1
|
Jiang X, Liang X, Li S, Yang Y, Xu X, Gu W, Meng W, Cheng F. The LINC00319 binding to STAT3 promotes the cell proliferation, migration, invasion and EMT process in oral squamous cell carcinoma. Arch Biochem Biophys 2024; 761:110170. [PMID: 39366629 DOI: 10.1016/j.abb.2024.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Long non-coding RNA LINC00319 has been implicated in the progression of various cancers, including oral squamous cell carcinoma (OSCC). While our previous work has revealed some aspects of LINC00319's role in OSCC, including its upregulation and involvement in a competing endogenous RNA (ceRNA) mechanism, the full extent of its functions and regulatory mechanisms in OSCC progression remain to be fully elucidated. OBJECTIVE This study aimed to investigate the function of LINC00319 in OSCC and its potential interaction with the STAT3 signaling pathway, thus uncovering novel regulatory mechanisms and therapeutic targets. METHODS Bioinformatics analysis was performed using TCGA data to evaluate LINC00319 expression in OSCC tissues and its correlation with STAT3 signaling. The direct binding between LINC00319 and STAT3 was examined by RNA pull-down, FISH, and RIP assays. Functional experiments, including CCK-8, transwell migration and invasion assays, and western blot analysis of EMT markers and STAT3 pathway activation, were conducted to assess the effects of LINC00319 on OSCC cell behaviors and its interaction with the STAT3 signaling pathway. In vivo xenograft models were established to validate the role of LINC00319 in tumor growth and STAT3 activation. RESULTS LINC00319 expression was significantly upregulated in OSCC tissues compared to normal tissues, and high LINC00319 expression correlated with STAT3 signaling activation. Mechanistically, LINC00319 directly bound to STAT3 protein and promoted its phosphorylation at Tyr705. LINC00319 overexpression enhanced, while its knockdown suppressed, the proliferation, migration, invasion, and EMT of OSCC cells. These oncogenic effects were mediated through STAT3 activation and could be reversed by the STAT3 inhibitor stattic. In vivo experiments further confirmed that LINC00319 silencing inhibited tumor growth and STAT3 phosphorylation. CONCLUSION This study uncovers that LINC00319 promotes OSCC tumorigenesis by directly binding to and activating STAT3 signaling. These findings provide new insights into the regulatory mechanisms of STAT3 by long non-coding RNAs and highlight the potential of LINC00319 as a biomarker and therapeutic target in OSCC.
Collapse
Affiliation(s)
- Xiao Jiang
- Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Haizhu District, Guangzhou 510280, Guangdong Province, China.
| | - Xueyi Liang
- Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Haizhu District, Guangzhou 510280, Guangdong Province, China.
| | - Simin Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Haizhu District, Guangzhou 510280, Guangdong Province, China.
| | - Yinshen Yang
- Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Haizhu District, Guangzhou 510280, Guangdong Province, China.
| | - Xiaoheng Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Haizhu District, Guangzhou 510280, Guangdong Province, China.
| | - Wenli Gu
- Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Haizhu District, Guangzhou 510280, Guangdong Province, China.
| | - Wenxia Meng
- Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Haizhu District, Guangzhou 510280, Guangdong Province, China.
| | - Fanping Cheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Haizhu District, Guangzhou 510280, Guangdong Province, China.
| |
Collapse
|
2
|
Lin Y, Zhao W, Pu R, Lv Z, Xie H, Li Y, Zhang Z. Long non‑coding RNAs as diagnostic and prognostic biomarkers for colorectal cancer (Review). Oncol Lett 2024; 28:486. [PMID: 39185489 PMCID: PMC11342420 DOI: 10.3892/ol.2024.14619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the 3rd most common cancer globally and is the 2nd leading cause of cancer-related death. Owing to the lack of specific early symptoms and the limitations of existing early diagnostic methods, most patients with CRC are diagnosed at advanced stages. To overcome these challenges, researchers have increasingly focused on molecular biomarkers, with particular interest in long non-coding RNAs (lncRNAs). These non-protein-coding RNAs, which exceed 200 nucleotides in length, play critical roles in the development and progression of CRC. The stability and detectability of lncRNAs in the circulatory system make them promising candidate biomarkers. The analysis of circulating lncRNAs in peripheral blood represents a potential option for minimally invasive diagnostic tests based on liquid biopsy samples. The present review aimed to evaluate the efficacy of lncRNAs with altered expression levels in peripheral blood as diagnostic markers for CRC. Additionally, the clinical significance of lncRNAs as prognostic markers for this disease were summarized.
Collapse
Affiliation(s)
- Yuning Lin
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Wenzhen Zhao
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Ruonan Pu
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Zhenyi Lv
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Hongyan Xie
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Ying Li
- Department of Ultrasonography, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Zhongying Zhang
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| |
Collapse
|
3
|
Liu S, Li W, Liang L, Zhou Y, Li Y. The regulatory relationship between transcription factor STAT3 and noncoding RNA. Cell Mol Biol Lett 2024; 29:4. [PMID: 38172648 PMCID: PMC10763091 DOI: 10.1186/s11658-023-00521-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3), as a key node in numerous carcinogenic signaling pathways, is activated in various tumor tissues and plays important roles in tumor formation, metastasis, and drug resistance. STAT3 is considered a potential subtarget for tumor therapy. Noncoding RNA (ncRNA) is a special type of RNA transcript. Transforming from "junk" transcripts into key molecules involved in cell apoptosis, growth, and functional regulation, ncRNA has been proven to be closely related to various epithelial-mesenchymal transition and drug resistance processes in tumor cells over the past few decades. Research on the relationship between transcription factor STAT3 and ncRNAs has attracted increased attention. To date, existing reviews have mainly focused on the regulation by ncRNAs on the transcription factor STAT3; there has been no review of the regulation by STAT3 on ncRNAs. However, understanding the regulation of ncRNAs by STAT3 and its mechanism is important to comprehensively understand the mutual regulatory relationship between STAT3 and ncRNAs. Therefore, in this review, we summarize the regulation by transcription factor STAT3 on long noncoding RNA, microRNA, and circular RNA and its possible mechanisms. In addition, we provide an update on research progress on the regulation of STAT3 by ncRNAs. This will provide a new perspective to comprehensively understand the regulatory relationship between transcription factor STAT3 and ncRNAs, as well as targeting STAT3 or ncRNAs to treat diseases such as tumors.
Collapse
Affiliation(s)
- Siyi Liu
- Department of Nuclear Medicine, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Wentao Li
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Lin Liang
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China.
| | - Yanling Li
- Department of Nuclear Medicine, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| |
Collapse
|
4
|
Kasprzak A. Prognostic Biomarkers of Cell Proliferation in Colorectal Cancer (CRC): From Immunohistochemistry to Molecular Biology Techniques. Cancers (Basel) 2023; 15:4570. [PMID: 37760539 PMCID: PMC10526446 DOI: 10.3390/cancers15184570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common and severe malignancies worldwide. Recent advances in diagnostic methods allow for more accurate identification and detection of several molecular biomarkers associated with this cancer. Nonetheless, non-invasive and effective prognostic and predictive testing in CRC patients remains challenging. Classical prognostic genetic markers comprise mutations in several genes (e.g., APC, KRAS/BRAF, TGF-β, and TP53). Furthermore, CIN and MSI serve as chromosomal markers, while epigenetic markers include CIMP and many other candidates such as SERP, p14, p16, LINE-1, and RASSF1A. The number of proliferation-related long non-coding RNAs (e.g., SNHG1, SNHG6, MALAT-1, CRNDE) and microRNAs (e.g., miR-20a, miR-21, miR-143, miR-145, miR-181a/b) that could serve as potential CRC markers has also steadily increased in recent years. Among the immunohistochemical (IHC) proliferative markers, the prognostic value regarding the patients' overall survival (OS) or disease-free survival (DFS) has been confirmed for thymidylate synthase (TS), cyclin B1, cyclin D1, proliferating cell nuclear antigen (PCNA), and Ki-67. In most cases, the overexpression of these markers in tissues was related to worse OS and DFS. However, slowly proliferating cells should also be considered in CRC therapy (especially radiotherapy) as they could represent a reservoir from which cells are recruited to replenish the rapidly proliferating population in response to cell-damaging factors. Considering the above, the aim of this article is to review the most common proliferative markers assessed using various methods including IHC and selected molecular biology techniques (e.g., qRT-PCR, in situ hybridization, RNA/DNA sequencing, next-generation sequencing) as prognostic and predictive markers in CRC.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland
| |
Collapse
|
5
|
Ashrafizadeh M, Mohan CD, Rangappa S, Zarrabi A, Hushmandi K, Kumar AP, Sethi G, Rangappa KS. Noncoding RNAs as regulators of STAT3 pathway in gastrointestinal cancers: Roles in cancer progression and therapeutic response. Med Res Rev 2023; 43:1263-1321. [PMID: 36951271 DOI: 10.1002/med.21950] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/09/2022] [Accepted: 02/28/2023] [Indexed: 03/24/2023]
Abstract
Gastrointestinal (GI) tumors (cancers of the esophagus, gastric, liver, pancreas, colon, and rectum) contribute to a large number of deaths worldwide. STAT3 is an oncogenic transcription factor that promotes the transcription of genes associated with proliferation, antiapoptosis, survival, and metastasis. STAT3 is overactivated in many human malignancies including GI tumors which accelerates tumor progression, metastasis, and drug resistance. Research in recent years demonstrated that noncoding RNAs (ncRNAs) play a major role in the regulation of many signaling pathways including the STAT3 pathway. The major types of endogenous ncRNAs that are being extensively studied in oncology are microRNAs, long noncoding RNAs, and circular RNAs. These ncRNAs can either be tumor-promoters or tumor-suppressors and each one of them imparts their activity via different mechanisms. The STAT3 pathway is also tightly modulated by ncRNAs. In this article, we have elaborated on the tumor-promoting role of STAT3 signaling in GI tumors. Subsequently, we have comprehensively discussed the oncogenic as well as tumor suppressor functions and mechanism of action of ncRNAs that are known to modulate STAT3 signaling in GI cancers.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chakrabhavi D Mohan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, India
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri University, Nagamangala Taluk, India
| | - Ali Zarrabi
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Sariyer, Turkey
| | - Kiavash Hushmandi
- Division of Epidemiology, Faculty of Veterinary Medicine, Department of Food Hygiene and Quality Control, University of Tehran, Tehran, Iran
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gautam Sethi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
6
|
Roshani M, Baniebrahimi G, Mousavi M, Zare N, Sadeghi R, Salarinia R, Sheida A, Molavizadeh D, Sadeghi S, Moammer F, Zolfaghari MR, Mirzaei H. Exosomal long non-coding RNAs: novel molecules in gastrointestinal cancers' progression and diagnosis. Front Oncol 2022; 12:1014949. [PMID: 36591473 PMCID: PMC9795196 DOI: 10.3389/fonc.2022.1014949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022] Open
Abstract
Gastrointestinal (GI) cancers arise in the GI tract and accessory organs, including the mouth, esophagus, stomach, liver, biliary tract, pancreas, small intestine, large intestine, and rectum. GI cancers are a major cause of cancer-related morbidity and mortality worldwide. Exosomes act as mediators of cell-to-cell communication, with pleiotropic activity in the regulation of homeostasis, and can be markers for diseases. Non-coding RNAs (ncRNAs), such as long non-coding RNAs (lncRNAs), can be transported by exosomes derived from tumor cells or non-tumor cells. They can be taken by recipient cells to alter their function or remodel the tumor microenvironment. Moreover, due to their uniquely low immunogenicity and excellent stability, exosomes can be used as natural carriers for therapeutic ncRNAs in vivo. Exosomal lncRNAs have a crucial role in regulating several cancer processes, including angiogenesis, proliferation, drug resistance, metastasis, and immunomodulation. Exosomal lncRNA levels frequently alter according to the onset and progression of cancer. Exosomal lncRNAs can therefore be employed as biomarkers for the diagnosis and prognosis of cancer. Exosomal lncRNAs can also monitor the patient's response to chemotherapy while also serving as potential targets for cancer treatment. Here, we discuss the role of exosomal lncRNAs in the biology and possible future treatment of GI cancer.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Baniebrahimi
- Department of Pediatric Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Mousavi
- Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Noushid Zare
- Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Reza Sadeghi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Salarinia
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Sciences, Bojnurd, Iran
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran,Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Danial Molavizadeh
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran,Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Sadeghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran,Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzaneh Moammer
- Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran,*Correspondence: Farzaneh Moammer, ; Mohammad Reza Zolfaghari, ; Hamed Mirzaei, ;
| | - Mohammad Reza Zolfaghari
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran,*Correspondence: Farzaneh Moammer, ; Mohammad Reza Zolfaghari, ; Hamed Mirzaei, ;
| | - Hamed Mirzaei
- Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Farzaneh Moammer, ; Mohammad Reza Zolfaghari, ; Hamed Mirzaei, ;
| |
Collapse
|
7
|
Liu J, Huang J, Cheng X, Liao Z, Gao X. miR-556-3p/Disabled Homolog 2-Interacting Protein (dab2ip) Promotes Cancer Progression by Down-Regulating Bcl-2-Like Protein 11 (BIM) Expression in Colorectal Cancer. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is a major threat affecting human health. Studies have shown that miR-556-3p can regulate dab2ip and promote tumor deterioration, and up-regulation of BIM inhibits CRC cell progression. However, the interaction between miR-556-3p/dab2ip and BIM in CRC is unknown.
We examined miR-556-3p expression in CRC tissues and cells by RT-qPCR. The impact of miR-556-3p/dab2ip and BIM on CRC cell behaviors were assessed by western blot, transwell and MTT assay. miR-556-3p was highly expressed in CRC and its overexpression increased CRC cell proliferation and migration
as well as up-regulated dab2ip and Ki-67 expression. Besides, miR-556-3p could target the BIM and overexpressed miR-556-3p decreased BIM expression. However, silencing of BIM abrogated the impact of overexpressed miR-556-3p on CRC cell proliferation and migration. In conclusion, miR-556-3p/dab2ip
promotes cell growth by down-regulating the expression of BIM, thereby promoting the progression of CRC.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of General Surgery, Beihai People’s Hospital, Beihai City, Guangxi Zhuang Autonomous Region, 536000, China
| | - Jingping Huang
- Department of Nutrition, Beihai People’s Hospital, Beihai City, Guangxi Zhuang Autonomous Region, 536000, China
| | - Xueyuan Cheng
- Department of General Surgery, Beihai People’s Hospital, Beihai City, Guangxi Zhuang Autonomous Region, 536000, China
| | - Zuowei Liao
- Department of General Surgery, Beihai People’s Hospital, Beihai City, Guangxi Zhuang Autonomous Region, 536000, China
| | - Xueyuan Gao
- Department of General Surgery, Beihai People’s Hospital, Beihai City, Guangxi Zhuang Autonomous Region, 536000, China
| |
Collapse
|
8
|
Su T, Wang T, Zhang N, Shen Y, Li W, Xing H, Yang M. Long non-coding RNAs in gastrointestinal cancers: implications for protein phosphorylation. Biochem Pharmacol 2022; 197:114907. [PMID: 35007523 DOI: 10.1016/j.bcp.2022.114907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 12/24/2022]
Abstract
Phosphorylation of proteins is one of the most extensively investigated post-translational protein modifications. Threonine, serine and tyrosine in proteins are the most commonly phosphorylated amino acids. Dysregulated cancer-related signaling pathways due to aberrant phosphorylation status of the key protein(s) in these pathways exist in most malignancies. Intensive studies in the recent decade have implicated long non-coding RNAs (lncRNAs) in the precise regulation of protein phosphorylation in cancers. In this review, we systematically delve into recent advance that underlines the multidimensional role of lncRNAs in modulating protein phosphorylation, regulating cancerous signaling and impacting prognosis of gastrointestinal (GI) cancers including hepatocellular carcinoma, colorectal cancer, gastric cancer, esophageal cancer, and pancreatic cancer. LncRNAs regulate protein phosphorylation via directly binding to the target protein(s), interacting with the partner protein(s) of the target protein(s) or lncRNAs-encoded small peptides. Although there are still extensive studies on disclosing the intricate interactions between lncRNAs and proteins and their impacts on protein phosphorylation, we believe that targeting lncRNAs controlling phosphorylation of key protein(s) in cancerous signaling pathways might provide novel paths for precision therapeutics of GI cancers in the future.
Collapse
Affiliation(s)
- Tao Su
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Teng Wang
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Nasha Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Jinan, Shandong Province, China
| | - Yue Shen
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenwen Li
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Jinan, Shandong Province, China
| | - Huaixin Xing
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China.
| | - Ming Yang
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Jinan, Shandong Province, China.
| |
Collapse
|
9
|
Hobani YH. Focally amplified long non-coding RNA in epithelial cancer as a potential biomarker and therapeutic target. Biomark Med 2021; 15:1797-1808. [PMID: 34821156 DOI: 10.2217/bmm-2021-0455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Deregulation of long non-coding RNAs (lncRNAs) has been implicated in tumorigenesis. FALEC is a lncRNA upregulated in multiple cancer types. FALEC functions as an oncogene through various mechanisms, such as competitively binding miRNAs and regulation of PI3K/AKT, Tp53 and phosphatase and tensin homolog signaling pathways. Pertinent to clinical practice, the use of FALEC as a putative biomarker has been identified. These findings suggested that FALEC might play a pivotal role in human cancers. Further studies are warranted to examine the diagnostic and prognostic performance of FALEC as a noninvasive biomarker in liquid biopsy samples and promote its development to be a clinically utilizable prognostic cancer biomarker and molecular therapeutic target.
Collapse
Affiliation(s)
- Yahya H Hobani
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
10
|
Xu G, Yang M, Wang Q, Zhao L, Zhu S, Zhu L, Xu T, Cao R, Li C, Liu Q, Xiong W, Su Y, Dong J. A Novel Prognostic Prediction Model for Colorectal Cancer Based on Nine Autophagy-Related Long Noncoding RNAs. Front Oncol 2021; 11:613949. [PMID: 34692467 PMCID: PMC8531750 DOI: 10.3389/fonc.2021.613949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 09/14/2021] [Indexed: 12/22/2022] Open
Abstract
Introduction Colorectal cancer (CRC) is the most common gastrointestinal cancer and has a low overall survival rate. Tumor–node–metastasis staging alone is insufficient to predict patient prognosis. Autophagy and long noncoding RNAs play important roles in regulating the biological behavior of CRC. Therefore, establishing an autophagy-related lncRNA (ARlncRNA)-based bioinformatics model is important for predicting survival and facilitating clinical treatment. Methods CRC data were retrieved from The Cancer Genome Atlas. The database was randomly divided into train set and validation set; then, univariate and multivariate Cox regression analyses were performed to screen prognosis-related ARlncRNAs for prediction model construction. Interactive network and Sankey diagrams of ARlncRNAs and messenger RNAs were plotted. We analyzed the survival rate of high- and low-risk patients and plotted survival curves and determined whether the risk score was an independent predictor of CRC. Receiver operating characteristic curves were used to evaluate model sensitivity and specificity. Then, the expression level of lncRNA was detected by quantitative real-time polymerase chain reaction, and the location of lncRNA was observed by fluorescence in situ hybridization. Additionally, the protein expression was detected by Western blot. Results A prognostic prediction model of CRC was built based on nine ARlncRNAs (NKILA, LINC00174, AC008760.1, LINC02041, PCAT6, AC156455.1, LINC01503, LINC00957, and CD27-AS1). The 5-year overall survival rate was significantly lower in the high-risk group than in the low-risk group among train set, validation set, and all patients (all p < 0.001). The model had high sensitivity and accuracy in predicting the 1-year overall survival rate (area under the curve = 0.717). The prediction model risk score was an independent predictor of CRC. LINC00174 and NKILA were expressed in the nucleus and cytoplasm of normal colonic epithelial cell line NCM460 and colorectal cancer cell lines HT29. Additionally, LINC00174 and NKILA were overexpressed in HT29 compared with NCM460. After autophagy activation, LINCC00174 expression was significantly downregulated both in NCM460 and HT29, while NKILA expression was significantly increased. Conclusion The new ARlncRNA-based model predicts CRC patient prognosis and provides new research ideas regarding potential mechanisms regulating the biological behavior of CRC. ARlncRNAs may play important roles in personalized cancer treatment.
Collapse
Affiliation(s)
- Guoqiang Xu
- Department of Radiotherapy, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mei Yang
- Cadre Medical Department, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qiaoli Wang
- Department of Radiotherapy, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Liufang Zhao
- The First Department of Head and Neck Surgery, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Sijin Zhu
- Department of Radiotherapy, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lixiu Zhu
- Department of Radiotherapy, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tianrui Xu
- Department of Radiotherapy, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruixue Cao
- Department of Radiotherapy, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Cheng Li
- Department of Radiotherapy, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qiuyan Liu
- Department of Oncology, Affiliated Hospital of Panzhihua University, Panzhihua Integrated Traditional Chinese and Western Medicine Hospital, Panzhihua, China
| | - Wei Xiong
- Department of Radiotherapy, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yan Su
- Department of Graduate Student Management, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jian Dong
- Department of Medical Oncology, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
11
|
Liu T, Sun Y, Yang S, Liang X. Inhibitory Effect of Selenium on Esophagus Cancer Cells and the Related Mechanism. J Nutr Sci Vitaminol (Tokyo) 2021; 66:456-461. [PMID: 33132349 DOI: 10.3177/jnsv.66.456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Selenium has been associated with many malignant tumors including esophagus cancer (EC). In current study, we examined the effects of three types of selenium, sodium selenite (SSE), methylseleninic acid (MSA) and methylselenocysteine (MSC) on EC cell line Eca109. Here, selenium attenuated cell viability and increased cell apoptosis, especially in MSC, when compared with control group (p<0.05). Meanwhile, MSC and MSA, but no SSE, arrested cell cycle in G0/G1 phase (p<0.05). Mechanistically, FAL1 and PTEN were found to participate in regulating cell cycle and cell apoptosis process by decreasing cyclinD1, CDK2, and promoting caspase-3, caspase-8. In addition, we found that cyclinD1, CDK2 were significantly downregulated by MSA and MSC, while caspase-3, caspase-8 were dramatically upregulated by SSE (p<0.05). Based on these results, we concluded that MSC and MSA inhibit the viability of Eca109 mainly through reducing cell proliferation, while SSE by promoting apoptosis.
Collapse
Affiliation(s)
- Tao Liu
- Department of Cardio-Thoracic Surgery, Guangxi International Zhuang Hospital.,Department of Cardio-Thoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University
| | - Yu Sun
- Department of Cardio-Thoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University
| | - Shengzhuang Yang
- Department of Cardio-Thoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University
| | - Xiangsen Liang
- Department of Cardio-Thoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University
| |
Collapse
|
12
|
Khajehdehi M, Khalaj-Kondori M, Ghasemi T, Jahanghiri B, Damaghi M. Long Noncoding RNAs in Gastrointestinal Cancer: Tumor Suppression Versus Tumor Promotion. Dig Dis Sci 2021; 66:381-397. [PMID: 32185664 DOI: 10.1007/s10620-020-06200-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/07/2020] [Indexed: 01/17/2023]
Abstract
Approximately 80% of the human genome harbors biochemical marks of active transcription that its majority transcribes to noncoding RNAs, namely long noncoding RNAs (lncRNAs). LncRNAs are heterogeneous RNA transcripts that regulate critical biological processes such as cell survival and death. They involve in the progression of different cancers by affecting transcriptional and post-transcriptional modifications as well as epigenetic control of numerous tumor suppressors and oncogenes. Recent findings show that aberrant expression of lncRNAs is associated with tumor initiation, progression, invasion, and overall survival of patients with gastrointestinal (GI) cancers. Some lncRNAs play as tumor suppressors in all GI cancers, but others play as tumor promoters. However, some other lncRNAs might function as a tumor suppressor in one GI cancer, but as a tumor promoter in another GI cancer type. This fact highlights possible context dependency of the expression patterns and roles of at least some lncRNAs in GI cancer development and progression. Here, we review the functional relation of lncRNAs involved in the development and progression of GI cancer by focusing on their roles as tumor suppressor and tumor promoter genes.
Collapse
Affiliation(s)
- Mina Khajehdehi
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
| | - Tayyebeh Ghasemi
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Babak Jahanghiri
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mehdi Damaghi
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, 33612, FL, USA
| |
Collapse
|
13
|
Chen S, Shen X. Long noncoding RNAs: functions and mechanisms in colon cancer. Mol Cancer 2020; 19:167. [PMID: 33246471 PMCID: PMC7697375 DOI: 10.1186/s12943-020-01287-2] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/20/2020] [Indexed: 12/28/2022] Open
Abstract
Evidence indicates that long non-coding RNAs (lncRNAs) play a crucial role in the carcinogenesis and progression of a wide variety of human malignancies including colon cancer. In this review, we describe the functions and mechanisms of lncRNAs involved in colon oncogenesis, such as HOTAIR, PVT1, H19, MALAT1, SNHG1, SNHG7, SNHG15, TUG1, XIST, ROR and ZEB1-AS1. We summarize the roles of lncRNAs in regulating cell proliferation, cell apoptotic death, the cell cycle, cell migrative and invasive ability, epithelial-mesenchymal transition (EMT), cancer stem cells and drug resistance in colon cancer. In addition, we briefly highlight the functions of circRNAs in colon tumorigenesis and progression, including circPPP1R12A, circPIP5K1A, circCTIC1, circ_0001313, circRNA_104916 and circRNA-ACAP2. This review provides the rationale for anticancer therapy via modulation of lncRNAs and circular RNAs (circRNAs) in colon carcinoma.
Collapse
Affiliation(s)
- Sian Chen
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, No 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, No 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
14
|
Wu J, Meng X, Gao R, Jia Y, Chai J, Zhou Y, Wang J, Xue X, Dang T. Long non-coding RNA LINC00858 inhibits colon cancer cell apoptosis, autophagy, and senescence by activating WNK2 promoter methylation. Exp Cell Res 2020; 396:112214. [PMID: 32768499 DOI: 10.1016/j.yexcr.2020.112214] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/09/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023]
Abstract
Accumulating evidence shows the involvement of long non-coding RNAs (lncRNAs) in tumorigenesis of many types of human cancers. However, the role of LINC00858 in colon cancer has not been fully elucidated. Therefore, we investigated the involvement of LINC00858 in the progression of colon cancer and identified its downstream targets. After examining the expression of LINC00858 in colon cancer tissues and cell lines, we then identified the possible interaction between LINC00858 and WNK lysine deficient protein kinase 2 (WNK2) by fluorescence in situ hybridization, RNA immunoprecipitation, chromatin immunoprecipitation, and RNA pull-down assays. Next, the role of the LINC00858/WNK2 axis was explored by evaluating the apoptosis, autophagy, and senescence of colon cancer cells in vitro after ectopic expression and depletion experiments in HCT116 cells. Moreover, a mouse xenograft model of HCT116 cells was established to verify the function of the LINC00858/WNK2 axis in vivo. There was high expression of LINC00858 and low expression of WNK2 in colon cancer tissues and cell lines. Silencing of LINC00858 promoted apoptosis, senescence, and autophagy in colon cancer cells. Additionally, the enrichment of WNK2 was promoted when LINC00858 bound to DNA methyltransferases. Furthermore, in vivo assays demonstrated that silencing of LINC00858 resulted in inhibited tumor growth by upregulating WNK2. In summary, LINC00858 acts as a tumor-promoting lncRNA in colon cancer by downregulating WNK2. Our results may provide novel targets for the treatment for colon cancer.
Collapse
Affiliation(s)
- Jinbao Wu
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China
| | - Xianmei Meng
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China
| | - Rui Gao
- Anesthesiology Department, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China
| | - Yanbin Jia
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China; Nursing College of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China
| | - Jianyuan Chai
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China
| | - Yi Zhou
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China
| | - Jing Wang
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China
| | - Xiaohui Xue
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China
| | - Tong Dang
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China.
| |
Collapse
|
15
|
Sun Y, Cao B, Zhou J. Roles of DANCR/microRNA-518a-3p/MDMA ceRNA network in the growth and malignant behaviors of colon cancer cells. BMC Cancer 2020; 20:434. [PMID: 32423468 PMCID: PMC7236548 DOI: 10.1186/s12885-020-06856-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
Background The competing endogenous RNA (ceRNA) networks of long non-coding RNAs (lncRNAs) and microRNAs (miRs) have aroused wide concerns. The study aims to investigate the roles of lncRNA DANCR-associated ceRNA network in the growth and behaviors of colon cancer (CC) cells. Methods Differentially expressed lncRNAs between CC and paracancerous tissues were analyzed using microarrays and RT-qPCR. Follow-up studies were conducted to evaluate the correlation between DANCR expression and prognosis of CC patients. Loss-of-functions of DANCR were performed to identify its role in the malignant behaviors of CC cells. Sub-cellular localization of DANCR and the potential targets of DANCR were predicted and validated. Cells with inhibited DANCR were implanted into nude mice to evaluate the tumor formation and metastasis in vivo. Results DANCR was highly-expressed in CC tissues and cell lines, and higher levels of DANCR were linked with worse prognosis and less survival time of CC patients. Silencing of DANCR inhibited proliferation, viability, metastasis and resistance to death of CC cells. DANCR was found to be sub-localized in cytoplasmic matrix and to mediate murine double minute 2 (MDM2) expression through sponging miR-518a-3p in CC cells, during which the Smad2/3 signaling was activated. Likewise, silencing of DANCR in CC cells inhibited tumor formation and metastasis in vivo. Conclusion This study provided evidence that silencing of DANCR might inhibit the growth and metastasis of CC cells through the DANCR/miR-518a-3p/MDM2 ceRNA network and the defect of Smad2/3 while activation of the p53 signaling pathways. This study may offer novel insights in CC treatment.
Collapse
Affiliation(s)
- Yi Sun
- Department of Clinical Laboratory, HwaMei Hospital; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences; Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, No.41 Northwest Street, Ningbo, 315000, Zhejiang, People's Republic of China
| | - Bin Cao
- Department of Clinical Laboratory, Yunlong Health Center, Ningbo, 315000, Zhejiang, People's Republic of China
| | - Jingzhen Zhou
- Department of Clinical Laboratory, HwaMei Hospital; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences; Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, No.41 Northwest Street, Ningbo, 315000, Zhejiang, People's Republic of China.
| |
Collapse
|
16
|
Gao M, Fu J, Wang Y. The lncRNA FAL1 protects against hypoxia-reoxygenation- induced brain endothelial damages through regulating PAK1. J Bioenerg Biomembr 2020; 52:17-25. [PMID: 31927658 DOI: 10.1007/s10863-019-09819-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/12/2019] [Indexed: 01/03/2023]
Abstract
Dysregulation of cerebral microvascular endothelial cells plays an important role in the pathogenesis of stroke. However, the underlying mechanisms still need to be elucidated. In the current study, we found that the long non-coding RNA (lncRNA) FAL1 was significantly reduced in response to oxygen-glucose deprivation and reoxygenation (OGD/R) stimulation in human primary brain microvascular endothelial cells (HBMVECs). Interestingly, overexpression of FAL1 ameliorated OGD/R-induced oxidative stress by reducing the production of reactive oxygen species (ROS) and increasing the level of reduced glutathione (GSH). Also, overexpression of FAL1 suppressed OGD/R-induced secretions of interleukin-6 (IL-6), monocyte chemotactic protein-1 (MCP-1), and high mobility group box-1 (HMGB-1). We then found that OGD/R-induced reduction of cell viability and release of lactate dehydrogenase (LDH) were prevented by overexpression of FAL1. Additionally, exposure to OGD/R significantly reduced the phosphorylated levels of PAK1 and AKT as well as the total level of proliferating cell nuclear antigen (PCNA), which was restored by overexpression of FAL1. Importantly, overexpression of FAL1 restored OGD/R-induced reduction in the expression of endothelial nitric oxide synthase (eNOS) and the subsequent release of nitric oxide (NO). Our results implicate that FAL1 might be involved in the process of brain endothelial cell damage.
Collapse
Affiliation(s)
- Mingqing Gao
- Department of Neurosurgery, The Affiliated Hospital of Wei fang Medical University, No. 2428, Yuhe Road, Weifang, 261031, Shandong, China
| | - Jieting Fu
- Department of Hematology, The Affiliated Hospital of Wei fang Medical University, Shandong, China
| | - Yanqiang Wang
- Department of Neurology, The Affiliated Hospital of Wei fang Medical University, Shandong, China.
| |
Collapse
|
17
|
Zhang Y, Xu H. LncRNA FAL1 Upregulates SOX4 by Downregulating miR-449a to Promote the Migration and Invasion of Cervical Squamous Cell Carcinoma (CSCC) Cells. Reprod Sci 2020; 27:935-939. [PMID: 32046419 DOI: 10.1007/s43032-019-00097-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022]
Abstract
This study aimed to investigate the role of lncRNA FAT1 in cervical squamous cell carcinoma (CSCC). We found that FAT1 was upregulated in CSCC tissues. The expression of FAT1 was not affected by clinical stages. High levels of FAT1 predicted poor survival. The expression of miR-449a was inversely correlated with the expression of FAT1. SOX4 mRNA expression was positively correlated with the expression of FAT1 in CSCC tissues. FAT1 over-expression led to an upregulated SOX4 expression and downregulated miR-449a expression. MiR-449a over-expression failed to affect FAT1 expression but downregulated SOX4 expression. FAT1 and SOX4 over-expression led to increased rates of CSCC cell migration and invasion, miR-449a over-expression led to decreased rates of CSCC cell migration and invasion and attenuated the effects of SOX4 over-expression. Therefore, FAL1 can upregulate SOX4 by downregulating miR-449a to promote the migration and invasion of CSCC cells.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Obstetrics and Gynecology, Anhui Women and Child Health Care Hospital, Anhui Medical University, Hefei, 230001, Anhui, China
| | - Hanjie Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No.17 Lujinag Road, Luyang District, Hefei, 230001, Anhui, People's Republic of China.
| |
Collapse
|
18
|
Lv X, Li Y, Li Y, Li H, Zhou L, Wang B, Zhi Z, Tang W. FAL1: A critical oncogenic long non-coding RNA in human cancers. Life Sci 2019; 236:116918. [PMID: 31610208 DOI: 10.1016/j.lfs.2019.116918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 12/29/2022]
Abstract
Long noncoding RNAs (lncRNAs) are characterized as a group of endogenous RNAs that are more than 200 nucleotides in length and have no protein-encoding function. More and more evidence indicates that lncRNAs play vital roles in various human diseases, especially in tumorigenesis. Focally amplified lncRNA on chromosome 1 (FAL1), a novel lncRNA with enhancer-like activity, has been identified as an oncogene in multiple cancers and high expression level of FAL1 is usually associated with poor prognosis. Dysregulation of FAL1 has been shown to promote the proliferation and metastasis of cancer cells. In the present review, we summarized and illustrated the functions and underlying molecular mechanisms of FAL1 in the occurrence and development of different cancers and other diseases. FAL1 has the potential to appear as a feasible diagnostic and prognostic tool and new therapeutic target for cancer patients though further investigation is needed so as to accelerate clinical application.
Collapse
Affiliation(s)
- Xiurui Lv
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Li
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuhan Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hongxing Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Lingling Zhou
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Binyu Wang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengke Zhi
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Weibing Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
19
|
Zheng QH, Shi L, Li HL. FALEC exerts oncogenic properties to regulate cell proliferation and cell-cycle in endometrial cancer. Biomed Pharmacother 2019; 118:109212. [PMID: 31387003 DOI: 10.1016/j.biopha.2019.109212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 06/23/2019] [Accepted: 07/08/2019] [Indexed: 02/08/2023] Open
Abstract
Focally amplified lncRNA on chromosome 1 (FALEC) is novel lncRNA located in a focal amplicon on chromosome 1q21.2, and has been identified as an oncogenic properties in a variety of human cancers. However, there was no report about the expression pattern and biological function of FALEC in endometrial cancer. In our research, FALEC expression was increased in endometrial cancer tissue samples and cell lines compared with corresponding paracancerous normal tissue samples and cell line, respectively. Furthermore, we investigated the clinical significance of FALEC in endometrial cancer patients, and found endometrial cancer patients with advanced clinical stage or large tumor size had higher levels of FALEC expression than those with early clinical stage or small tumor size. The in vitro studies showed silencing of FALEC expression inhibited cell proliferation and arrested cell cycle at G0/G1. In conclusion, FALEC is overexpressed in endometrial cancer tissues and cells, and involved in regulating cell proliferation and cell-cycle.
Collapse
Affiliation(s)
- Qing-Hong Zheng
- Department of Obstetrics and Gynecology, General Hospital of Daqing Oilfield, Daqing, Heilongjiang 163000, China
| | - Lei Shi
- Department of Obstetrics and Gynecology, General Hospital of Daqing Oilfield, Daqing, Heilongjiang 163000, China
| | - Hua-Li Li
- Department of Obstetrics, Xi'an Gaoxin Hospital, Xi'an, Shaanxi 710075, China.
| |
Collapse
|
20
|
FEZF1-AS1 functions as an oncogenic lncRNA in retinoblastoma. Biosci Rep 2019; 39:BSR20190754. [PMID: 31076545 PMCID: PMC6542757 DOI: 10.1042/bsr20190754] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/28/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNA (lncRNA) FEZF1 antisense RNA 1 (FEZF1-AS1) has been shown to be up-regulated in tumor tissues and cells, and exerts oncogenic effects on various types of malignancies. However, the expression and function of FEZF1-AS1 was still fully unclear in retinoblastoma. The purpose of our study was to investigate the expression and clinical value of FEZF1-AS1 in retinoblastoma patients, and explore the effect of FEZF1-AS1 on retinoblastoma cell proliferation, migration and invasion. In our results, levels of FEZF1-AS1 expression were elevated in retinoblastoma tissue specimens and cell lines compared with adjacent normal retina tissue specimens and human retinal pigment epithelial cell line, respectively. The correlation analysis indicated that high FEZF1-AS1 expression was significantly correlated with present choroidal invasion and optic nerve invasion. Survival analysis suggested that retinoblastoma patients in high FEZF1-AS1 expression group had obviously short disease-free survival (DFS) compared with retinoblastoma patients in low FEZF1-AS1 expression group, and high FEZF1-AS1 expression was an independent unfavorable prognostic factor for DFS in retinoblastoma patients. Loss-of-function study indicated silencing FEZF1-AS1 expression inhibited retinoblastoma cell proliferation, invasion and migration. In conclusion, FEZF1-AS1 functions as an oncogenic lncRNA in retinoblastoma.
Collapse
|