1
|
Hashemi M, Khosroshahi EM, Chegini MK, Asadi S, Hamyani Z, Jafari YA, Rezaei F, Eskadehi RK, Kojoori KK, Jamshidian F, Nabavi N, Alimohammadi M, Rashidi M, Mahmoodieh B, Khorrami R, Taheriazam A, Entezari M. Mechanistic insights into cisplatin response in breast tumors: Molecular determinants and drug/nanotechnology-based therapeutic opportunities. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108513. [PMID: 39216513 DOI: 10.1016/j.mrrev.2024.108513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer continues to be a major global health challenge, driving the need for effective therapeutic strategies. Cisplatin, a powerful chemotherapeutic agent, is widely used in breast cancer treatment. However, its effectiveness is often limited by systemic toxicity and the development of drug resistance. This review examines the molecular factors that influence cisplatin response and resistance, offering crucial insights for the scientific community. It highlights the significance of understanding cisplatin resistance's genetic and epigenetic contributors, which could lead to more personalized treatment approaches. Additionally, the review explores innovative strategies to counteract cisplatin resistance, including combination therapies, nanoparticle-based drug delivery systems, and targeted therapies. These approaches are under intensive investigation and promise to enhance breast cancer treatment outcomes. This comprehensive discussion is a valuable resource to advance breast cancer therapeutics and address the challenge of cisplatin resistance.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Kalhor Chegini
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Hamyani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Medicine, Islamic Azad University, Tehran Medical Sciences, Tehran, Iran
| | - Yasamin Alsadat Jafari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ramtin Khodaparast Eskadehi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kimia Kia Kojoori
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Faranak Jamshidian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, Canada
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Behnaz Mahmoodieh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Brown SR, Radcliffe ME, Danner JT, Andújar Cruz WJ, Lackey KH, Park HA, Weinman ST, Kim Y. Extracellular Vesicle-Mediated Modulation of Stem-like Phenotype in Breast Cancer Cells under Fluid Shear Stress. Biomolecules 2024; 14:757. [PMID: 39062471 PMCID: PMC11274421 DOI: 10.3390/biom14070757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Circulating tumor cells (CTCs) are some of the key culprits that cause cancer metastasis and metastasis-related deaths. These cells exist in a dynamic microenvironment where they experience fluid shear stress (FSS), and the CTCs that survive FSS are considered to be highly metastatic and stem cell-like. Biophysical stresses such as FSS are also known to cause the production of extracellular vesicles (EVs) that can facilitate cell-cell communication by carrying biomolecular cargos such as microRNAs. Here, we hypothesized that physiological FSS will impact the yield of EV production, and that these EVs will have biomolecules that transform the recipient cells. The EVs were isolated using direct flow filtration with and without FSS from the MDA-MB-231 cancer cell line, and the expression of key stemness-related genes and microRNAs was characterized. There was a significantly increased yield of EVs under FSS. These EVs also contained significantly increased levels of miR-21, which was previously implicated to promote metastatic progression and chemotherapeutic resistance. When these EVs from FSS were introduced to MCF-7 cancer cells, the recipient cells had a significant increase in their stem-like gene expression and CD44+/CD24- cancer stem cell-like subpopulation. There was also a correlated increased proliferation along with an increased ATP production. Together, these findings indicate that the presence of physiological FSS can directly influence the EVs' production and their contents, and that the EV-mediated transfer of miR-21 can have an important role in FSS-existing contexts, such as in cancer metastasis.
Collapse
Affiliation(s)
- Spenser R. Brown
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA (S.T.W.)
| | - Margaret E. Radcliffe
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA (S.T.W.)
| | - Joseph T. Danner
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA (S.T.W.)
| | - Wilmer J. Andújar Cruz
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA (S.T.W.)
| | - Kimberly H. Lackey
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Han-A Park
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Steven T. Weinman
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA (S.T.W.)
| | - Yonghyun Kim
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA (S.T.W.)
| |
Collapse
|
3
|
Ye S, Chen S, Yang X, Lei X. Drug resistance in breast cancer is based on the mechanism of exocrine non-coding RNA. Discov Oncol 2024; 15:138. [PMID: 38691224 PMCID: PMC11063018 DOI: 10.1007/s12672-024-00993-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
Breast cancer (BC) ranks first among female malignant tumors and involves hormonal changes and genetic as well as environmental risk factors. In recent years, with the improvement of medical treatment, a variety of therapeutic approaches for breast cancer have emerged and have strengthened to accommodate molecular diversity. However, the primary way to improve the effective treatment of breast cancer patients is to overcome treatment resistance. Recent studies have provided insights into the mechanisms of resistance to exosome effects in BC. Exosomes are membrane-bound vesicles secreted by both healthy and malignant cells that facilitate intercellular communication. Specifically, exosomes released by tumor cells transport their contents to recipient cells, altering their properties and promoting oncogenic components, ultimately resulting in drug resistance. As important coordinators, non-coding RNAs (ncRNAs) are involved in this process and are aberrantly expressed in various human cancers. Exosome-derived ncRNAs, including microRNAs (miRNAs), long-noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), have emerged as crucial components in understanding drug resistance in breast cancer. This review provides insights into the mechanism of exosome-derived ncRNAs in breast cancer drug resistance, thereby suggesting new strategies for the treatment of BC.
Collapse
Affiliation(s)
- Simin Ye
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Shiyu Chen
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
4
|
Chakraborty S, Paul U, Banerjee S, Saha D, Banerjee S. An integrated approach to understand the regulatory role of miR-27 family in breast cancer metastasis. Biosystems 2024; 238:105200. [PMID: 38565418 DOI: 10.1016/j.biosystems.2024.105200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/09/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
One of the prime reasons of increasing breast cancer mortality is metastasizing cancer cells. Owing to the side effects of clinically available drugs to treat breast cancer metastasis, it is of utmost importance to understand the underlying biogenesis of breast cancer tumorigenesis. In-silico identification of potential RNAs might help in utilizing the miR-27 family as a therapeutic target in breast cancer. The experimentally verified common interacting mRNAs for miR27 family are retrieved from three publicly available databases- TargetScan, miRDB and miRTarBase. Finally on comparing the common genes with HCMDB and GEPIA data, four breast cancer-associated differentially expressed metastatic mRNAs (GATA3, ENAH, ITGA2 and SEMA4D) are obtained. Corresponding to the miR27 family and associated mRNAs, interacting drugs are retrieved from Sm2mir and CTDbase, respectively. The interaction network-based approach was utilized to obtain the hub RNAs and triad modules by employing the 'Cytohubba' and 'MClique' plugins, respectively in Cytoscape. Further, sample-, subclass- and promoter methylation-based expression analyses reveals GATA3 and ENAH to be the most significant mRNAs in breast cancer metastasis having >10% genetic alteration in both METABRIC Vs TCGA datasets as per their oncoprint analysis via cBioPortal. Additionally, survival analysis in Oncolnc reveals SEMA4D as survival biomarker. Interactions among the miR27 family, their target mRNAs and drugs interacting with miRNAs and mRNAs can be extensively explored in both in-vivo and in-vitro setups to assess their therapeutic potential in the diminution of breast cancer.
Collapse
Affiliation(s)
- Sohini Chakraborty
- School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamilnadu, 632014, India
| | - Utpalendu Paul
- School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamilnadu, 632014, India
| | - Subhadeep Banerjee
- School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamilnadu, 632014, India
| | - Debanjan Saha
- School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamilnadu, 632014, India
| | - Satarupa Banerjee
- School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamilnadu, 632014, India.
| |
Collapse
|
5
|
Gulati R, Mitra T, Rajiv R, Rajan EJE, Pierret C, Enninga EAL, Janardhanan R. Exosomal microRNAs in breast cancer: towards theranostic applications. Front Mol Biosci 2024; 11:1330144. [PMID: 38455764 PMCID: PMC10918471 DOI: 10.3389/fmolb.2024.1330144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024] Open
Abstract
Breast cancer is one of the top two reproductive cancers responsible for high rates of morbidity and mortality among women globally. Despite the advancements in the treatment of breast cancer, its early diagnosis remains a challenge. Recent evidence indicates that despite the adroit use of numerous strategies to facilitate rapid and precision-oriented screening of breast cancer at the community level through the use of mammograms, Fine-needle aspiration cytology (FNAC) and biomarker tracking, no strategy has been unequivocally accepted as a gold standard for facilitating rapid screening for disease. This necessitates the need to identify novel strategies for the detection and triage of breast cancer lesions at higher rates of specificity, and sensitivity, whilst taking into account the epidemiologic and social-demographic features of the patients. Recent shreds of evidence indicate that exosomes could be a robust source of biomaterial for the rapid screening of breast cancer due to their high stability and their presence in body fluids. Increasing evidence indicates that the Exosomal microRNAs- play a significant role in modifying the tumour microenvironment of breast cancers, thereby potentially aiding in the proliferation, invasion and metastasis of breast cancer. In this review, we summarize the role of ExomiRs in the tumour microenvironment in breast cancer. These ExomiRs can also be used as candidate biomarkers for facilitating rapid screening and triaging of breast cancer patients for clinical intervention.
Collapse
Affiliation(s)
- Richa Gulati
- Division of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Tridip Mitra
- Division of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Rohan Rajiv
- Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Emilda Judith Ezhil Rajan
- Division of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Chris Pierret
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | | | - Rajiv Janardhanan
- Division of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
6
|
Mamalo AS, Alivirdiloo V, Sadeghnejad A, Hajiabbasi M, Gargari MK, Valilo M. Potential roles of the exosome/microRNA axis in breast cancer. Pathol Res Pract 2023; 251:154845. [PMID: 37839359 DOI: 10.1016/j.prp.2023.154845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Cancer is one of the most common diseases in the world, and various genetic and environmental factors play a key role in its development. Breast cancer is one of the most common and deadly cancers in women. Exosomes are extracellular vesicles (EVs) with an average size of about 100 nm that contain lipids, proteins, microRNAs (miRNAs), and genetic factors and play a significant role in cell signaling, communication, tumorigenesis, and drug resistance. miRNAs are RNAs with about 22 nucleotides, which are synthesized by RNA polymerase and are involved in regulating gene expression, as well as the prevention or progression of cancer. Many studies have indicated the connection between miRNAs and exosomes. According to their findings, it seems that circulating exosomal miRNAs have not been well evaluated as biomarkers for breast cancer diagnosis or monitoring. Therefore, given the importance of miRNAs in exosomes, the goal of the present study was to clarify the relationship between miRNAs in exosomes and the role they play as biomarkers in breast cancer.
Collapse
Affiliation(s)
| | - Vahid Alivirdiloo
- Medical Doctor Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Azadeh Sadeghnejad
- Department of Animal Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | | | - Morad Kohandel Gargari
- Imamreza Hospital, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Valilo
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
7
|
Zhang Z, Zhang R, Li D. Molecular Biology Mechanisms and Emerging Therapeutics of Triple-Negative Breast Cancer. Biologics 2023; 17:113-128. [PMID: 37767463 PMCID: PMC10520847 DOI: 10.2147/btt.s426392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that is conventionally characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2), accounting for approximately 15-20% of all breast cancers. Compared to other molecular phenotypes, TNBC is typically associated with high malignancy and poor prognosis. Cytotoxic agents have been the mainstay of treatment for the past few decades due to the lack of definitive targets and limited therapeutic interventions. However, recent developments have demonstrated that TNBC has peculiar molecular classifications and biomarkers, which provide the possibility of evolving treatment from basic cytotoxic chemotherapy to an expanding domain of targeted therapies. This review presents a framework for understanding the current clinical experience surrounding molecular biology mechanisms in TNBC (Figure 1). Including immunotherapy, polymerase (PARP) and PI3K/AKT pathway inhibitors, antibody-drug conjugates, and androgen receptor (AR) blockade. Additionally, the role of miRNA therapeutics targeting TNBC and potential strategies targeting cancer stem cells (CSCs) are discussed and highlighted. As more and more treatments arise on the horizon, we believe that patients with TNBC will have a new sense of hope.
Collapse
Affiliation(s)
- Zhiying Zhang
- Inner Mongolia Medical University, Department of Thyroid Breast Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, 010050, People’s Republic of China
| | - Rui Zhang
- Inner Mongolia Medical University, Department of Thyroid Breast Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, 010050, People’s Republic of China
| | - Donghai Li
- Inner Mongolia Medical University, Department of Thyroid Breast Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, 010050, People’s Republic of China
| |
Collapse
|
8
|
González-Martínez C, Garrido-Navas C, Alcaide-Lucena M, Hidalgo JL, Ortega FG, Serrano MJ. microRNAs signature in relapse metastasis and de novo metastasis of breast cancer. A systematic review. Crit Rev Oncol Hematol 2023:104060. [PMID: 37353177 DOI: 10.1016/j.critrevonc.2023.104060] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023] Open
Abstract
miRNAs have been widely identified as important players in cancer development and progression. Metastasis in breast cancer can occur as relapse of a treated primary tumour or at the time of diagnosis of the tumour. The aim of this review is to show if both metastasis are different molecular entities characterised by different miRNA signatures that could be studied as specific biomarkers for each entity. For this, we systematically searched the PubMed, Scopus and Web of Science databases. After searching and reviewing the literature, a total of 30 records were included in this review. Results showed a genetic signature including a total of 5 upregulated miRNAs in metastasis compared with early stages. Of them, miR-23b and miR-200c were exclusively present in relapse metastasis. Finally, we proposed a molecular signature for future studies that can be used as a complementary tool at clinical trials for the diagnosis and characterization of metastasis.
Collapse
Affiliation(s)
- Coral González-Martínez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government. Avenida de la Ilustracion 114, 18016 Granada, Spain; IBS Granada, Institute of Biomedical Research. Avenida de Madrid 15, 18012 Granada, Spain; Department of Legal Medicine, University of Granada, Av. de la Investigación, 11, 18071 Granada, Spain
| | - Carmen Garrido-Navas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government. Avenida de la Ilustracion 114, 18016 Granada, Spain; IBS Granada, Institute of Biomedical Research. Avenida de Madrid 15, 18012 Granada, Spain
| | - Miriam Alcaide-Lucena
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government. Avenida de la Ilustracion 114, 18016 Granada, Spain; General Surgery and Digestive System Unit, Hospital Clínico San Cecilio, 18016 Granada, Spain
| | - J López Hidalgo
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government. Avenida de la Ilustracion 114, 18016 Granada, Spain; IBS Granada, Institute of Biomedical Research. Avenida de Madrid 15, 18012 Granada, Spain; Pathological Anatomy Unit, Hospital Clínico San Cecilio, 18016 Granada, Spain
| | - Francisco Gabriel Ortega
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government. Avenida de la Ilustracion 114, 18016 Granada, Spain; IBS Granada, Institute of Biomedical Research. Avenida de Madrid 15, 18012 Granada, Spain.
| | - María José Serrano
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government. Avenida de la Ilustracion 114, 18016 Granada, Spain; IBS Granada, Institute of Biomedical Research. Avenida de Madrid 15, 18012 Granada, Spain; Integral Oncology Division, Hospital Virgen de las Nieves, 18014 Granada, Spain.
| |
Collapse
|
9
|
Cabello P, Torres-Ruiz S, Adam-Artigues A, Forés-Martos J, Martínez MT, Hernando C, Zazo S, Madoz-Gúrpide J, Rovira A, Burgués O, Rojo F, Albanell J, Lluch A, Bermejo B, Cejalvo JM, Eroles P. miR-146a-5p Promotes Angiogenesis and Confers Trastuzumab Resistance in HER2+ Breast Cancer. Cancers (Basel) 2023; 15:cancers15072138. [PMID: 37046799 PMCID: PMC10093389 DOI: 10.3390/cancers15072138] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Trastuzumab treatment has significantly improved the prognosis of HER2-positive breast cancer patients. Despite this, resistance to therapy still remains the main clinical challenge. In order to evaluate the implication of microRNAs in the trastuzumab response, we performed a microRNA array in parental and acquired trastuzumab-resistant HER2-positive breast cancer cell lines. Our results identified miR-146a-5p as the main dysregulated microRNA. Interestingly, high miR-146a-5p expression in primary tumor tissue significantly correlated with shorter disease-free survival in HER2-positive breast cancer patients. The gain- and loss-of-function of miR-146a-5p modulated the response to trastuzumab. Furthermore, the overexpression of miR-146a-5p increased migration and angiogenesis, and promoted cell cycle progression by reducing CDKN1A expression. Exosomes from trastuzumab-resistant cells showed a high level of miR-146a-5p expression compared with the parental cells. In addition, the co-culture with resistant cells’ exosomes was able to decrease in sensitivity and increase the migration capacities in trastuzumab-sensitive cells, as well as angiogenesis in HUVEC-2 cells. Collectively, these data support the role of miR-146a-5p in resistance to trastuzumab, and demonstrate that it can be transferred by exosomes conferring resistance properties to other cells.
Collapse
Affiliation(s)
- Paula Cabello
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- International University of Valencia—VIU, 46002 Valencia, Spain
| | | | | | | | - María Teresa Martínez
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
| | - Cristina Hernando
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
| | - Sandra Zazo
- Department of Pathology, Jiménez Díaz Foundation, 28040 Madrid, Spain
| | | | - Ana Rovira
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Medical Oncology, Hospital del Mar, 08003 Barcelona, Spain
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | - Octavio Burgués
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Pathology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
| | - Federico Rojo
- Department of Pathology, Jiménez Díaz Foundation, 28040 Madrid, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
| | - Joan Albanell
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Medical Oncology, Hospital del Mar, 08003 Barcelona, Spain
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | - Ana Lluch
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Begoña Bermejo
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
| | - Juan Miguel Cejalvo
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
| | - Pilar Eroles
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
- Department of Biotechnology, Polytechnic University of Valencia, 46022 Valencia, Spain
| |
Collapse
|
10
|
The Tumor Microenvironment in Tumorigenesis and Therapy Resistance Revisited. Cancers (Basel) 2023; 15:cancers15020376. [PMID: 36672326 PMCID: PMC9856874 DOI: 10.3390/cancers15020376] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Tumorigenesis is a complex and dynamic process involving cell-cell and cell-extracellular matrix (ECM) interactions that allow tumor cell growth, drug resistance and metastasis. This review provides an updated summary of the role played by the tumor microenvironment (TME) components and hypoxia in tumorigenesis, and highlight various ways through which tumor cells reprogram normal cells into phenotypes that are pro-tumorigenic, including cancer associated- fibroblasts, -macrophages and -endothelial cells. Tumor cells secrete numerous factors leading to the transformation of a previously anti-tumorigenic environment into a pro-tumorigenic environment. Once formed, solid tumors continue to interact with various stromal cells, including local and infiltrating fibroblasts, macrophages, mesenchymal stem cells, endothelial cells, pericytes, and secreted factors and the ECM within the tumor microenvironment (TME). The TME is key to tumorigenesis, drug response and treatment outcome. Importantly, stromal cells and secreted factors can initially be anti-tumorigenic, but over time promote tumorigenesis and induce therapy resistance. To counter hypoxia, increased angiogenesis leads to the formation of new vascular networks in order to actively promote and sustain tumor growth via the supply of oxygen and nutrients, whilst removing metabolic waste. Angiogenic vascular network formation aid in tumor cell metastatic dissemination. Successful tumor treatment and novel drug development require the identification and therapeutic targeting of pro-tumorigenic components of the TME including cancer-associated- fibroblasts (CAFs) and -macrophages (CAMs), hypoxia, blocking ECM-receptor interactions, in addition to the targeting of tumor cells. The reprogramming of stromal cells and the immune response to be anti-tumorigenic is key to therapeutic success. Lastly, this review highlights potential TME- and hypoxia-centered therapies under investigation.
Collapse
|
11
|
Fu Y, Yang Q, Yang H, Zhang X. New progress in the role of microRNAs in the diagnosis and prognosis of triple negative breast cancer. Front Mol Biosci 2023; 10:1162463. [PMID: 37122564 PMCID: PMC10134903 DOI: 10.3389/fmolb.2023.1162463] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Triple negative breast cancer is distinguished by its high malignancy, aggressive invasion, rapid progression, easy recurrence, and distant metastases. Additionally, it has a poor prognosis, a high mortality, and is unresponsive to conventional endocrine and targeted therapy, making it a challenging problem for breast cancer treatment and a hotspot for scientific research. Recent research has revealed that certain miRNA can directly or indirectly affect the occurrence, progress and recurrence of TNBC. Their expression levels have a significant impact on TNBC diagnosis, treatment and prognosis. Some miRNAs can serve as biomarkers for TNBC diagnosis and prognosis. This article summarizes the progress of miRNA research in TNBC, discusses their roles in the occurrence, invasion, metastasis, prognosis, and chemotherapy of TNBC, and proposes a treatment strategy for TNBC by interfering with miRNA expression levels.
Collapse
Affiliation(s)
- Yeqin Fu
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiuhui Yang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongjian Yang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- *Correspondence: Hongjian Yang, ; Xiping Zhang,
| | - Xiping Zhang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- *Correspondence: Hongjian Yang, ; Xiping Zhang,
| |
Collapse
|
12
|
Abtahi NA, Naghib SM, Haghiralsadat F, Akbari Edgahi M, Askari E. A comparative study on biopharmaceutical function of curcumin and miR-34a by multistimuli-responsive nanoniosome carrier: In-vitro and in-vivo. Front Mol Biosci 2022; 9:1043277. [PMID: 36325275 PMCID: PMC9619056 DOI: 10.3389/fmolb.2022.1043277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/04/2022] [Indexed: 11/27/2022] Open
Abstract
This research conducted a comparative study on nanoscaled niosomal structures consisting of Tween-80, Tween-60, cholesterol, and dioleoyl-3-trimethylammonium propane (DOTAP). Thin-film hydration technique was used for the preparation and entrapment of curcumin and miRNA in niosomal formulations for enhancing the stability and delivery rate of the agents. Herein, the influence of Tween-80, Tween-60, cholesterol, and DOTAP on the entrapment efficiency (EE%) of curcumin and the physicochemical properties of the carrier are fully discussed. The optimum engineered formulation resulted in a positive charge of +11.23 mV, high EE (100%), smooth surface, spherical shape, small diameter (90 nm), and good stability in physiological buffers. Also, an accelerated cellular uptake, as well as drug release in PBS (pH 7.4, 37°C) after 72 h, were observed. The cytotoxic activity of curcumin (Cur)/miR-34a-loaded nanoparticles was determined by the MTT assay. The results displayed an improved cytotoxic activity of Cur-niosome towards cancer cells compared to free-dispersed Cur. The uptake of Cur-loaded niosome by A280s and A280cp-1 cancer cell lines faced 2.5 folds drop in the concentration compared to its free form. Generally, Cur-niosome exhibits a significant accumulation of superior anti-cancer properties. Likewise, the cytotoxicity of miR-34a-niosome against tumor cells was higher in comparison with its free form. The anti-cancer effects of the gene/drug delivery were investigated in the 4T1 xenografted Balb/C mouse tumor model. According to the in vitro and in vivo results, gene delivery from the modified niosome nanoparticles was distinctly greater than Cur delivery. Therefore, it was concluded that encapsulation of genes in the nano-niosomal delivery system is a promising procedure for the treatment of cancer cells.
Collapse
Affiliation(s)
- Najmeh Alsadat Abtahi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
- *Correspondence: Seyed Morteza Naghib, ; Fateme Haghiralsadat,
| | - Fateme Haghiralsadat
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- *Correspondence: Seyed Morteza Naghib, ; Fateme Haghiralsadat,
| | - Mohammadmahdi Akbari Edgahi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Esfandyar Askari
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
13
|
Chang JC, Chang HS, Yeh CY, Chang HJ, Cheng WL, Lin TT, Liu CS, Chen ST. Regulation of mitochondrial fusion and mitophagy by intra-tumoral delivery of membrane-fused mitochondria or Midiv-1 enhances sensitivity to doxorubicin in triple-negative breast cancer. Biomed Pharmacother 2022; 153:113484. [PMID: 36076583 DOI: 10.1016/j.biopha.2022.113484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022] Open
Abstract
Increasing mitochondrial fusion by intra-tumoral grafting of membrane-fused mitochondria created with Pep-1 conjugation (P-Mito) contributes to breast cancer treatment, but it needs to be validated. Using mitochondrial division inhibitor-1 (Mdivi-1, Mdi) to disturb mitochondrial dynamics, we showed that the antitumor action of P-Mito in a mouse model of triple-negative breast cancer depends upon mitochondrial fusion and that Mdi treatment alone is ineffective. P-Mito significantly enhanced Doxorubicin (Dox) sensitivity by inducing mitochondrial fusion and mitophagy, and the same efficiency was also achieved with Mdi by inhibiting mitophagy. Cell death was induced via the p53 pathway and AIF nuclear translocation in the case of P-Mito, versus the caspase-dependent pathway for Mdi. Notably, both mitochondrial treatments reduced oxidative stress and blood vessel density of xenograft tumors, especially P-Mito, which was accompanied by inhibition of nuclear factor kappa-B activation. Furthermore, through enrichment analysis, four microRNAs in serum microvesicles induced by P-Mito caused expression of predicted targets via the PI3K-Akt pathway, and significantly impacted regulation of nuclear processes and myeloid cell differentiation. Clustering of gene-sets implicated a major steroid catabolic network. This study showed diverse roles of mitochondria in breast cancer and revealed effective adjuvant therapy targeting mitochondrial fusion and mitophagy.
Collapse
Affiliation(s)
- Jui-Chih Chang
- Center of Regenerative Medicine and Tissue Repair, Institute of ATP, Changhua Christian Hospital, Changhua 50094, Taiwan.
| | - Huei-Shin Chang
- Center of Regenerative Medicine and Tissue Repair, Institute of ATP, Changhua Christian Hospital, Changhua 50094, Taiwan
| | - Cheng-Yi Yeh
- Center of Regenerative Medicine and Tissue Repair, Institute of ATP, Changhua Christian Hospital, Changhua 50094, Taiwan
| | - Hui-Ju Chang
- Center of Regenerative Medicine and Tissue Repair, Institute of ATP, Changhua Christian Hospital, Changhua 50094, Taiwan
| | - Wen-Ling Cheng
- Department of Vascular and Genomic Center, Changhua Christian Hospital, Changhua 50094, Taiwan
| | - Ta-Tsung Lin
- Department of Vascular and Genomic Center, Changhua Christian Hospital, Changhua 50094, Taiwan
| | - Chin-San Liu
- Department of Vascular and Genomic Center, Changhua Christian Hospital, Changhua 50094, Taiwan; Department of Neurology, Changhua Christian Hospital, Changhua 50094, Taiwan; School of Chinese Medicine, Graduate Institute of Chinese Medicine, Graduate Institute of Integrated Medicine, College of Chinese Medicine, Research Center for Chinese Medicine and Acupuncture, China Medical University, Taichung 40447, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shou-Tung Chen
- Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua 50094, Taiwan; Department of Medical Research, Changhua Christian Hospital, Changhua 50094, Taiwan.
| |
Collapse
|
14
|
Amiruddin A, Massi MN, Islam AA, Patellongi I, Pratama MY, Sutandyo N, Natzir R, Hatta M, Md Latar NH, Wahid S. microRNA-221 and tamoxifen resistance in luminal-subtype breast cancer patients: A case-control study. Ann Med Surg (Lond) 2022; 73:103092. [PMID: 35079352 PMCID: PMC8767262 DOI: 10.1016/j.amsu.2021.103092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 02/07/2023] Open
Abstract
Background Around 70% of breast cancers (BCs) are estrogen receptor-α (ERα)-positive. Adjuvant endocrine therapy is used to reduce estrogen levels and inhibit signal transduction through the ER. The anti-estrogen drugs that are most commonly used in endocrine therapy belong to the selective ER modulator (SERM) class and include tamoxifen. Although it has been used for three decades in cases of early-stage and ERα-positive BC, resistance to tamoxifen is a common problem. microRNAs (miRNAs) have a potential role in demonstrating BC resistance to tamoxifen therapy. Hence, there is a need to investigate the expression of miRNA-221 (miR-221) in luminal-subtype BC patients receiving tamoxifen therapy. Methods This case-control study investigated luminal-subtype BC patients who had undergone endocrine therapy for at least 1 year. The case group comprised patients with local or metastatic recurrence, and the control group comprised patients without local or metastatic recurrence. Results There was a significant difference in miR-221 expression (p = 0.005) between the case and control groups. There were no significant differences between the groups that were positive and negative for the progesterone receptor (PR) (p = 0.25), had high and low marker of proliferation Ki-67 levels (p = 0.60), were positive and negative for lymphovascular invasion (p = 0.14), and had stage 2 and stage 3 cancer (p = 0.25). Conclusion miR-221 expression was higher in tamoxifen-resistant BC cases. miR-221 is a potential biomarker of tamoxifen resistance. Tamoxifen is used to treat early-stage and estrogen receptor-α-positive breast cancer. Resistance to tamoxifen is a common problem. Serum microRNA-221 levels were higher in patients with local recurrence and metastasis. microRNA-221 is a potential serum biomarker of tamoxifen resistance.
Collapse
Affiliation(s)
- Alfiah Amiruddin
- Doctoral Program of Biomedical Sciences, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Muhammad Nassrum Massi
- Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Andi Asadul Islam
- Department of Neurosurgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Ilhamjaya Patellongi
- Department of Physiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Muhammad Yogi Pratama
- Department of Pathology Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Noorwati Sutandyo
- Department of Medical Hematology-Oncology, Dharmais Hospital National Cancer Center, Jakarta, Indonesia
| | - Rosdiana Natzir
- Department of Biochemistry, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
| | - Mochammad Hatta
- Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Nani Harlina Md Latar
- Endocrine and Breast Surgery Unit, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Syarifuddin Wahid
- Department of Pathology Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
15
|
Gastrointestinal cancer drug resistance: the role of exosomal miRNAs. Mol Biol Rep 2021; 49:2421-2432. [PMID: 34850336 DOI: 10.1007/s11033-021-07007-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/23/2021] [Indexed: 12/19/2022]
Abstract
Resistance of gastrointestinal (GI) cancer cells to therapeutic agents are one of the major problems in treating this type of cancer. Although the exact mechanism of drug resistance has not yet been fully elucidated, various factors have been identified as contributing factors involved in this process. Several studies have revealed the role of exosomes, especially exosomal microRNAs (miRNAs), in GI tumorigenesis, invasion, angiogenesis, and drug resistance. Exosomes, a type of small extracellular vesicles (EVs), are originated from endosomes and are released into the extracellular environment and body fluids by different cell types. Exosomes mediate cell-cell communication by transferring different cargos, including miRNAs, between parent and recipient cells. Therefore, identifying these exosomal miRNAs and their functions in GI cancers might provide new clues to further explore the secret of this process and thus help in drug-resistance management. This review article will discuss the roles of exosomal miRNAs and their mechanisms of action in drug resistance of different types of GI cancer cells (e.g., stomach, esophagus, liver, pancreas, and colon) to therapeutic agents.
Collapse
|
16
|
Chen W, Li Z, Deng P, Li Z, Xu Y, Li H, Su W, Qin J. Advances of Exosomal miRNAs in Breast Cancer Progression and Diagnosis. Diagnostics (Basel) 2021; 11:diagnostics11112151. [PMID: 34829498 PMCID: PMC8622700 DOI: 10.3390/diagnostics11112151] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is one of the most commonly diagnosed malignancies and the leading cause of cancer death in women worldwide. Although many factors associated with breast cancer have been identified, the definite etiology of breast cancer is still unclear. In addition, early diagnosis of breast cancer remains challenging. Exosomes are membrane-bound nanovesicles secreted by most types of cells and contain a series of biologically important molecules, such as lipids, proteins, and miRNAs, etc. Emerging evidence shows that exosomes can affect the status of cells by transmitting substances and messages among cells and are involved in various physiological and pathological processes. In breast cancer, exosomes play a significant role in breast tumorigenesis and progression through transfer miRNAs which can be potential biomarkers for early diagnosis of breast cancer. This review discusses the potential utility of exosomal miRNAs in breast cancer progression such as tumorigenesis, metastasis, immune regulation and drug resistance, and further in breast cancer diagnosis.
Collapse
Affiliation(s)
- Wenwen Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (W.C.); (P.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongyu Li
- College of Life Science, Dalian Minzu University, Dalian 116600, China;
| | - Pengwei Deng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (W.C.); (P.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengnan Li
- Clinical Laboratory, Dalian University Affiliated Xinhua Hospital, Dalian 116021, China;
| | - Yuhai Xu
- First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (Y.X.); (H.L.)
| | - Hongjing Li
- First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (Y.X.); (H.L.)
| | - Wentao Su
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: (W.S.); (J.Q.)
| | - Jianhua Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (W.C.); (P.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100049, China
- CAS Centre for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Correspondence: (W.S.); (J.Q.)
| |
Collapse
|
17
|
Heydari R, Abdollahpour-Alitappeh M, Shekari F, Meyfour A. Emerging Role of Extracellular Vesicles in Biomarking the Gastrointestinal Diseases. Expert Rev Mol Diagn 2021; 21:939-962. [PMID: 34308738 DOI: 10.1080/14737159.2021.1954909] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Extracellular vesicles (EVs) play an important role in cell-cell communication and regulation of various cellular functions under physiological and pathophysiological conditions through transferring their cargo to recipient cells. Molecular constituents of EVs are a fingerprinting profile of secreting cells which can be used as promising prognostic, diagnostic, and drug-response biomarkers in clinical settings. AREAS COVERED The present study provides a brief introduction about the biology of EVs and reviews methodologies used for EV isolation and characterization as well as high-throughput strategies to analyze EV contents. Furthermore, this review highlights the importance and unique role of EVs in the development and progression of gastrointestinal (GI) diseases, especially GI cancers, and then discusses their potential use, particularly those isolated from body fluids, in diagnosis and prognosis of GI diseases. EXPERT OPINION In-depth analysis of EV content can lead to the identification of new potential biomarkers for early diagnosis and prognosis prediction of GI diseases. The use of a more targeted approach by establishing more reproducible and standardized methods to decrease variations and obtain desired EV population as well as revisiting large pools of identified biomarkers and their evaluation in larger patient cohorts can result in the introduction of more reliable biomarkers in clinic.
Collapse
Affiliation(s)
- Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
18
|
Clinical Identification of Dysregulated Circulating microRNAs and Their Implication in Drug Response in Triple Negative Breast Cancer (TNBC) by Target Gene Network and Meta-Analysis. Genes (Basel) 2021; 12:genes12040549. [PMID: 33918859 PMCID: PMC8068962 DOI: 10.3390/genes12040549] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/28/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
Resistance to therapy is a persistent problem that leads to mortality in breast cancer, particularly triple-negative breast cancer (TNBC). MiRNAs have become a focus of investigation as tissue-specific regulators of gene networks related to drug resistance. Circulating miRNAs are readily accessible non-invasive potential biomarkers for TNBC diagnosis, prognosis, and drug-response. Our aim was to use systems biology, meta-analysis, and network approaches to delineate the drug resistance pathways and clinical outcomes associated with circulating miRNAs in TNBC patients. MiRNA expression analysis was used to investigate differentially regulated circulating miRNAs in TNBC patients, and integrated pathway regulation, gene ontology, and pharmacogenomic network analyses were used to identify target genes, miRNAs, and drug interaction networks. Herein, we identified significant differentially expressed circulating miRNAs in TNBC patients (miR-19a/b-3p, miR-25-3p, miR-22-3p, miR-210-3p, miR-93-5p, and miR-199a-3p) that regulate several molecular pathways (PAM (PI3K/Akt/mTOR), HIF-1, TNF, FoxO, Wnt, and JAK/STAT, PD-1/PD-L1 pathways and EGFR tyrosine kinase inhibitor resistance (TKIs)) involved in drug resistance. Through meta-analysis, we demonstrated an association of upregulated miR-93, miR-210, miR-19a, and miR-19b with poor overall survival outcomes in TNBC patients. These results identify miRNA-regulated mechanisms of drug resistance and potential targets for combination with chemotherapy to overcome drug resistance in TNBC. We demonstrate that integrated analysis of multi-dimensional data can unravel mechanisms of drug-resistance related to circulating miRNAs, particularly in TNBC. These circulating miRNAs may be useful as markers of drug response and resistance in the guidance of personalized medicine for TNBC.
Collapse
|
19
|
Qattan A. Novel miRNA Targets and Therapies in the Triple-Negative Breast Cancer Microenvironment: An Emerging Hope for a Challenging Disease. Int J Mol Sci 2020; 21:ijms21238905. [PMID: 33255471 PMCID: PMC7727826 DOI: 10.3390/ijms21238905] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
Treatment of triple-negative breast cancer (TNBC) remains challenging because of the heterogeneity of the disease and lack of single targetable driving mutations. TNBC does not rely on estrogen, progesterone or epidermal growth factor receptors and is associated with aggressive disease progression and poor prognosis. TNBC is also characterized by resistance to chemotherapeutics, and response to immunotherapies is limited despite promising results in a subset of TNBC patients. MicroRNAs (miRNAs) have emerged as significant drivers of tumorigenesis and tumor progression in triple-negative breast cancer (TNBC) and present unique opportunities to target various components of the TNBC microenvironment for improved efficacy against this difficult to treat cancer. Effects of miRNAs on multiple targets may improve response rates in the context of this genetically and biologically heterogeneous disease. In this review, we offer a comprehensive view of miRNA regulation in TNBC, treatment challenges presented by TNBC in the context of the tumor microenvironment and stem cell subpopulations, and current and emerging miRNA-based therapeutic strategies targeting various components of the TNBC microenvironment. In addition, we offer insight into novel targets that have potential for treating TNBC through multiple mechanisms in the tumor microenvironment simultaneously and those that may be synergistic with standard chemotherapies.
Collapse
Affiliation(s)
- Amal Qattan
- Breast Cancer Research Unit, Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; or
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences (SMHS), George Washington University, Washington, DC 20073, USA
| |
Collapse
|
20
|
Tabor S, Szostakowska-Rodzos M, Fabisiewicz A, Grzybowska EA. How to Predict Metastasis in Luminal Breast Cancer? Current Solutions and Future Prospects. Int J Mol Sci 2020; 21:ijms21218415. [PMID: 33182512 PMCID: PMC7665153 DOI: 10.3390/ijms21218415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/28/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer metastasis is the main cause of breast cancer mortality. Luminal breast cancer represents the majority of breast cancer cases and, despite relatively good prognosis, its heterogeneity creates problems with a proper stratification of patients and correct identification of the group with a high risk of metastatic relapse. Current prognostic tools are based on the analysis of the primary tumor and, despite their undisputed power of prediction, they might be insufficient to foresee the relapse in an accurate and precise manner, especially if the relapse occurs after a long period of dormancy, which is very common in luminal breast cancer. New approaches tend to rely on body fluid analyses, which have the advantage of being non-invasive and versatile and may be repeated and used for monitoring the disease in the long run. In this review we describe the current, newly-developed, and only-just-discovered methods which are or may become useful in the assessment of the probability of the relapse.
Collapse
|
21
|
Jafari A, Rezaei-Tavirani M, Salimi M, Tavakkol R, Jafari Z. Oncological Emergencies from Pathophysiology and Diagnosis to Treatment: A Narrative Review. SOCIAL WORK IN PUBLIC HEALTH 2020; 35:689-709. [PMID: 32967589 DOI: 10.1080/19371918.2020.1824844] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oncological emergencies are defined as any acute possible morbid or life-threatening events in patients with cancer either because of the malignancy or because of their treatment. These events may occur at any time during malignancy, from symptoms present to end-stage disease. The aim of this study is the review of urgent conditions results from cancer or cancer treatment side effects that need to be addressed immediately. In this study, a comprehensive and in-depth narrative review was carried out by searching the databases of PubMed, Scopus, Science Direct, Google Scholar with the keywords of "cancer, emergency, metabolic emergency, neutropenic fever" along with the words, "tumor lysis syndrome, chemotherapeutic emergency, diagnosis, treatment " in last two decades. Patients suffering from cancer mostly face the challenges that we are classified in different categories, including metabolic, hematologic, cardiovascular, neurologic, respiratory, infectious, and chemotherapeutic emergencies. These patients mostly complain of headaches, nausea, pain, and fever. In conclusion, knowledge of oncology emergencies and palliative care as part of a team approach is critical for treating cancer patients. In this light, it is pivotal for physicians to focus on the early detection of oncological emergencies. Moreover, training programs for cancer patients help them to timely recognize and report the oncologic emergency symptoms, leading to avoid deleterious consequences and unnecessary healthcare costs as well as improve the quality of life in these patients.
Collapse
Affiliation(s)
- Ameneh Jafari
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
- Proteomics Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Maryam Salimi
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Reza Tavakkol
- Department of Nursing, School of Nursing, Larestan University of Medical Sciences , Larestan, Iran
| | - Zahra Jafari
- 9 dey Manzariye Hospital, Isfahan University of Medical Sciences , Isfahan, Iran
| |
Collapse
|
22
|
Jafari D, Malih S, Eini M, Jafari R, Gholipourmalekabadi M, Sadeghizadeh M, Samadikuchaksaraei A. Improvement, scaling-up, and downstream analysis of exosome production. Crit Rev Biotechnol 2020; 40:1098-1112. [PMID: 32772758 DOI: 10.1080/07388551.2020.1805406] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exosomes are the most researched extracellular vesicles. In many biological, physiological, and pathological studies, they have been identified as suitable candidates for treatment and diagnosis of diseases by acting as the carriers of both drugs and genes. Considerable success has been achieved regarding the use of exosomes for tissue regeneration, cancer diagnosis, and targeted drug/gene delivery to specific tissues. While major progress has been made in exosome extraction and purification, extraction of large quantities of exosomes is still a major challenge. This issue limits the scope of both exosome-based research and therapeutic development. In this review, we have aimed to summarize experimental studies focused at increasing the number of exosomes. Biotechnological studies aimed at identifying the pathways of exosome biogenesis to manipulate some genes in order to increase the production of exosomes. Generally, two major strategies are employed to increase the production of exosomes. First, oogenesis pathways are genetically manipulated to overexpress activator genes of exosome biogenesis and downregulate the genes involved in exosome recycling pathways. Second, manipulation of the cell culture medium, treatment with specific drugs, and limiting certain conditions can force the cell to produce more exosomes. In this study, we have reviewed and categorized these strategies. It is hoped that the information presented in this review will provide a better understanding for expanding biotechnological approaches in exosome-based therapeutic development.
Collapse
Affiliation(s)
- Davod Jafari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Malih
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Eini
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rasool Jafari
- Department of Medical Parasitology and Mycology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Samadikuchaksaraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Zhang ZJ, Song XG, Xie L, Wang KY, Tang YY, Yu M, Feng XD, Song XR. Circulating serum exosomal miR-20b-5p and miR-3187-5p as efficient diagnostic biomarkers for early-stage non-small cell lung cancer. Exp Biol Med (Maywood) 2020; 245:1428-1436. [PMID: 32741216 DOI: 10.1177/1535370220945987] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
IMPACT STATEMENT The high mortality of non-small cell lung cancer (NSCLC) is mainly because the cancer has progressed to a more advanced stage before diagnosis. If NSCLC can be diagnosed at early stages, especially stage 0 or I, the overall survival rate will be largely improved by definitive treatment such as lobectomy. We herein validated two novel circulating serum ExmiRs as diagnostic biomarkers for early-stage NSCLC to fulfill the unmet medical need. Considering the number of specimens in this study, circulating serum exosomal miR-20b-5p and miR-3187-5p are putative NSCLC biomarkers, which need to be further investigated in a larger randomized controlled clinical trial.
Collapse
Affiliation(s)
- Zhi-Jun Zhang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Cheeloo College of Medicine, Shandong University, Shandong 250117, China.,Department of Clinical Laboratory, Taian City Central Hospital, Shandong 271000, China
| | - Xing-Guo Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong 250117, China
| | - Li Xie
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong 250117, China
| | - Kang-Yu Wang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong 250117, China
| | - You-Yong Tang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong 250117, China
| | - Miao- Yu
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Cheeloo college of Medicine, Shandong University, Shandong 250031, China
| | - Xiao-Dong Feng
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Shandong 266000, China
| | - Xian-Rang Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong 250117, China
| |
Collapse
|
24
|
Najminejad H, Farhadihosseinabadi B, Dabaghian M, Dezhkam A, Rigi Yousofabadi E, Najminejad R, Abdollahpour-Alitappeh M, Karimi MH, Bagheri N, Mahi-Birjand M, Ghasemi N, Mazaheri M, Kalantar SM, Seifalian A, Sheikhha MH. Key Regulatory miRNAs and their Interplay with Mechanosensing and Mechanotransduction Signaling Pathways in Breast Cancer Progression. Mol Cancer Res 2020; 18:1113-1128. [PMID: 32430354 DOI: 10.1158/1541-7786.mcr-19-1229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/14/2020] [Accepted: 05/15/2020] [Indexed: 11/16/2022]
Abstract
According to the WHO, breast cancer is the most common cancer in women worldwide. Identification of underlying mechanisms in breast cancer progression is the main concerns of researches. The mechanical forces within the tumor microenvironment, in addition to biochemical stimuli such as different growth factors and cytokines, activate signaling cascades, resulting in various changes in cancer cell physiology. Cancer cell proliferation, invasiveness, migration, and, even, resistance to cancer therapeutic agents are changed due to activation of mechanotransduction signaling. The mechanotransduction signaling is frequently dysregulated in breast cancer, indicating its important role in cancer cell features. So far, a variety of experimental investigations have been conducted to determine the main regulators of the mechanotransduction signaling. Currently, the role of miRNAs has been well-defined in the cancer process through advances in molecular-based approaches. miRNAs are small groups of RNAs (∼22 nucleotides) that contribute to various biological events in cells. The central role of miRNAs in the regulation of various mediators involved in the mechanotransduction signaling has been well clarified over the last decade. Unbalanced expression of miRNAs is associated with different pathologic conditions. Overexpression and downregulation of certain miRNAs were found to be along with dysregulation of mechanotransduction signaling effectors. This study aimed to critically review the role of miRNAs in the regulation of mediators involved in the mechanosensing pathways and clarify how the cross-talk between miRNAs and their targets affect the cell behavior and physiology of breast cancer cells.
Collapse
Affiliation(s)
- Hamid Najminejad
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behrouz Farhadihosseinabadi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Dabaghian
- Research and Development Department, Razi Vaccine and serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Asiyeh Dezhkam
- Department of Midwifery, School of Nursing and Midwifery, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | | | - Reza Najminejad
- Department of Internal Medicine, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | | | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Motahareh Mahi-Birjand
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nasrin Ghasemi
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahta Mazaheri
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mehdi Kalantar
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (Ltd), The London BioScience Innovation Centre, London, United Kingdom.
| | - Mohammad Hasan Sheikhha
- Genetics and Biotechnology Lab, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
25
|
Shi ZY, Yang XX, Malichewe C, Li YS, Guo XL. Exosomal microRNAs-mediated intercellular communication and exosome-based cancer treatment. Int J Biol Macromol 2020; 158:530-541. [PMID: 32360962 DOI: 10.1016/j.ijbiomac.2020.04.228] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/26/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023]
Abstract
Exosomes are extracellular vesicles with a diameter of about 30 to 100 nm, which play a crucial role in intercellular communication. Compared with normal cells, the release rate of tumor-derived exosomes (TDEs) significantly increased, and exosomal contents, especially microRNAs (miRNAs), greatly changed. TDEs contribute to the proliferation, metastasis and resistance of tumor cells, regulate immune response and tumor autophagy, and mediate tumor-stroma communication. In addition, exosomes may be involved in tumor complications. In view of the role of exosomes in intercellular communication, exosomes have been developed as tumor biomarkers, therapeutic targets, and drug delivery systems for tumor diagnosis, prognosis and treatment. Despite the many advantages of exosomes, there are many challenges in exosomal development and application, such as incomprehensive understanding of biological functions, safety and specificity for therapeutic use. This article reviews the biogenesis of TDEs and focuses on the role of exosomal miRNAs in intercellular communication and exosome-based treatment for cancer.
Collapse
Affiliation(s)
- Zhao-Yu Shi
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Xiao-Xia Yang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - ChristinaYallen Malichewe
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Ying-Shuang Li
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Xiu-Li Guo
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China..
| |
Collapse
|
26
|
Pan X, Hong X, Lai J, Cheng L, Cheng Y, Yao M, Wang R, Hu N. Exosomal MicroRNA-221-3p Confers Adriamycin Resistance in Breast Cancer Cells by Targeting PIK3R1. Front Oncol 2020; 10:441. [PMID: 32426266 PMCID: PMC7212418 DOI: 10.3389/fonc.2020.00441] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/12/2020] [Indexed: 11/13/2022] Open
Abstract
Drug resistance in breast cancer (BC) cells continues to be a stern obstacle hindering BC treatment. Adriamycin (ADR) is a frequently employed chemotherapy agent used to treat BC. The exosomal transfer of microRNAs (miRNAs) has been reported to enhance the drug-resistance of BC cells. Herein, we first sought to elucidate the possible role of the exosomal transfer of miR-221-3p in the drug resistance of MCF-7 cells to ADR. Differentially expressed genes (DEGs) were initially screened through microarray analysis in BC drug resistance-related datasets. Next, the expression of miR-221-3p and phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) was quantified in ADR-resistant MCF-7 (MCF-7/ADR) and ADR-sensitive MCF-7 (MCF-7/S) cell lines, after which exosomes were separated and identified in each cell line. Target relationship between miR-221-3p and PIK3R1 was validated by a dual-luciferase reporter assay. Next, the expression of miR-221-3p and PIK3R1 was altered to clarify their effects on the resistance of MCF-7 cells to ADR in vitro and in vivo. PIK3R1 was identified as a BC drug resistance-related DEG, with the regulatory miR-221-3p subsequently obtained. Moreover, the MCF-7/ADR cells exhibited a low expression of PIK3R1 and a high expression of miR-221-3p. Notably, PIK3R1 was identified as a target gene of miR-221-3p. The overexpression of miR-221-3p in MCF-7/ADR cell-derived exosomes promoted ADR resistance in MCF-7/S cells via the PI3K/AKT signaling pathway. The in vitro results were reproducible in in vivo assays. Taken together, drug-resistant BC cell-derived exosomal miR-221-3p can promote the resistance of BC cells to ADR by targeting PIK3R1 via the PI3K/AKT signaling pathway in vitro and in vivo. These findings provide encouraging insights and provide perspectives for further investigation into the BC drug resistance mechanism.
Collapse
Affiliation(s)
- Xiaoping Pan
- Clinical Laboratory, Huadu Hospital, Southern Medical University, Guangzhou, China
| | - Xiaolv Hong
- Department of Infectious Diseases, Huadu Hospital, Southern Medical University, Guangzhou, China
| | - Jinguo Lai
- Clinical Laboratory, Huadu Hospital, Southern Medical University, Guangzhou, China
| | - Lu Cheng
- Clinical Laboratory, Huadu Hospital, Southern Medical University, Guangzhou, China
| | - Yandong Cheng
- Department of Breast Surgery, Huadu Hospital, Southern Medical University, Guangzhou, China
| | - Mingmei Yao
- Clinical Laboratory, Huadu Hospital, Southern Medical University, Guangzhou, China
| | - Rong Wang
- Clinical Laboratory, Huadu Hospital, Southern Medical University, Guangzhou, China
| | - Na Hu
- Clinical Laboratory, Huadu Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Jafari A, Rezaei-Tavirani M, Farhadihosseinabadi B, Taranejoo S, Zali H. HSP90 and Co-chaperones: Impact on Tumor Progression and Prospects for Molecular-Targeted Cancer Therapy. Cancer Invest 2020; 38:310-328. [PMID: 32274949 DOI: 10.1080/07357907.2020.1752227] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Heat shock protein 90 (HSP90), a highly and unique chaperone, presents as a double-edged sword. It plays an essential role in many physiological and pathological processes, including tumor development. The current review highlights a recent understanding of the roles of HSP90 in molecular mechanisms underlying cancer survival and progression. HSP90 and its client proteins through the regulation of oncoproteins including signaling proteins, receptors, and transcriptional factors involved in tumorigenesis. It also has potential clinical application as diagnostic and prognostic biomarkers for assessing cancer progression. In this way, using HSP90 to develop new anticancer therapeutic agents including HSP90 inhibitors, anti-HSP90 antibody, and HSP90-based vaccines has been promising.
Collapse
Affiliation(s)
- Ameneh Jafari
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Proteomics Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shahrouz Taranejoo
- Wellman Centre for Photomedicine, Harvard-MIT Division of Health Sciences and Technology (HST), Boston, MA, USA
| | - Hakimeh Zali
- Department of Tissue engineering and applied cell, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Yaghoubi S, Najminejad H, Dabaghian M, Karimi MH, Abdollahpour-Alitappeh M, Rad F, Mahi-Birjand M, Mohammadi S, Mohseni F, Sobhani Lari M, Teymouri GH, Rigi Yousofabadi E, Salmani A, Bagheri N. How hypoxia regulate exosomes in ischemic diseases and cancer microenvironment? IUBMB Life 2020; 72:1286-1305. [PMID: 32196941 DOI: 10.1002/iub.2275] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/08/2020] [Indexed: 12/14/2022]
Abstract
Exosomes, as natural occurring vesicles, play highly important roles in the behavior and fate of ischemic diseases and different tumors. Secretion, composition, and function of exosomes are remarkably influenced by hypoxia in ischemic diseases and tumor microenvironment. Exosomes secreted from hypoxic cells affect development, growth, angiogenesis, and progression in ischemic diseases and tumors through a variety of signaling pathways. In this review article, we discuss how hypoxia affects the quantity and quality of exosomes, and review the mechanisms by which hypoxic cell-derived exosomes regulate ischemic cell behaviors in both cancerous and noncancerous cells.
Collapse
Affiliation(s)
- Sajad Yaghoubi
- Department of Clinical Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Hamid Najminejad
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehran Dabaghian
- Research and Development Department, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | | | | | - Fariba Rad
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Motahareh Mahi-Birjand
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Shiva Mohammadi
- Department of Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Mohammad Sobhani Lari
- Cellular and Molecular Biology Research Center, Larestan University of Medical Sciences, Larestan, Iran
| | | | | | | | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
29
|
Autin P, Blanquart C, Fradin D. Epigenetic Drugs for Cancer and microRNAs: A Focus on Histone Deacetylase Inhibitors. Cancers (Basel) 2019; 11:E1530. [PMID: 31658720 PMCID: PMC6827107 DOI: 10.3390/cancers11101530] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/09/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
Over recent decades, it has become clear that epigenetic abnormalities are involved in the hallmarks of cancer. Histone modifications, such as acetylation, play a crucial role in cancer development and progression, by regulating gene expression, such as for oncogenes or tumor suppressor genes. Therefore, histone deacetylase inhibitors (HDACi) have recently shown efficacy against both hematological and solid cancers. Designed to target histone deacetylases (HDAC), these drugs can modify the expression pattern of numerous genes including those coding for micro-RNAs (miRNA). miRNAs are small non-coding RNAs that regulate gene expression by targeting messenger RNA. Current research has found that miRNAs from a tumor can be investigated in the tumor itself, as well as in patient body fluids. In this review, we summarized current knowledge about HDAC and HDACi in several cancers, and described their impact on miRNA expression. We discuss briefly how circulating miRNAs may be used as biomarkers of HDACi response and used to investigate response to treatment.
Collapse
Affiliation(s)
- Pierre Autin
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.
| | - Christophe Blanquart
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.
| | - Delphine Fradin
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.
| |
Collapse
|