1
|
Chamas L, Seugnet I, Tanvé O, Enderlin V, Clerget-Froidevaux MS. The Downregulation of the Liver Lipid Metabolism Induced by Hypothyroidism in Male Mice: Metabolic Flexibility Favors Compensatory Mechanisms in White Adipose Tissue. Int J Mol Sci 2024; 25:10792. [PMID: 39409121 PMCID: PMC11477049 DOI: 10.3390/ijms251910792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 10/20/2024] Open
Abstract
In mammals, the maintenance of energy homeostasis relies on complex mechanisms requiring tight synchronization between peripheral organs and the brain. Thyroid hormones (THs), through their pleiotropic actions, play a central role in these regulations. Hypothyroidism, which is characterized by low circulating TH levels, slows down the metabolism, which leads to a reduction in energy expenditure as well as in lipid and glucose metabolism. The objective of this study was to evaluate whether the metabolic deregulations induced by hypothyroidism could be avoided through regulatory mechanisms involved in metabolic flexibility. To this end, the response to induced hypothyroidism was compared in males from two mouse strains, the wild-derived WSB/EiJ mouse strain characterized by a diet-induced obesity (DIO) resistance due to its high metabolic flexibility phenotype and C57BL/6J mice, which are prone to DIO. The results show that propylthiouracil (PTU)-induced hypothyroidism led to metabolic deregulations, particularly a reduction in hepatic lipid synthesis in both strains. Furthermore, in contrast to the C57BL/6J mice, the WSB/EiJ mice were resistant to the metabolic dysregulations induced by hypothyroidism, mainly through enhanced lipid metabolism in their adipose tissue. Indeed, WSB/EiJ mice compensated for the decrease in hepatic lipid synthesis by mobilizing lipid reserves from white adipose tissue. Gene expression analysis revealed that hypothyroidism stimulated the hypothalamic orexigenic circuit in both strains, but there was unchanged melanocortin 4 receptor (Mc4r) and leptin receptor (LepR) expression in the hypothyroid WSB/EiJ mice strain, which reflects their adaptability to maintain their body weight, in contrast to C57BL/6J mice. Thus, this study showed that WSB/EiJ male mice displayed a resistance to the metabolic dysregulations induced by hypothyroidism through compensatory mechanisms. This highlights the importance of metabolic flexibility in the ability to adapt to disturbed circulating TH levels.
Collapse
Affiliation(s)
- Lamis Chamas
- CNRS/MNHN UMR 7221 “Physiologie Moléculaire et Adaptation” Phyma, Department of “Life Adaptations” Muséum National d’Histoire Naturelle 57, Rue Cuvier CP 32, 75231 Paris, CEDEX 05, France
| | - Isabelle Seugnet
- CNRS/MNHN UMR 7221 “Physiologie Moléculaire et Adaptation” Phyma, Department of “Life Adaptations” Muséum National d’Histoire Naturelle 57, Rue Cuvier CP 32, 75231 Paris, CEDEX 05, France
| | - Odessa Tanvé
- CNRS/MNHN UMR 7221 “Physiologie Moléculaire et Adaptation” Phyma, Department of “Life Adaptations” Muséum National d’Histoire Naturelle 57, Rue Cuvier CP 32, 75231 Paris, CEDEX 05, France
| | - Valérie Enderlin
- Paris-Saclay Institute of Neuroscience (Neuro-PSI), CNRS UMR 9197, Université Paris-Saclay, 91400 Saclay, France;
| | - Marie-Stéphanie Clerget-Froidevaux
- CNRS/MNHN UMR 7221 “Physiologie Moléculaire et Adaptation” Phyma, Department of “Life Adaptations” Muséum National d’Histoire Naturelle 57, Rue Cuvier CP 32, 75231 Paris, CEDEX 05, France
| |
Collapse
|
2
|
Zhao W, Peng X, Liu Y, Li S, Li X, Gao Z, Han C, Zhu Z. The association between circulating saturated fatty acids and thyroid function: results from the NHANES 2011-2012. Front Endocrinol (Lausanne) 2024; 15:1405758. [PMID: 39435352 PMCID: PMC11491677 DOI: 10.3389/fendo.2024.1405758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024] Open
Abstract
Background Excessive saturated fatty acids (SFAs) are known to be detrimental to human health. Although the majority of research and dietary guidelines have focused on the intake of SFAs, there has been limited attention to the relationship between circulating SFA levels and hormonal regulation, such as that of thyroid hormones. Methods To explore potential associations, we conducted an investigation with 579 participants from the National Health and Nutrition Examination Survey (NHANES) 2011-2012. Subgroup analyses and multivariable linear regression models were used to estimate the relationships between eleven distinct SFA concentrations and various thyroid parameters. Results For 579 adults, subgroup analysis of thyroid stimulating hormone (TSH) revealed significant differences in nine specific SFAs and the total SFA levels (all p < 0.05). Furthermore, multivariable linear regression analysis identified positive correlations between certain SFAs and various parameters, including TSH, total triiodothyronine (TT3), free triiodothyronine (FT3), thyroid peroxidase antibodies (TPOAb), thyroglobulin antibodies (TgAb), thyroglobulin (Tg), the ratio of FT3 to free thyroxine (FT4) (FT3/FT4), and the thyrotroph T4 resistance index (TT4RI). Conversely, negative correlations were observed between certain SFAs and total thyroxine (TT4), FT4, the ratio of FT3/TT3, and the thyroid feedback quantile-based index (TFQI) (all p < 0.05). Conclusion These findings collectively suggest associations between SFAs and thyroid parameters, highlighting the need for future studies to elucidate the underlying mechanisms of these interactions.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Endocrinology and Metabolism, Central Hospital of Dalian University of Technology; Dalian Municipal Central Hospital, Dalian, Liaoning, China
| | - Xinnan Peng
- Department of Clinical Nutrition and Metabolism, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Yazhuo Liu
- Department of Clinical Nutrition and Metabolism, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Shen Li
- Department of Endocrinology and Metabolism, Central Hospital of Dalian University of Technology; Dalian Municipal Central Hospital, Dalian, Liaoning, China
| | - Xinyu Li
- Department of Endocrinology and Metabolism, Central Hospital of Dalian University of Technology; Dalian Municipal Central Hospital, Dalian, Liaoning, China
| | - Zhengnan Gao
- Department of Endocrinology and Metabolism, Central Hospital of Dalian University of Technology; Dalian Municipal Central Hospital, Dalian, Liaoning, China
| | - Cheng Han
- Department of Clinical Nutrition and Metabolism, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Zizhao Zhu
- Department of General Surgery, The Sixth People’s Hospital of Shenyang, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Giacco A, Petito G, Silvestri E, Scopigno N, Vigliotti M, Mercurio G, de Lange P, Lombardi A, Moreno M, Goglia F, Lanni A, Senese R, Cioffi F. Comparative effects of 3,5-diiodo-L-thyronine and 3,5,3'-triiodo-L-thyronine on mitochondrial damage and cGAS/STING-driven inflammation in liver of hypothyroid rats. Front Endocrinol (Lausanne) 2024; 15:1432819. [PMID: 39301315 PMCID: PMC11410700 DOI: 10.3389/fendo.2024.1432819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024] Open
Abstract
Maintaining a well-functioning mitochondrial network through the mitochondria quality control (MQC) mechanisms, including biogenesis, dynamics and mitophagy, is crucial for overall health. Mitochondrial dysfunction caused by oxidative stress and further exacerbated by impaired quality control can trigger inflammation through the release of the damage-associated molecular patterns (mtDAMPs). mtDAMPs act by stimulating the cyclic GMP-AMP synthase (cGAS) stimulator of interferon genes (STING) pathway. Recently, aberrant signalling of the cGAS-STING axis has been recognised to be closely associated with several sterile inflammatory diseases (e.g. non-alcoholic fatty liver disease, obesity). This may fit the pathophysiology of hypothyroidism, an endocrine disorder characterised by the reduction of thyroid hormone production associated with impaired metabolic fluxes, oxidative balance and inflammatory status. Both 3,5,3'-triiodo-L-tyronine (T3) and its derivative 3,5-diiodo-L-thyronine (3,5-T2), are known to mitigate processes targeting mitochondria, albeit the underlying mechanisms are not yet fully understood. Therefore, we used a chemically induced hypothyroidism rat model to investigate the effect of 3,5-T2 or T3 administration on inflammation-related factors (inflammatory cytokines, hepatic cGAS-STING pathway), oxidative stress, antioxidant defence enzymes, mitochondrial DNA (mtDNA) damage, release and repair, and the MQC system in the liver. Hypothyroid rats showed: i) increased oxidative stress, ii) accumulation of mtDNA damage, iii) high levels of circulating cytokines, iv) hepatic activation of cGAS-STING pathways and v) impairment of MQC mechanisms and autophagy. Both iodothyronines restored oxidative balance by enhancing antioxidant defence, preventing mtDNA damage through the activation of mtDNA repair mechanisms (OGG1, APE1, and POLγ) and promoting autophagy progression. Concerning MQC, both iodothyronines stimulated mitophagy and dynamics, with 3,5-T2 activating fusion and T3 modulating both fusion and fission processes. Moreover, only T3 enhanced mitochondrial biogenesis. Notably, 3,5-T2, but not T3, reversed the hypothyroidism-induced activation of the cGAS-STING inflammatory cascade. In addition, it is noteworthy that 3,5-T2 seems more effective than T3 in reducing circulating pro-inflammatory cytokines IL-6 and IL-1B and in stimulating the release of IL-10, a known anti-inflammatory cytokine. These findings reveal novel molecular mechanisms of hepatic signalling pathways involved in hypothyroidism, which could be targeted by natural iodothyronines, particularly 3,5-T2, paving the way for the development of new treatment strategies for inflammatory diseases.
Collapse
Affiliation(s)
- Antonia Giacco
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Giuseppe Petito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Elena Silvestri
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Nicla Scopigno
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Michela Vigliotti
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Giovanna Mercurio
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Pieter de Lange
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Assunta Lombardi
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Maria Moreno
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Fernando Goglia
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Antonia Lanni
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Federica Cioffi
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| |
Collapse
|
4
|
Liao CJ, Huang PS, Chien HT, Lin TK, Yeh CT, Lin KH. Effects of Thyroid Hormones on Lipid Metabolism Pathologies in Non-Alcoholic Fatty Liver Disease. Biomedicines 2022; 10:biomedicines10061232. [PMID: 35740254 PMCID: PMC9219876 DOI: 10.3390/biomedicines10061232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
The typical modern lifestyle contributes to the development of many metabolic-related disorders, as exemplified by metabolic syndrome. How to prevent, resolve, or avoid subsequent deterioration of metabolic disturbances and the development of more serious diseases has become an important and much-discussed health issue. Thus, the question of the physiological and pathological roles of thyroid hormones (THs) in metabolism has never gone out of fashion. Although THs influence almost all organs, the liver is one of the most important targets as well as the hub of metabolic homeostasis. When this homeostasis is out of balance, diseases may result. In the current review, we summarize the common features and actions of THs, first focusing on their effects on lipid metabolism in the liver. In the second half of the review, we turn to a consideration of non-alcoholic fatty liver disease (NAFLD), a disease characterized by excessive accumulation of fat in the liver that is independent of heavy alcohol consumption. NAFLD is a growing health problem that currently affects ~25% of the world’s population. Unfortunately, there are currently no approved therapies specific for NAFLD, which, if left uncontrolled, may progress to more serious diseases, such as cirrhosis or liver cancer. This absence of effective treatment can also result in the development of non-alcoholic steatohepatitis (NASH), an aggressive form of NAFLD that is the leading cause of liver transplantation in the United States. Because THs play a clear role in hepatic fat metabolism, their potential application in the prevention and treatment of NAFLD has attracted considerable research attention. Studies that have investigated the use of TH-related compounds in the management of NAFLD are also summarized in the latter part of this review. An important take-home point of this review is that a comprehensive understanding of the physiological and pathological roles of THs in liver fat metabolism is possible, despite the complexities of this regulatory axis—an understanding that has clinical value for the specific management of NAFLD.
Collapse
Affiliation(s)
- Chia-Jung Liao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-J.L.); (P.-S.H.)
| | - Po-Shuan Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-J.L.); (P.-S.H.)
| | - Hui-Tzu Chien
- Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan;
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Tzu-Kang Lin
- Neurosurgery, Fu Jen Catholic University Hospital School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan;
| | - Kwang-Huei Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-J.L.); (P.-S.H.)
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan;
- Department of Biochemistry, Chang Gung University, 259 Wen-Hwa 1 Road, Taoyuan 333, Taiwan
- Correspondence: ; Tel./Fax: +886-3-2118263
| |
Collapse
|
5
|
Li J, Gong L, Xu Q. Purinergic 2X7 receptor is involved in adipogenesis and lipid degradation. Exp Ther Med 2021; 23:81. [PMID: 34934450 PMCID: PMC8652400 DOI: 10.3892/etm.2021.11004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/20/2021] [Indexed: 12/03/2022] Open
Abstract
Obesity and dyslipidemia are two metabolic syndrome disorders that have serious effects on the health of patients. Purinergic 2X receptor ligand-gated ion channel 7 (P2X7R) has been reported to play a role in regulating lipid storage and metabolism. However, the role and potential mechanism of P2X7R in adipogenesis and lipid degradation remain unknown. In the present study, a mouse model of obesity was established by feeding mice a high-fat diet, and the 3T3-L1 cell line was used to analyze the function of P2X7R in vitro. Reverse transcription-quantitative PCR and western blot analyses were performed to detect the expression levels of P2X7R, sterol regulatory element-binding protein 1 (SREBP1) and other associated transcription factors. Bioinformatics analysis was used to predict the potential target gene of P2X7R and a dual luciferase reporter assay was used to confirm this prediction. Oil Red O staining was used to evaluate the adipogenic capacity of preadipocytes. AdipoRed assay, cholesterol assay and a free glycerol reagent were used to measure the expression levels of triglyceride (TGs), total cholesterol (TC) and glycerin, respectively. The results indicated that P2X7R was highly expressed in obese mice and that it was involved in adipogenic differentiation in vitro. SREBP1 enhanced the transcription activities of P2X7R to promote its expression. Inhibition of P2X7R significantly reduced the adipogenic capacity of preadipocytes, decreased the expression levels of adipogenesis-associated transcription factors (peroxisome proliferator-activated receptor γ, CCAAT-enhancer-binding protein α and fatty-acid-binding protein 4), enhanced the expression levels of lipolytic enzymes (adipose triglyceride lipase, phosphorylated hormone-sensitive lipase and monoacylglycerol lipase) and regulated the expression of TG, TC and glycerin in mature 3T3-L1 cells. These effects were reversed by a small interfering RNA targeting Wnt3a. Therefore, the results suggested that P2X7R, the transcription activities of which were regulated by SREBP1, regulated adipogenesis and lipid degradation by targeting SREBP1, indicating its potential effects on obesity-associated metabolism.
Collapse
Affiliation(s)
- Jing Li
- Pediatric Department, Yancheng Third People's Hospital, Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, Jiangsu 224000, P.R. China
| | - Linxia Gong
- Pediatric Department, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu 210024, P.R. China
| | - Qiaolan Xu
- Pediatric Department, Yancheng Third People's Hospital, Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, Jiangsu 224000, P.R. China
| |
Collapse
|
6
|
Giulitti F, Petrungaro S, Mandatori S, Tomaipitinca L, de Franchis V, D'Amore A, Filippini A, Gaudio E, Ziparo E, Giampietri C. Anti-tumor Effect of Oleic Acid in Hepatocellular Carcinoma Cell Lines via Autophagy Reduction. Front Cell Dev Biol 2021; 9:629182. [PMID: 33614661 PMCID: PMC7892977 DOI: 10.3389/fcell.2021.629182] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Oleic acid (OA) is a component of the olive oil. Beneficial health effects of olive oil are well-known, such as protection against liver steatosis and against some cancer types. In the present study, we focused on OA effects in hepatocellular carcinoma (HCC), investigating responses to OA treatment (50–300 μM) in HCC cell lines (Hep3B and Huh7.5) and in a healthy liver-derived human cell line (THLE-2). Upon OA administration higher lipid accumulation, perilipin-2 increase, and autophagy reduction were observed in HCC cells as compared to healthy cells. OA in the presence of 10% FBS significantly reduced viability of HCC cell lines at 300 μM through Alamar Blue staining evaluation, and reduced cyclin D1 expression in a dose-dependent manner while it was ineffective on healthy hepatocytes. Furthermore, OA increased cell death by about 30%, inducing apoptosis and necrosis in HCC cells but not in healthy hepatocytes at 300 μM dosage. Moreover, OA induced senescence in Hep3B, reduced P-ERK in both HCC cell lines and significantly inhibited the antiapoptotic proteins c-Flip and Bcl-2 in HCC cells but not in healthy hepatocytes. All these results led us to conclude that different cell death processes occur in these two HCC cell lines upon OA treatment. Furthermore, 300 μM OA significantly reduced the migration and invasion of both HCC cell lines, while it has no effects on healthy cells. Finally, we investigated autophagy role in OA-dependent effects by using the autophagy inducer torin-1. Combined OA/torin-1 treatment reduced lipid accumulation and cell death as compared to single OA treatment. We therefore concluded that OA effects in HCC cells lines are, at least, in part dependent on OA-induced autophagy reduction. In conclusion, we report for the first time an autophagy dependent relevant anti-cancer effect of OA in human hepatocellular carcinoma cell lines.
Collapse
Affiliation(s)
- Federico Giulitti
- Department of Anatomical, Histological, Forensic Medicine, and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Simonetta Petrungaro
- Department of Anatomical, Histological, Forensic Medicine, and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Sara Mandatori
- Department of Anatomical, Histological, Forensic Medicine, and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Luana Tomaipitinca
- Department of Anatomical, Histological, Forensic Medicine, and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Valerio de Franchis
- Department of Anatomical, Histological, Forensic Medicine, and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonella D'Amore
- Department of Anatomical, Histological, Forensic Medicine, and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Filippini
- Department of Anatomical, Histological, Forensic Medicine, and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine, and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Elio Ziparo
- Department of Anatomical, Histological, Forensic Medicine, and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Claudia Giampietri
- Department of Anatomical, Histological, Forensic Medicine, and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Petito G, Cioffi F, Silvestri E, De Matteis R, Lattanzi D, de Lange P, Lombardi A, Moreno M, Goglia F, Lanni A, Senese R. 3,5-Diiodo-L-Thyronine (T2) Administration Affects Visceral Adipose Tissue Inflammatory State in Rats Receiving Long-Lasting High-Fat Diet. Front Endocrinol (Lausanne) 2021; 12:703170. [PMID: 34322094 PMCID: PMC8312549 DOI: 10.3389/fendo.2021.703170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 01/03/2023] Open
Abstract
3,5-diiodo-thyronine (T2), an endogenous metabolite of thyroid hormones, exerts beneficial metabolic effects. When administered to overweight rats receiving a high fat diet (HFD), it significantly reduces body fat accumulation, which is a risk factor for the development of an inflammatory state and of related metabolic diseases. In the present study, we focused our attention on T2 actions aimed at improving the adverse effects of long-lasting HFD such as the adipocyte inflammatory response. For this purpose, three groups of rats were used throughout: i) receiving a standard diet for 14 weeks; ii) receiving a HFD for 14 weeks, and iii) receiving a HFD for 14 weeks with a simultaneous daily injection of T2 for the last 4 weeks. The results showed that T2 administration ameliorated the expression profiles of pro- and anti-inflammatory cytokines, reduced macrophage infiltration in white adipose tissue, influenced their polarization and reduced lymphocytes recruitment. Moreover, T2 improved the expression of hypoxia markers, all altered in HFD rats, and reduced angiogenesis by decreasing the pro-angiogenic miR126 expression. Additionally, T2 reduced the oxidative damage of DNA, known to be associated to the inflammatory status. This study demonstrates that T2 is able to counteract some adverse effects caused by a long-lasting HFD and to produce beneficial effects on inflammation. Irisin and SIRT1 pathway may represent a mechanism underlying the above described effects.
Collapse
Affiliation(s)
- Giuseppe Petito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Federica Cioffi
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
- *Correspondence: Rosalba Senese, ; Federica Cioffi,
| | - Elena Silvestri
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Rita De Matteis
- Department of Biomolecular Sciences, Urbino University, Urbino, Italy
| | - Davide Lattanzi
- Department of Biomolecular Sciences, Urbino University, Urbino, Italy
| | - Pieter de Lange
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Assunta Lombardi
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Maria Moreno
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Fernando Goglia
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Antonia Lanni
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
- *Correspondence: Rosalba Senese, ; Federica Cioffi,
| |
Collapse
|
8
|
Giammanco M, Di Liegro CM, Schiera G, Di Liegro I. Genomic and Non-Genomic Mechanisms of Action of Thyroid Hormones and Their Catabolite 3,5-Diiodo-L-Thyronine in Mammals. Int J Mol Sci 2020; 21:ijms21114140. [PMID: 32532017 PMCID: PMC7312989 DOI: 10.3390/ijms21114140] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Since the realization that the cellular homologs of a gene found in the retrovirus that contributes to erythroblastosis in birds (v-erbA), i.e. the proto-oncogene c-erbA encodes the nuclear receptors for thyroid hormones (THs), most of the interest for THs focalized on their ability to control gene transcription. It was found, indeed, that, by regulating gene expression in many tissues, these hormones could mediate critical events both in development and in adult organisms. Among their effects, much attention was given to their ability to increase energy expenditure, and they were early proposed as anti-obesity drugs. However, their clinical use has been strongly challenged by the concomitant onset of toxic effects, especially on the heart. Notably, it has been clearly demonstrated that, besides their direct action on transcription (genomic effects), THs also have non-genomic effects, mediated by cell membrane and/or mitochondrial binding sites, and sometimes triggered by their endogenous catabolites. Among these latter molecules, 3,5-diiodo-L-thyronine (3,5-T2) has been attracting increasing interest because some of its metabolic effects are similar to those induced by T3, but it seems to be safer. The main target of 3,5-T2 appears to be the mitochondria, and it has been hypothesized that, by acting mainly on mitochondrial function and oxidative stress, 3,5-T2 might prevent and revert tissue damages and hepatic steatosis induced by a hyper-lipid diet, while concomitantly reducing the circulating levels of low density lipoproteins (LDL) and triglycerides. Besides a summary concerning general metabolism of THs, as well as their genomic and non-genomic effects, herein we will discuss resistance to THs and the possible mechanisms of action of 3,5-T2, also in relation to its possible clinical use as a drug.
Collapse
Affiliation(s)
- Marco Giammanco
- Department of Surgical, Oncological and Oral Sciences (Discipline Chirurgiche, Oncologiche e Stomatologiche), University of Palermo, 90127 Palermo, Italy;
| | - Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)), University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)), University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (Bi.N.D.)), University of Palermo, 90127 Palermo, Italy
- Correspondence: ; Tel.: +39-091-2389-7415 or +39-091-2389-7446
| |
Collapse
|
9
|
Giudetti AM, Micioni Di Bonaventura MV, Ferramosca A, Longo S, Micioni Di Bonaventura E, Friuli M, Romano A, Gaetani S, Cifani C. Brief daily access to cafeteria-style diet impairs hepatic metabolism even in the absence of excessive body weight gain in rats. FASEB J 2020; 34:9358-9371. [PMID: 32463138 DOI: 10.1096/fj.201902757r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Numerous nutritional approaches aimed at reducing body weight have been developed as a strategy to reduce obesity. Most of these interventions rely on reducing caloric intake or limiting calories access to a few hours per day. In this work, we analyzed the effects of the extended (24 hours/day) or restricted (1 hour/day) access to a cafeteria-style (CAF) diet, on rat body weight and hepatic lipid metabolism, with respect to control rats (CTR) fed with a standard chow diet. The body weight gain of restricted-fed rats was not different from CTR, despite the slightly higher total caloric intake, but resulted significantly lower than extended-fed rats, which showed a CAF diet-induced obesity and a dramatically higher total caloric intake. However, both CAF-fed groups of rats showed, compared to CTR, unhealthy serum and hepatic parameters such as higher serum glucose level, lower HDL values, and increased hepatic triacylglycerol and cholesterol amount. The hepatic expression and activity of key enzymes of fatty acid synthesis, acetyl-CoA carboxylase (ACC), and fatty acid synthase (FAS), was similarly reduced in both CAF-fed groups of rats with respect to CTR. Anyway, while in extended-fed rats this reduction was associated to a long-term mechanism involving sterol regulatory element-binding protein-1 (SREBP-1), in restricted-fed animals a short-term mechanism based on PKA and AMPK activation occurred in the liver. Furthermore, hepatic fatty acid oxidation (FAO) and oxidative stress resulted significantly increased in extended, but not in restricted-fed rats, as compared to CTR. Overall, these results demonstrate that although limiting the total caloric intake might successfully fight obesity development, the nutritional content of the diet is the major determinant for the health status.
Collapse
Affiliation(s)
- Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | | | - Alessandra Ferramosca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Serena Longo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | | | - Marzia Friuli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Adele Romano
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| |
Collapse
|
10
|
Gnocchi D, Ellis ECS, Johansson H, Eriksson M, Bruscalupi G, Steffensen KR, Parini P. Diiodothyronines regulate metabolic homeostasis in primary human hepatocytes by modulating mTORC1 and mTORC2 activity. Mol Cell Endocrinol 2020; 499:110604. [PMID: 31580898 DOI: 10.1016/j.mce.2019.110604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 12/30/2022]
Abstract
Until three decades, ago 3,5-diiodothyronine (3,5-T2) and 3,3'-diiodothyronine (3,3'-T2) were considered products of thyroid hormone catabolism without biological activity. Some metabolic effects have been described in rodents, but the physiological relevance in humans and the mechanisms of action are unknown. Aim of this work was to investigate the role and the mechanisms of action of 3,5-T2 and 3,3'-T2 in the regulation of metabolic homeostasis in human liver. We used primary human hepatocytes freshly isolated from donors and grown on Matrigel as the golden standard in vitro model to study human hepatic metabolism. Results show that diiodothyronines in the range of plasma physiological concentrations reduced hepatic lipid accumulation, by modulating the activity of the mTORC1/Raptor complex through an AMPK-mediated mechanism, and stimulated the mTORC2/Rictor complex-activated pathway, leading to the down regulation of the expression of key gluconeogenic genes. Hence, we propose that diiodothyronines act as key regulators of hepatic metabolic homeostasis in humans.
Collapse
Affiliation(s)
- Davide Gnocchi
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, S-141 52, Sweden
| | - Ewa C S Ellis
- Unit for Transplantation Surgery, Department of Clinical Science, Intervention and Technology, CLINTEC, Karolinska University Hospital Huddinge, Stockholm, S-141 86, Sweden
| | - Helene Johansson
- Unit for Transplantation Surgery, Department of Clinical Science, Intervention and Technology, CLINTEC, Karolinska University Hospital Huddinge, Stockholm, S-141 86, Sweden
| | - Mats Eriksson
- Metabolism Unit, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, S-141 86, Sweden
| | - Giovannella Bruscalupi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, 00185, Italy
| | - Knut R Steffensen
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, S-141 52, Sweden
| | - Paolo Parini
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, S-141 52, Sweden; Metabolism Unit, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, S-141 86, Sweden; Patient Area Endocrinology and Nephrology, Inflammation and Infection Theme, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
11
|
Damiano F, Giannotti L, Gnoni GV, Siculella L, Gnoni A. Quercetin inhibition of SREBPs and ChREBP expression results in reduced cholesterol and fatty acid synthesis in C6 glioma cells. Int J Biochem Cell Biol 2019; 117:105618. [PMID: 31542428 DOI: 10.1016/j.biocel.2019.105618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 10/26/2022]
Abstract
Quercetin (Que), a widely distributed flavonoid in the human diet, exerts neuroprotective action because of its property to antagonize oxidative stress. Here, we investigated the effects of Que on lipid synthesis in C6 glioma cells. A rapid Que-induced inhibition of cholesterol and, to a lesser extent, of fatty acid synthesis from [1-14C]acetate was observed. The maximum decrease was detected at the level of palmitate, the end product of de novo fatty acid synthesis. The effect of Que on the enzyme activities of acetyl-CoA carboxylase 1 (ACC1) and fatty acid synthase (FAS), the two enzymes of this pathway, was investigated directly in situ in permeabilized C6 cells. An inhibitory effect on ACC1 was observed after 4 h of 25 μM Que treatment, while FAS activity was not affected. A reduction of polar lipid biosynthesis was also detected. A remarkable decrease of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) activity, regulatory enzyme of cholesterol synthesis, was evidenced. Expression studies demonstrated that Que acts at transcriptional level, by reducing the mRNA abundance and protein amount of ACC1 and HMGCR. Deepening the molecular mechanism, we found that Que decreased the expression of SREBP-1 and SREBP-2, transcriptional factors representing the main regulators of de novo fatty acid and cholesterol synthesis, respectively. Que also reduced the nuclear content of ChREBP, a glucose-induced transcription factor involved in the regulation of lipogenic genes. Our results represent the first evidence that a direct and rapid downregulatory effect of Que on cholesterol and de novo fatty acid synthesis is elicited in C6 cells.
Collapse
Affiliation(s)
- Fabrizio Damiano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100, Lecce, Italy
| | - Laura Giannotti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100, Lecce, Italy
| | - Gabriele V Gnoni
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100, Lecce, Italy
| | - Luisa Siculella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100, Lecce, Italy.
| | - Antonio Gnoni
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124, Bari, Italy
| |
Collapse
|
12
|
Lyophilized Maqui ( Aristotelia chilensis) Berry Induces Browning in the Subcutaneous White Adipose Tissue and Ameliorates the Insulin Resistance in High Fat Diet-Induced Obese Mice. Antioxidants (Basel) 2019; 8:antiox8090360. [PMID: 31480627 PMCID: PMC6769892 DOI: 10.3390/antiox8090360] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022] Open
Abstract
Maqui (Aristotelia Chilensis) berry features a unique profile of anthocyanidins that includes high amounts of delphinidin-3-O-sambubioside-5-O-glucoside and delphinidin-3-O-sambubioside and has shown positive effects on fasting glucose and insulin levels in humans and murine models of type 2 diabetes and obesity. The molecular mechanisms underlying the impact of maqui on the onset and development of the obese phenotype and insulin resistance was investigated in high fat diet-induced obese mice supplemented with a lyophilized maqui berry. Maqui-dietary supplemented animals showed better insulin response and decreased weight gain but also a differential expression of genes involved in de novo lipogenesis, fatty acid oxidation, multilocular lipid droplet formation and thermogenesis in subcutaneous white adipose tissue (scWAT). These changes correlated with an increased expression of the carbohydrate response element binding protein b (Chrebpb), the sterol regulatory binding protein 1c (Srebp1c) and Cellular repressor of adenovirus early region 1A-stimulated genes 1 (Creg1) and an improvement in the fibroblast growth factor 21 (FGF21) signaling. Our evidence suggests that maqui dietary supplementation activates the induction of fuel storage and thermogenesis characteristic of a brown-like phenotype in scWAT and counteracts the unhealthy metabolic impact of an HFD. This induction constitutes a putative strategy to prevent/treat diet-induced obesity and its associated comorbidities.
Collapse
|