Ca2+ sensitivity to mitochondrial permeability transition pore opening. Eight weeks of pressure overload increased left ventricular mass in MK2+/+ and MK2−/− mice; however, after 2 weeks the increase was significant in MK2+/+ but not MK2−/− mice. Finally, the pressure overload–induced decrease in systolic function was attenuated in MK2−/− mice 2 weeks, but not 8 weeks, after constriction of the transverse aorta. Conclusions Collectively, these results implicate MK2 in (1) autonomic regulation of heart rate, (2) cardiac mitochondrial function, and (3) the early stages of myocardial remodeling in response to chronic pressure overload.
Collapse
Affiliation(s)
- Matthieu Ruiz
- Department of Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Maya Khairallah
- Department of Biochemistry and Molecular Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Dharmendra Dingar
- Department of Biochemistry and Molecular Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - George Vaniotis
- Department of Biochemistry and Molecular Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | | | | | - Simon Thibault
- Faculté de Pharmacie Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Joëlle Trépanier
- Department of Biochemistry and Molecular Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Yanfen Shi
- Montreal Heart Institute Montréal Québec Canada
| | | | | | - Sherin Ali Nawaito
- Department of Pharmacology and Physiology Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada.,Department of Physiology Faculty of Medicine Suez Canal University Ismailia Egypt
| | - Pramod Sahadevan
- Department of Biochemistry and Molecular Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Albert Nguyen
- Department of Pharmacology and Physiology Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | | | | | - Martin G Sirois
- Department of Pharmacology and Physiology Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Matthias Gaestel
- Institute of Cell BiochemistryHannover Medical School Hannover Germany
| | | | - Céline Fiset
- Faculté de Pharmacie Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Jean-Claude Tardif
- Department of Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Bruce G Allen
- Department of Medicine Université de Montréal Québec Canada.,Department of Biochemistry and Molecular Medicine Université de Montréal Québec Canada.,Department of Pharmacology and Physiology Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| |
Collapse
|
4
|
Keele GR, Prokop JW, He H, Holl K, Littrell J, Deal AW, Kim Y, Kyle PB, Attipoe E, Johnson AC, Uhl KL, Sirpilla OL, Jahanbakhsh S, Robinson M, Levy S, Valdar W, Garrett MR, Solberg Woods LC. Sept8/SEPTIN8 involvement in cellular structure and kidney damage is identified by genetic mapping and a novel human tubule hypoxic model. Sci Rep 2021; 11:2071. [PMID: 33483609 PMCID: PMC7822875 DOI: 10.1038/s41598-021-81550-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/05/2021] [Indexed: 01/29/2023] Open
Abstract
Chronic kidney disease (CKD), which can ultimately progress to kidney failure, is influenced by genetics and the environment. Genes identified in human genome wide association studies (GWAS) explain only a small proportion of the heritable variation and lack functional validation, indicating the need for additional model systems. Outbred heterogeneous stock (HS) rats have been used for genetic fine-mapping of complex traits, but have not previously been used for CKD traits. We performed GWAS for urinary protein excretion (UPE) and CKD related serum biochemistries in 245 male HS rats. Quantitative trait loci (QTL) were identified using a linear mixed effect model that tested for association with imputed genotypes. Candidate genes were identified using bioinformatics tools and targeted RNAseq followed by testing in a novel in vitro model of human tubule, hypoxia-induced damage. We identified two QTL for UPE and five for serum biochemistries. Protein modeling identified a missense variant within Septin 8 (Sept8) as a candidate for UPE. Sept8/SEPTIN8 expression increased in HS rats with elevated UPE and tubulointerstitial injury and in the in vitro hypoxia model. SEPTIN8 is detected within proximal tubule cells in human kidney samples and localizes with acetyl-alpha tubulin in the culture system. After hypoxia, SEPTIN8 staining becomes diffuse and appears to relocalize with actin. These data suggest a role of SEPTIN8 in cellular organization and structure in response to environmental stress. This study demonstrates that integration of a rat genetic model with an environmentally induced tubule damage system identifies Sept8/SEPTIN8 and informs novel aspects of the complex gene by environmental interactions contributing to CKD risk.
Collapse
Affiliation(s)
| | - Jeremy W Prokop
- HudsonAlpha Institute, Huntsville, AL, USA
- Department of Pediatrics and Human Development, Department of Pharmacology, Michigan State University, Grand Rapids, MI, USA
| | - Hong He
- Departments of Pediatrics and Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Katie Holl
- Departments of Pediatrics and Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - John Littrell
- Departments of Pediatrics and Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aaron W Deal
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yunjung Kim
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patrick B Kyle
- Department of Pharmacology, Medicine (Nephrology), Pediatrics (Genetics), University of Mississippi Medical Center, Jackson, MS, USA
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Esinam Attipoe
- Department of Pharmacology, Medicine (Nephrology), Pediatrics (Genetics), University of Mississippi Medical Center, Jackson, MS, USA
| | - Ashley C Johnson
- Department of Pharmacology, Medicine (Nephrology), Pediatrics (Genetics), University of Mississippi Medical Center, Jackson, MS, USA
| | - Katie L Uhl
- Department of Pediatrics and Human Development, Department of Pharmacology, Michigan State University, Grand Rapids, MI, USA
| | - Olivia L Sirpilla
- Department of Pediatrics and Human Development, Department of Pharmacology, Michigan State University, Grand Rapids, MI, USA
| | - Seyedehameneh Jahanbakhsh
- Department of Pediatrics and Human Development, Department of Pharmacology, Michigan State University, Grand Rapids, MI, USA
| | | | - Shawn Levy
- HudsonAlpha Institute, Huntsville, AL, USA
| | - William Valdar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael R Garrett
- Department of Pharmacology, Medicine (Nephrology), Pediatrics (Genetics), University of Mississippi Medical Center, Jackson, MS, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
5
|
Wei TH, Hsieh CL. Effect of Acupuncture on the p38 Signaling Pathway in Several Nervous System Diseases: A Systematic Review. Int J Mol Sci 2020; 21:E4693. [PMID: 32630156 PMCID: PMC7370084 DOI: 10.3390/ijms21134693] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/16/2022] Open
Abstract
Acupuncture is clinically used to treat various diseases and exerts positive local and systemic effects in several nervous system diseases. Advanced molecular and clinical studies have continually attempted to decipher the mechanisms underlying these effects of acupuncture. While a growing understanding of the pathophysiology underlying several nervous system diseases shows it to be related to inflammation and impair cell regeneration after ischemic events, the relationship between the therapeutic mechanism of acupuncture and the p38 MAPK signal pathway has yet to be elucidated. This review discusses the latest advancements in the identification of the effect of acupuncture on the p38 signaling pathway in several nervous system diseases. We electronically searched databases including PubMed, Embase, and the Cochrane Library from their inception to April 2020, using the following keywords alone or in various combinations: "acupuncture", "p38 MAPK pathway", "signaling", "stress response", "inflammation", "immune", "pain", "analgesic", "cerebral ischemic injury", "epilepsy", "Alzheimer's disease", "Parkinson's disease", "dementia", "degenerative", and "homeostasis". Manual acupuncture and electroacupuncture confer positive therapeutic effects by regulating proinflammatory cytokines, ion channels, scaffold proteins, and transcription factors including TRPV1/4, Nav, BDNF, and NADMR1; consequently, p38 regulates various phenomena including cell communication, remodeling, regeneration, and gene expression. In this review article, we found the most common acupoints for the relief of nervous system disorders including GV20, GV14, ST36, ST37, and LI4. Acupuncture exhibits dual regulatory functions of activating or inhibiting different p38 MAPK pathways, contributing to an overall improvement of clinical symptoms and function in several nervous system diseases.
Collapse
Affiliation(s)
- Tzu-Hsuan Wei
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan;
| | - Ching-Liang Hsieh
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
6
|
Cuvelliez M, Vandewalle V, Brunin M, Beseme O, Hulot A, de Groote P, Amouyel P, Bauters C, Marot G, Pinet F. Circulating proteomic signature of early death in heart failure patients with reduced ejection fraction. Sci Rep 2019; 9:19202. [PMID: 31844116 PMCID: PMC6914779 DOI: 10.1038/s41598-019-55727-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) remains a main cause of mortality worldwide. Risk stratification of patients with systolic chronic HF is critical to identify those who may benefit from advanced HF therapies. The aim of this study is to identify plasmatic proteins that could predict the early death (within 3 years) of HF patients with reduced ejection fraction hospitalized in CHRU de Lille. The subproteome targeted by an aptamer-based technology, the Slow Off-rate Modified Aptamer (SOMA) scan assay of 1310 proteins, was profiled in blood samples from 168 HF patients, and 203 proteins were significantly modulated between patients who died of cardiovascular death and patients who were alive after 3 years of HF evaluation (Wilcoxon test, FDR 5%). A molecular network was built using these 203 proteins, and the resulting network contained 2281 molecules assigned to 34 clusters annotated to biological pathways by Gene Ontology. This network model highlighted extracellular matrix organization as the main mechanism involved in early death in HF patients. In parallel, an adaptive Least Absolute Shrinkage and Selection Operator (LASSO) was performed on these 203 proteins, and six proteins were selected as candidates to predict early death in HF patients: complement C3, cathepsin S and F107B were decreased and MAPK5, MMP1 and MMP7 increased in patients who died of cardiovascular causes compared with patients living 3 years after HF evaluation. This proteomic signature of 6 circulating plasma proteins allows the identification of systolic HF patients with a risk of early death.
Collapse
Affiliation(s)
- Marie Cuvelliez
- Univ. Lille, CHU Lille, Inserm, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France.,FHU REMOD-HF, Lille, France
| | - Vincent Vandewalle
- Univ. Lille, CHU Lille, Inria Lille Nord-Europe, EA2694 - MODAL - MOdels for Data Analysis and Learning, F-59000, Lille, France.,Univ. Lille, « Institut Français de Bioinformatique », « Billille- plateforme de bioinformatique et bioanalyse de Lille », F-59000, Lille, France
| | - Maxime Brunin
- Univ. Lille, « Institut Français de Bioinformatique », « Billille- plateforme de bioinformatique et bioanalyse de Lille », F-59000, Lille, France
| | - Olivia Beseme
- Univ. Lille, CHU Lille, Inserm, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France.,FHU REMOD-HF, Lille, France
| | - Audrey Hulot
- Univ. Lille, « Institut Français de Bioinformatique », « Billille- plateforme de bioinformatique et bioanalyse de Lille », F-59000, Lille, France
| | - Pascal de Groote
- Univ. Lille, CHU Lille, Inserm, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France.,FHU REMOD-HF, Lille, France
| | - Philippe Amouyel
- Univ. Lille, CHU Lille, Inserm, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Christophe Bauters
- Univ. Lille, CHU Lille, Inserm, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France.,FHU REMOD-HF, Lille, France
| | - Guillemette Marot
- Univ. Lille, CHU Lille, Inria Lille Nord-Europe, EA2694 - MODAL - MOdels for Data Analysis and Learning, F-59000, Lille, France.,Univ. Lille, « Institut Français de Bioinformatique », « Billille- plateforme de bioinformatique et bioanalyse de Lille », F-59000, Lille, France
| | - Florence Pinet
- Univ. Lille, CHU Lille, Inserm, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France. .,FHU REMOD-HF, Lille, France.
| |
Collapse
|
7
|
Cardiac Fibroblast p38 MAPK: A Critical Regulator of Myocardial Remodeling. J Cardiovasc Dev Dis 2019; 6:jcdd6030027. [PMID: 31394846 PMCID: PMC6787752 DOI: 10.3390/jcdd6030027] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
The cardiac fibroblast is a remarkably versatile cell type that coordinates inflammatory, fibrotic and hypertrophic responses in the heart through a complex array of intracellular and intercellular signaling mechanisms. One important signaling node that has been identified involves p38 MAPK; a family of kinases activated in response to stress and inflammatory stimuli that modulates multiple aspects of cardiac fibroblast function, including inflammatory responses, myofibroblast differentiation, extracellular matrix turnover and the paracrine induction of cardiomyocyte hypertrophy. This review explores the emerging importance of the p38 MAPK pathway in cardiac fibroblasts, describes the molecular mechanisms by which it regulates the expression of key genes, and highlights its potential as a therapeutic target for reducing adverse myocardial remodeling.
Collapse
|
8
|
Zhao YT, Du J, Yano N, Wang H, Wang J, Dubielecka PM, Zhang LX, Qin G, Zhuang S, Liu PY, Chin YE, Zhao TC. p38-Regulated/activated protein kinase plays a pivotal role in protecting heart against ischemia-reperfusion injury and preserving cardiac performance. Am J Physiol Cell Physiol 2019; 317:C525-C533. [PMID: 31291142 DOI: 10.1152/ajpcell.00122.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
p38-Regulated/activated protein kinase (PRAK) plays a critical role in modulating cellular survival and biological function. However, the function of PRAK in the regulation of myocardial ischemic injury remains unknown. This study is aimed at determining the function of PRAK in modulating myocardial ischemia-reperfusion injury and myocardial remodeling following myocardial infarction. Hearts were isolated from adult male homozygous PRAK-/- and wild-type mice and subjected to global ischemia-reperfusion injury in Langendorff isolated heart perfusion. PRAK-/- mice mitigated postischemic ventricular functional recovery and decreased coronary effluent. Moreover, the infarct size in the perfused heart was significantly increased by deletion of PRAK. Western blot showed that deletion of PRAK decreased the phosphorylation of ERK1/2. Furthermore, the effect of deletion of PRAK on myocardial function and remodeling was also examined on infarcted mice in which the left anterior descending artery was ligated. Echocardiography indicated that PRAK-/- mice had accelerated left ventricular systolic dysfunction, which was associated with increased hypertrophy in the infarcted area. Deletion of PRAK augmented interstitial fibrosis and terminal deoxynucleotidyl transferase nick-end labeling (TUNEL)-positive myocytes. Furthermore, immunostaining analysis shows that CD31-postive vascular density and α-smooth muscle actin capillary staining decreased significantly in PRAK-/- mice. These results indicate that deletion of PRAK enhances susceptibility to myocardial ischemia-reperfusion injury, attenuates cardiac performance and angiogenesis, and increases interstitial fibrosis and apoptosis in the infarcted hearts.
Collapse
Affiliation(s)
- Yu Tina Zhao
- Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine, Providence, Rhode Island
| | - Jianfeng Du
- Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine, Providence, Rhode Island
| | - Naohiro Yano
- Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine, Providence, Rhode Island
| | - Hao Wang
- Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine, Providence, Rhode Island
| | - Jianguo Wang
- Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine, Providence, Rhode Island
| | - Patrycja M Dubielecka
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Ling X Zhang
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Gangjian Qin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Paul Y Liu
- Department of Plastic Surgery, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Y Eugene Chin
- Institute of Health Sciences, Chinese Academy of Sciences-Jiaotong University School of Medicine, Shanghai, China
| | - Ting C Zhao
- Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine, Providence, Rhode Island
| |
Collapse
|
9
|
Nawaito SA, Sahadevan P, Clavet-Lanthier MÉ, Pouliot P, Sahmi F, Shi Y, Gillis MA, Lesage F, Gaestel M, Sirois MG, Calderone A, Tardif JC, Allen BG. MK5 haplodeficiency decreases collagen deposition and scar size during post-myocardial infarction wound repair. Am J Physiol Heart Circ Physiol 2019; 316:H1281-H1296. [PMID: 30901279 DOI: 10.1152/ajpheart.00532.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
MK5 is a protein serine/threonine kinase activated by p38, ERK3, and ERK4 MAPKs. MK5 mRNA and immunoreactivity are detected in mouse cardiac fibroblasts, and MK5 haplodeficiency attenuates the increase in collagen 1-α1 mRNA evoked by pressure overload. The present study examined the effect of MK5 haplodeficiency on reparative fibrosis following myocardial infarction (MI). Twelve-week-old MK5+/- and wild-type littermate (MK5+/+) mice underwent ligation of the left anterior descending coronary artery (LADL). Surviving mice were euthanized 8 or 21 days post-MI. Survival rates did not differ significantly between MK5+/+ and MK5+/- mice, with rupture of the LV wall being the primary cause of death. Echocardiographic imaging revealed similar increases in LV end-diastolic diameter, myocardial performance index, and wall motion score index in LADL-MK5+/+ and LADL-MK5+/- mice. Area at risk did not differ between LADL-MK5+/+ and LADL-MK5+/- hearts. In contrast, infarct size, scar area, and scar collagen content were reduced in LADL-MK5+/- hearts. Immunohistochemical analysis of mice experiencing heart rupture revealed increased MMP-9 immunoreactivity in the infarct border zone of LADL-MK5+/- hearts compared with LADL-MK5+/+. Although inflammatory cell infiltration was similar in LADL-MK5+/+ and LADL-MK5+/- hearts, angiogenesis was more pronounced in the infarct border zone of LADL-MK5+/- mice. Characterization of ventricular fibroblasts revealed reduced motility and proliferation in fibroblasts isolated from MK5-/- mice compared with those from both wild-type and haplodeficient mice. siRNA-mediated knockdown of MK5 in fibroblasts from wild-type mice also impaired motility. Hence, reduced MK5 expression alters fibroblast function and scar morphology but not mortality post-MI. NEW & NOTEWORTHY MK5/PRAK is a protein serine/threonine kinase activated by p38 MAPK and/or atypical MAPKs ERK3/4. MK5 haplodeficiency reduced infarct size, scar area, and scar collagen content post-myocardial infarction. Motility and proliferation were reduced in cultured MK5-null cardiac myofibroblasts.
Collapse
Affiliation(s)
- Sherin Ali Nawaito
- Department of Pharmacology and Physiology, Université de Montréal , Montreal, Quebec, Canada.,Montreal Heart Institute , Montreal, Quebec, Canada.,Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Pramod Sahadevan
- Department of Biochemistry and Molecular Medicine, Université de Montréal , Montreal, Quebec, Canada.,Montreal Heart Institute , Montreal, Quebec, Canada
| | | | | | - Fatiha Sahmi
- Montreal Heart Institute , Montreal, Quebec, Canada
| | - Yanfen Shi
- Montreal Heart Institute , Montreal, Quebec, Canada
| | | | - Frederic Lesage
- Department of Electrical Engineering, Université de Montréal , Montreal, Quebec, Canada.,Montreal Heart Institute , Montreal, Quebec, Canada
| | - Matthias Gaestel
- Institute of Biochemistry, Hannover Medical School, Hannover, Germany
| | - Martin G Sirois
- Department of Pharmacology and Physiology, Université de Montréal , Montreal, Quebec, Canada.,Montreal Heart Institute , Montreal, Quebec, Canada
| | - Angelo Calderone
- Department of Pharmacology and Physiology, Université de Montréal , Montreal, Quebec, Canada.,Montreal Heart Institute , Montreal, Quebec, Canada
| | - Jean-Claude Tardif
- Department of Medicine, Université de Montréal , Montreal, Quebec, Canada.,Montreal Heart Institute , Montreal, Quebec, Canada
| | - Bruce G Allen
- Department of Biochemistry and Molecular Medicine, Université de Montréal , Montreal, Quebec, Canada.,Department of Medicine, Université de Montréal , Montreal, Quebec, Canada.,Montreal Heart Institute , Montreal, Quebec, Canada
| |
Collapse
|