1
|
Zhang X, Shi L, Chen C, Ma Y, Ma Y. The role of miRNA in IBS pathogenesis, diagnosis and therapy: The latest thought. Dig Liver Dis 2024; 56:1433-1441. [PMID: 38342744 DOI: 10.1016/j.dld.2024.01.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/13/2024]
Abstract
IBS is a prevalent clinical condition affecting bowel function. There is a restricted comprehension of its pathogenesis, an absence of particular diagnostic tools, and an insufficiency of efficient pharmacological remedies. MiRNAs are a highly conserved class of non-coding small molecule RNAs, with a length of 20-24 nucleotides. Research has shown the presence of a number of differentially expressed miRNAs in the colonic tissue and peripheral blood of IBS patients. Meanwhile, miRNAs have a critical role in gene expression and the pathology of IBS as they act as significant mediators of post-transcriptional gene silencing. The investigation of miRNA molecular regulatory networks proves useful in examining the convoluted pathogenesis of IBS. This paper presents a review of recent literature on miRNAs associated with IBS, explains how miRNAs contribute to the development of IBS, and assesses the potential usefulness of miRNA analysis for diagnosing and treating IBS.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Shi
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chen Chen
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuning Ma
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yuxia Ma
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
2
|
Chen Y, Meng X, Zheng H, Gu Y, Zhu W, Wang S, Lin J, Li T, Liao M, Li Y, Guo S, Ding X. Deciphering the pharmacological mechanisms of Shenlingbaizhu formula in antibiotic-associated diarrhea treatment: Network pharmacological analysis and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118129. [PMID: 38582151 DOI: 10.1016/j.jep.2024.118129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shenlingbaizhu (SLBZ) formula, a classical traditional Chinese medicinal (TCM) formula, has been widely used for treating antibiotic-associated diarrhea (AAD). However, the underlying pharmacological mechanisms have not yet been investigated thoroughly. AIM OF THE STUDY To explore the remission mechanism of SLBZ in the treatment of AAD, we conducted network pharmacological analysis and experimental validation in vitro and in vivo. MATERIALS AND METHODS In this study, the main compounds of SLBZ were identified by ultra-high-performance liquid chromatography-mass spectroscopy (UHPLC-MS) and online databases. The targets of the active components and AAD-related targets were predicted by network pharmacology, and the potential targets of SLBZ against AAD were obtained. Then the core targets were recognized after Protein-Protein Interaction (PPI) analysis. Based on these, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analyses were conducted, and the key pathway was screened. Subsequently, molecular docking was performed using Auto Dock Vina to find the key components that played a crucial role in that pathway. Molecular dynamics simulation was performed by Gromacs software to detect the binding mode. Finally, the results were confirmed by in vitro and in vivo experiments. RESULTS A total of 66 active ingredients of SLBZ were detected by UHPLC-MS, and 128 active ingredients were screened out by network pharmacological analysis. Additionally, 935 drug targets and 1686 AAD-related targets were obtained. Seventy-eight intersected genes were selected as potential therapeutic targets and 19 genes were excavated as core targets. Enrichment analysis revealed PI3K-AKT signaling pathway was the key pathway in SLBZ against AAD. Topological analysis further revealed that JAK2, MTOR, TLR4, and SYK were the key targets affected by SLBZ on the PI3K-AKT pathway, and 52 components of SLBZ were associated with them. Molecular docking and dynamics simulation revealed strong binding affinities between MTOR and diosgenin. Subsequently, after SLBZ treatment, the expression levels of JAK2, MTOR, TLR4, and SYK were found significantly upregulated in the AAD model rats (p < 0.05). The cell experiment further validated the good binding ability between MTOR and diosgenin. CONCLUSION We demonstrate that the therapeutic effect of SLBZ on AAD was achieved in part by inhibiting the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Yan Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiangmei Meng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Haocheng Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yixiao Gu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wanhong Zhu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Sici Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Lin
- National Institute of Traditional Chinese Medicine Constitution and Treatment of Disease, Beijing University of Chinese Medicine, Beijing, China
| | - Tao Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mengting Liao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Shuzhen Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Research Center for Spleen and Stomach Diseases of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
3
|
Chen H, Xu Z, Zhao H, Cao J, Wang R, He J, Nie R, Jia J, Yuan S, Li Y, Liu Z, Zhang X, Ha L, Xu X, Li T. Global research states and trends of micro RNA in irritable bowel syndrome: a bibliometric analysis. Clin Exp Med 2024; 24:149. [PMID: 38967892 PMCID: PMC11226481 DOI: 10.1007/s10238-024-01396-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Irritable bowel syndrome (IBS) is a common chronic gastrointestinal disorder, but its diagnosis and treatment remain obscure. Non-coding RNAs (ncRNAs), as potential biomarkers, have attracted increasing attention in digestive diseases. Here, we present a comprehensive research status, development trends, and valuable insights in this subject area. The literature search was performed using Web of Science Core Collection. VOSviewer 1.6.20, Citespace 6.2.R4, and Microsoft Excel 2021 were used for bibliometric analysis. A total of 124 articles were included in the analysis. Overall, publication patterns fluctuated. Globally, People's Republic of China, the USA, and Germany were the top three contributors of publications. Guangzhou University of Chinese Medicine, University of California, Mayo Clinic, and University of California, Los Angeles contributed the highest number of publications. The pathways and specific mechanisms by which ncRNAs regulate transcription and translation and thus regulate the pathophysiological processes of IBS are the main research hotspots in this field. We found that microRNA (miRNAs) are intricately involved in the regulation of key pathologies such as viscera sensitivity, intestinal permeability, intestinal mucosal barrier, immunoinflammatory response, and brain-gut axis in the IBS, and these topics have garnered significant attention in research community. Notably, microecological disorders are also associated with IBS pathogenesis, and ncRNA may play an important role in the interactions between host and intestinal flora. This is the first bibliometric study to comprehensively summarize the research hotspots and trends related to IBS and ncRNAs (especially miRNAs). Our findings will help understand the role of ncRNAs in IBS and provide guidance to future studies.
Collapse
Affiliation(s)
- Hongxiu Chen
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China
| | - Zhifang Xu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, No. 10, Poyang Lake Road, West District, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West District, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Honggang Zhao
- Shenzhen Hospital of Integrated Chinese and Western Medicine, 528 Xinsha Road, Shajing Street, Baoan District, Shenzhen, People's Republic of China
| | - Jiazhen Cao
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China
| | - Rui Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West District, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Jing He
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China
| | - Ru Nie
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China
| | - Jialin Jia
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China
| | - Shuting Yuan
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China
| | - Yonghong Li
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China
| | - Zhicheng Liu
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China
| | - Xinyu Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West District, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Lijuan Ha
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China.
| | - Xiaoru Xu
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China.
| | - Tie Li
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China.
| |
Collapse
|
4
|
Lv Y, Li H, Zhai BT, Sun J, Cheng JX, Zhang XF, Guo DY. Evidence of synergistic mechanisms of hepatoprotective botanical herbal preparation of Pueraria montana var. lobata and Schisandra sphenanthera. Front Pharmacol 2024; 15:1412816. [PMID: 38978983 PMCID: PMC11228302 DOI: 10.3389/fphar.2024.1412816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Background Pueraria montana var. lobata (Willd.) Maesen & S.M.Almeida ex Sanjappa & Predeep (syn. Pueraria lobata (Willd.) Ohwi) and Schisandra sphenanthera Rehder & E.H. Wilson are traditional edible and medicinal hepatoprotective botanical drugs. Studies have shown that the combination of two botanical drugs enhanced the effects of treating acute liver injury (ALI), but the synergistic effect and its action mechanisms remain unclear. This study aimed to investigate the synergistic effect and its mechanism of the combination of Pueraria montana var. lobata (Willd.) Maesen & S.M.Almeida ex Sanjappa & Predeep (syn. Pueraria lobata (Willd.) Ohwi) (PM) and Schisandra sphenanthera Rehder & E.H. Wilson (SS) in the treatment of ALI. Methods High performance liquid chromatography (HPLC) were utilized to conduct the chemical interaction analysis. Then the synergistic effects of botanical hybrid preparation of PM-SS (BHP PM-SS) against ALI were comprehensively evaluated by the CCl4 induced ALI mice model. Afterwards, symptom-oriented network pharmacology, transcriptomics and metabolomics were applied to reveal the underlying mechanism of action. Finally, the key target genes were experimentally by RT-qPCR. Results Chemical analysis and pharmacodynamic experiments revealed that BHP PM-SS was superior to the single botanical drug, especially at 2:3 ratio, with a better dissolution rate of active ingredients and synergistic anti-ALI effect. Integrated symptom-oriented network pharmacology combined with transcriptomics and metabolomics analyses showed that the active ingredients of BHP PM-SS could regulate Glutathione metabolism, Pyrimidine metabolism, Arginine biosynthesis and Amino acid sugar and nucleotide sugar metabolism, by acting on the targets of AKT1, TNF, EGFR, JUN, HSP90AA1 and STAT3, which could be responsible for the PI3K-AKT signaling pathway, MAPK signaling pathway and Pathway in cancer to against ALI. Conclusion Our study has provided compelling evidence for the synergistic effect and its mechanism of the combination of BHP PM-SS, and has contributed to the development and utilization of BHP PM-SS dietary supplements.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dong-Yan Guo
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, China
| |
Collapse
|
5
|
Cao B, Xu Q, Shi Y, Zhao R, Li H, Zheng J, Liu F, Wan Y, Wei B. Pathology of pain and its implications for therapeutic interventions. Signal Transduct Target Ther 2024; 9:155. [PMID: 38851750 PMCID: PMC11162504 DOI: 10.1038/s41392-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
Pain is estimated to affect more than 20% of the global population, imposing incalculable health and economic burdens. Effective pain management is crucial for individuals suffering from pain. However, the current methods for pain assessment and treatment fall short of clinical needs. Benefiting from advances in neuroscience and biotechnology, the neuronal circuits and molecular mechanisms critically involved in pain modulation have been elucidated. These research achievements have incited progress in identifying new diagnostic and therapeutic targets. In this review, we first introduce fundamental knowledge about pain, setting the stage for the subsequent contents. The review next delves into the molecular mechanisms underlying pain disorders, including gene mutation, epigenetic modification, posttranslational modification, inflammasome, signaling pathways and microbiota. To better present a comprehensive view of pain research, two prominent issues, sexual dimorphism and pain comorbidities, are discussed in detail based on current findings. The status quo of pain evaluation and manipulation is summarized. A series of improved and innovative pain management strategies, such as gene therapy, monoclonal antibody, brain-computer interface and microbial intervention, are making strides towards clinical application. We highlight existing limitations and future directions for enhancing the quality of preclinical and clinical research. Efforts to decipher the complexities of pain pathology will be instrumental in translating scientific discoveries into clinical practice, thereby improving pain management from bench to bedside.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qixuan Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yajiao Shi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
6
|
Musket A, Moorman JP, Zhang J, Jiang Y. PKIB, a Novel Target for Cancer Therapy. Int J Mol Sci 2024; 25:4664. [PMID: 38731883 PMCID: PMC11083500 DOI: 10.3390/ijms25094664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The serine-threonine kinase protein kinase A (PKA) is a cyclic AMP (cAMP)-dependent intracellular protein with multiple roles in cellular biology including metabolic and transcription regulation functions. The cAMP-dependent protein kinase inhibitor β (PKIB) is one of three known endogenous protein kinase inhibitors of PKA. The role of PKIB is not yet fully understood. Hormonal signaling is correlated with increased PKIB expression through genetic regulation, and increasing PKIB expression is associated with decreased cancer patient prognosis. Additionally, PKIB impacts cancer cell behavior through two mechanisms; the first is the nuclear modulation of transcriptional activation and the second is the regulation of oncogenic AKT signaling. The limited research into PKIB indicates the oncogenic potential of PKIB in various cancers. However, some studies suggest a role of PKIB in non-cancerous disease states. This review aims to summarize the current literature and background of PKIB regarding cancer and related issues. In particular, we will focus on cancer development and therapeutic possibilities, which are of paramount interest in PKIB oncology research.
Collapse
Affiliation(s)
- Anna Musket
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (A.M.); (J.P.M.)
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Jonathan P. Moorman
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (A.M.); (J.P.M.)
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37614, USA
| | - Jinyu Zhang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (A.M.); (J.P.M.)
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Yong Jiang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (A.M.); (J.P.M.)
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
7
|
Wu Y, Li S, Lv L, Jiang S, Xu L, Chen H, Li L. Protective effect of Pediococcus pentosaceus Li05 on diarrhea-predominant irritable bowel syndrome in rats. Food Funct 2024; 15:3692-3708. [PMID: 38488110 DOI: 10.1039/d3fo04904c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Pediococcus pentosaceus Li05 (Li05) has demonstrated potential benefits in various intestinal and liver diseases, but its potential and mechanisms in relieving diarrhea have not been understood. The objective of this research was to examine the effects and mechanisms of Li05 in rats with diarrhea-predominant irritable bowel syndrome (IBS-D) induced by wrap restrain stress (WRS) and 4% acetic acid. The results demonstrated that Li05 effectively alleviated weight loss, visceral sensitivity and diarrhea in rats with IBS-D. It also improved intestinal and systemic inflammation by reducing the levels of chemokines and proinflammatory cytokines (GRO/KC, RANTES, IL-1β, IL-7, and IL-18). The 5-hydroxytryptamine (5-HT) signaling pathway is involved in regulating excessive intestinal motility and secretion in IBS-D. Li05 effectively reduced the expression levels of the 5-HT3B receptor (5-HT3BR) (p < 0.01) in the intestine. Additionally, Li05 intervention had a regulatory effect on the gut composition, with a decrease in the abundance of [Ruminococcus] gauvreauii group, Dubosiella, Erysipelatoclostridium and Blautia, and an increase in the abundance of Alloprevotella, Anaerotruncus and Mucispirillum. Furthermore, Li05 induced significant changes in fatty acid and amino acid metabolism in the gut of rats with IBS-D. These findings indicate that Li05 exhibits an effective improvement in IBS-D symptoms by reducing inflammation and modulating gut microbiota and metabolism. Based on the above results, Li05 holds promise as a potential probiotic for managing IBS-D.
Collapse
Affiliation(s)
- Youhe Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Shengjie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Shiman Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Lvwan Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Hui Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| |
Collapse
|
8
|
Zhang Y, Qu Q, Lei X, Zhao X, Zhang X, Wei X, Tang Y, Duan X, Song X. Quality markers of Guchang Zhixie pills based on multicomponent qualitative and quantitative analysis combined with network pharmacology and chemometric analysis. J Pharm Biomed Anal 2024; 240:115934. [PMID: 38157739 DOI: 10.1016/j.jpba.2023.115934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Traditional Chinese medicine Guchang Zhixie pills(GCZX) is one of the famous varieties of "Qin medicine" that has been extensively applied to treating irritable bowel syndrome(IBS). However, despite the acknowledged clinical advantages of GCZX there are significant constraints on its quality control and evaluation. The present study utilized UHPLC-Q-Exactive-Orbitrap-MS to analyze the chemical composition of GCZX. Additionally, network pharmacology approaches were utilized to explore the underlying mechanism by which blood components exert therapeutic effects in the treatment of IBS. Furthermore, the GCZX samples were evaluated for their quality on the basis of the qualitative results obtained from 25 batches of GCZX samples using fingerprinting; subsequently, multivariate statistical analysis methods were employed for further analysis. The results indicated the presence of 198 individual components. Among them, 17 prototype compounds were detected in the serum of rats that were administered with GCZX. The potential therapeutic mechanism of GCZX in the treatment of IBS may be associated with the modulation of the neurological system, the immunological system, and the inflammatory response. Moreover, a total of seven prominent peaks were identified after fingerprint analysis. The range of fingerprint similarity among the 25 batches of samples varied from 0.843 to 1.000. The application of chemometrics analysis successfully facilitated the categorical classification of 25 batches of GCZX into three distinct groups. Seven components hold significant importance and should be duly considered during the quality control process of GCZX. The present study can establish the Q-Markers of GCZX for IBS, thereby providing a foundation for investigating the theoretical underpinnings and elucidating the mechanisms underlying the therapeutic effects of GCZX in the treatment of IBS.
Collapse
Affiliation(s)
- Ying Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Qiong Qu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xuan Lei
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xiaomei Zhao
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xinbo Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xuan Wei
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yingying Tang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xi Duan
- Department of Laboratory Medicine, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Xiao Song
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Engineering Research Center for Pharmaceutics of Chinese Materia Medica and New Drug Development, Ministry of Education, Beijing 100029, China.
| |
Collapse
|
9
|
Leite G, de Freitas Germano J, Morales W, Weitsman S, Barlow GM, Parodi G, Pimentel ML, Villanueva-Millan MJ, Sanchez M, Ayyad S, Rezaie A, Mathur R, Pimentel M. Cytolethal distending toxin B inoculation leads to distinct gut microtypes and IBS-D-like microRNA-mediated gene expression changes in a rodent model. Gut Microbes 2024; 16:2293170. [PMID: 38108386 PMCID: PMC10730147 DOI: 10.1080/19490976.2023.2293170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023] Open
Abstract
Diarrhea-predominant irritable bowel syndrome (IBS-D), associated with increased intestinal permeability, inflammation, and small intestinal bacterial overgrowth, can be triggered by acute gastroenteritis. Cytolethal distending toxin B (CdtB) is produced by gastroenteritis-causing pathogens and may underlie IBS-D development, through molecular mimicry with vinculin. Here, we examine the effects of exposure to CdtB alone on gut microbiome composition, host intestinal gene expression, and IBS-D-like phenotypes in a rat model. CdtB-inoculated rats exhibited increased anti-CdtB levels, which correlated with increased stool wet weights, pro-inflammatory cytokines (TNFα, IL2) and predicted microbial metabolic pathways including inflammatory responses, TNF responses, and diarrhea. Three distinct ileal microbiome profiles (microtypes) were identified in CdtB-inoculated rats. The first microtype (most like controls) had altered relative abundance (RA) of genera Bifidobacterium, Lactococcus, and Rothia. The second had lower microbial diversity, higher Escherichia-Shigella RA, higher absolute E. coli abundance, and altered host ileal tissue expression of immune-response and TNF-response genes compared to controls. The third microtype had higher microbial diversity, higher RA of hydrogen sulfide (H2S)-producer Desulfovibrio, and increased expression of H2S-associated pain/serotonin response genes. All CdtB-inoculated rats exhibited decreased ileal expression of cell junction component mRNAs, including vinculin-associated proteins. Significantly, cluster-specific microRNA-mRNA interactions controlling intestinal permeability, visceral hypersensitivity/pain, and gastrointestinal motility genes, including several previously associated with IBS were seen. These findings demonstrate that exposure to CdtB toxin alone results in IBS-like phenotypes including inflammation and diarrhea-like stool, decreased expression of intestinal barrier components, and altered ileal microtypes that influenced changes in microRNA-modulated gene expression and predicted metabolic pathways consistent with specific IBS-D symptoms.
Collapse
Affiliation(s)
- Gabriela Leite
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | | | - Walter Morales
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Stacy Weitsman
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Gillian M Barlow
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Gonzalo Parodi
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Maya L Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | | | - Maritza Sanchez
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Sarah Ayyad
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Ali Rezaie
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| | - Ruchi Mathur
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| |
Collapse
|
10
|
Wen Y, Wang X, Si K, Xu L, Huang S, Zhan Y. Exploring the Mechanisms of Self-made Kuiyu Pingchang Recipe for the Treatment of Ulcerative Colitis and Irritable Bowel Syndrome using a Network Pharmacology-based Approach and Molecular Docking. Curr Comput Aided Drug Des 2024; 20:534-550. [PMID: 37190808 DOI: 10.2174/1573409919666230515103224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 03/24/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) and irritable bowel syndrome (IBS) are common intestinal diseases. According to the clinical experience and curative effect, the authors formulated Kuiyu Pingchang Decoction (KYPCD) comprised of Paeoniae radix alba, Aurantii Fructus, Herba euphorbiae humifusae, Lasiosphaera seu Calvatia, Angelicae sinensis radix, Panax ginseng C.A. Mey., Platycodon grandiforus and Allium azureum Ledeb. OBJECTIVE The aim of the present study was to explore the mechanisms of KYPCD in the treatment of UC and IBS following the Traditional Chinese Medicine (TCM) theory of "Treating different diseases with the same treatment". METHODS The chemical ingredients and targets of KYPCD were obtained using the Traditional Chinese Medicine Systems Pharmacology database and analysis platform (TCMSP). The targets of UC and IBS were extracted using the DisGeNET, GeneCards, DrugBANK, OMIM and TTD databases. The "TCM-component-target" network and the "TCM-shared target-disease" network were imaged using Cytoscape software. The protein-protein interaction (PPI) network was built using the STRING database. The DAVID platform was used to analyze the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Using Autodock Tools software, the main active components of KYPCD were molecularly docked with their targets and visualized using PyMOL. RESULTS A total of 46 active ingredients of KYPCD corresponding to 243 potential targets, 1,565 targets of UC and 1,062 targets of IBS, and 70 targets among active ingredients and two diseases were screened. Core targets in the PPI network included IL6, TNF, AKT1, IL1B, TP53, EGFR and VEGFA. GO and KEGG enrichment analysis demonstrated 563 biological processes, 48 cellular components, 82 molecular functions and 144 signaling pathways. KEGG enrichment results revealed that the regulated pathways were mainly related to the PI3K-AKT, MAPK, HIF-1 and IL-17 pathways. The results of molecular docking analysis indicated that the core active ingredients of KYPCD had optimal binding activity to their corresponding targets. CONCLUSION KYPCD may use IL6, TNF, AKT1, IL1B, TP53, EGFR and VEGFA as the key targets to achieve the treatment of UC and IBS through the PI3K-AKT, MAPK, HIF-1 and IL-17 pathways.
Collapse
Affiliation(s)
- Yong Wen
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Anorectal Integration of Traditional Chinese and Western Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Xiaoxiang Wang
- Gastroenterology Department, Chengdu First People's Hospital, Chengdu, 610000, China
| | - Ke Si
- Gastroenterology Department, Chengdu First People's Hospital, Chengdu, 610000, China
| | - Ling Xu
- Anorectal Department, Luzhou Hospital of Traditional Chinese Medicine, Luzhou, 646000, China
| | - Shuoyang Huang
- Gastrointestinal Surgery Department, Chengdu Second People's Hospital, Chengdu, 610017, China
| | - Yu Zhan
- Gastroenterology Department, Chengdu First People's Hospital, Chengdu, 610000, China
- Anorectal Department, Chengdu First People's Hospital, Chengdu, 610000, China
- Anorectal Department, Affiliated Hospital of Integrative Chinese Medicine and Western Medicine of Chengdu University of TCM, Chengdu 610041, China
| |
Collapse
|
11
|
Datta N, Johnson C, Kao D, Gurnani P, Alexander C, Polytarchou C, Monaghan TM. MicroRNA-based therapeutics for inflammatory disorders of the microbiota-gut-brain axis. Pharmacol Res 2023; 194:106870. [PMID: 37499702 DOI: 10.1016/j.phrs.2023.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
An emerging but less explored shared pathophysiology across microbiota-gut-brain axis disorders is aberrant miRNA expression, which may represent novel therapeutic targets. miRNAs are small, endogenous non-coding RNAs that are important transcriptional repressors of gene expression. Most importantly, they regulate the integrity of the intestinal epithelial and blood-brain barriers and serve as an important communication channel between the gut microbiome and the host. A well-defined understanding of the mode of action, therapeutic strategies and delivery mechanisms of miRNAs is pivotal in translating the clinical applications of miRNA-based therapeutics. Accumulating evidence links disorders of the microbiota-gut-brain axis with a compromised gut-blood-brain-barrier, causing gut contents such as immune cells and microbiota to enter the bloodstream leading to low-grade systemic inflammation. This has the potential to affect all organs, including the brain, causing central inflammation and the development of neurodegenerative and neuropsychiatric diseases. In this review, we have examined in detail miRNA biogenesis, strategies for therapeutic application, delivery mechanisms, as well as their pathophysiology and clinical applications in inflammatory gut-brain disorders. The research data in this review was drawn from the following databases: PubMed, Google Scholar, and Clinicaltrials.gov. With increasing evidence of the pathophysiological importance for miRNAs in microbiota-gut-brain axis disorders, therapeutic targeting of cross-regulated miRNAs in these disorders displays potentially transformative and translational potential. Further preclinical research and human clinical trials are required to further advance this area of research.
Collapse
Affiliation(s)
- Neha Datta
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Charlotte Johnson
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Pratik Gurnani
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Cameron Alexander
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Christos Polytarchou
- Department of Biosciences, John van Geest Cancer Research Centre, School of Science & Technology, Nottingham Trent University, Nottingham, UK.
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK.
| |
Collapse
|
12
|
Dothel G, Barbaro MR, Di Vito A, Ravegnini G, Gorini F, Monesmith S, Coschina E, Benuzzi E, Fuschi D, Palombo M, Bonomini F, Morroni F, Hrelia P, Barbara G, Angelini S. New insights into irritable bowel syndrome pathophysiological mechanisms: contribution of epigenetics. J Gastroenterol 2023; 58:605-621. [PMID: 37160449 PMCID: PMC10307698 DOI: 10.1007/s00535-023-01997-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/19/2023] [Indexed: 05/11/2023]
Abstract
Irritable bowel syndrome (IBS) is a complex multifactorial condition including alterations of the gut-brain axis, intestinal permeability, mucosal neuro-immune interactions, and microbiota imbalance. Recent advances proposed epigenetic factors as possible regulators of several mechanisms involved in IBS pathophysiology. These epigenetic factors include biomolecular mechanisms inducing chromosome-related and heritable changes in gene expression regardless of DNA coding sequence. Accordingly, altered gut microbiota may increase the production of metabolites such as sodium butyrate, a prominent inhibitor of histone deacetylases. Patients with IBS showed an increased amount of butyrate-producing microbial phila as well as an altered profile of methylated genes and micro-RNAs (miRNAs). Importantly, gene acetylation as well as specific miRNA profiles are involved in different IBS mechanisms and may be applied for future diagnostic purposes, especially to detect increased gut permeability and visceromotor dysfunctions. In this review, we summarize current knowledge of the role of epigenetics in IBS pathophysiology.
Collapse
Affiliation(s)
- Giovanni Dothel
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Connect By Circular Lab SRL, Madrid, Spain
| | | | - Aldo Di Vito
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Gloria Ravegnini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Francesca Gorini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Sarah Monesmith
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Emma Coschina
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Eva Benuzzi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Marta Palombo
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Bonomini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Fabiana Morroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | - Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Inter-Departmental Center for Health Sciences & Technologies, CIRI-SDV, University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Zhu N, Zhu L, Zhang X, Huang C, Xiang W, Huang B. Triptolide attenuates irritable bowel syndrome via inhibiting ODC1. BMC Gastroenterol 2023; 23:202. [PMID: 37308808 DOI: 10.1186/s12876-023-02847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 06/06/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a chronic disorder of the gut-brain axis with significant morbidity. Triptolide, an active compound extracted from Tripterygium wilfordii Hook F (TwHF), has been widely used as a major medicinal herb in the treatment of inflammatory disease. METHODS The chronic-acute combined stress (CAS) stimulation was used to establish IBS rat model. The model rats were then gavaged with triptolide. Forced swimming, marble-burying, fecal weight and abdominal withdrawal reflex (AWR) score were recorded. Pathologic changes in the ileal and colonic tissues were validated by hematoxylin and eosin staining. The inflammatory cytokines and Ornithine Decarboxylase-1 (ODC1) in the ileal and colonic tissues were performed by ELISA and WB. RESULTS Triptolide didn't have antidepressant- and antianxiety- effects in rats caused by CAS, but decreased fecal weight and AWR score. In addition, Triptolide reduced the release of IL-1, IL-6, and TNF-α and the expression of ODC1 in the ileum and colon. CONCLUSION The therapeutic efficacy of triptolide for IBS induced by CAS was revealed in this study, which may be related to the reduction of ODC1.
Collapse
Affiliation(s)
- Ning Zhu
- Department of Cardiology, The Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, No. 299 Guan Road, Wenzhou, 325000, Zhejiang Province, People's Republic of China.
| | - Liuyan Zhu
- Department of General Practice, The Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, No. 299 Guan Road, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Xueliang Zhang
- Department of General Practice, The Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, No. 299 Guan Road, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Chengbin Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Wenjun Xiang
- Department of Pathology, The Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, No. 299 Guan Road, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Bingwu Huang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325000, Zhejiang Province, People's Republic of China.
| |
Collapse
|
14
|
Mechanism of Wuyao-Ginseng Medicine Pair in the Prevention and Treatment of Diarrhea-Type Irritable Bowel Syndrome Based on Gene Expression Omnibus Chip Data. Life (Basel) 2023; 13:life13020339. [PMID: 36836696 PMCID: PMC9961312 DOI: 10.3390/life13020339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Based on a Gene Expression Omnibus (GEO) chip analysis combined with network pharmacology and molecular docking technology, in this study we explored the molecular targets and mechanism of the wuyao-ginseng medicine pair in the prevention and treatment of diarrhea-type irritable bowel syndrome (IBS-D). The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) was used to search for the chemical constituents and targets of wuyao and ginseng. The UniProt database was used to search for the target gene name. In the GEO database, IBS was searched to obtain GSE36701 and GSE14841 microarray data. We imported the intersection targets into the STRING database to construct a protein-protein interaction (PPI) network. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (Go) pathway analyses were performed using the Metascape database. A total of 30 active ingredients of wuyao-ginseng, 171 drug targets, 1257 IBS differentially expressed genes, and 20 drug-disease intersection genes were obtained from the GEO data. We screened the results and obtained the core active ingredients beta-sitosterol, DMPEC, Boldine, etc.; the core targets NCOA2, EGFR, VEGFA, etc.; and the key pathways P13K-Akt, MAPK, etc. The wuyao-ginseng medicine pair may be involved in inflammation-related signaling pathways, acting on disease targets such as NCOA2, EGFR, and VEGFA as well as pathways such as P13K-Akt and MAPK, thereby playing a key role in the prevention and treatment of IBS-D.
Collapse
|
15
|
Functional Implications and Clinical Potential of MicroRNAs in Irritable Bowel Syndrome: A Concise Review. Dig Dis Sci 2023; 68:38-53. [PMID: 35507132 PMCID: PMC9066399 DOI: 10.1007/s10620-022-07516-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023]
Abstract
MicroRNAs (miRNAs) are tiny (20-24 nucleotides long), non-coding, highly conserved RNA molecules that play a crucial role within the post-transcriptional regulation of gene expression via sequence-specific mechanisms. Since the miRNA transcriptome is involved in multiple molecular processes needed for cellular homeostasis, its altered expression can trigger the development and progression of several human pathologies. In this context, over the last few years, several relevant studies have demonstrated that dysregulated miRNAs affect a wide range of molecular mechanisms associated with irritable bowel syndrome (IBS), a common gastrointestinal disorder. For instance, abnormal miRNA expression in IBS patients is related to the alteration of intestinal permeability, visceral hyperalgesia, inflammatory pathways, and pain sensitivity. Besides, specific miRNAs are differentially expressed in the different subtypes of IBS, and therefore, they might be used as biomarkers for precise diagnosis of these pathological conditions. Accordingly, miRNAs have noteworthy potential as theragnostic targets for IBS. Hence, in this current review, we present an overview of the recent discoveries regarding the clinical relevance of miRNAs in IBS, which might be useful in the future for the development of miRNA-based drugs against this disorder.
Collapse
|
16
|
MicroRNA-16 inhibits the TLR4/NF-κB pathway and maintains tight junction integrity in irritable bowel syndrome with diarrhea. J Biol Chem 2022; 298:102461. [PMID: 36067883 PMCID: PMC9647533 DOI: 10.1016/j.jbc.2022.102461] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 01/27/2023] Open
Abstract
Irritable bowel syndrome with diarrhea (IBS-D) is a chronic and relapsing inflammatory disorder in which pathogenesis has been shown to be in part the result of miRNA-mediated signaling. Here, we investigated the alleviatory role of miR-16 in IBS-D. First, we established an IBS-D mouse model using colonic instillation of acetic acid and developed an IBS-D cell model using lipopolysaccharide exposure. The experimental data demonstrated that miR-16 was underexpressed in the serum of IBS-D patients, as well as in the colorectal tissues of IBS-D mouse models and lipopolysaccharide-exposed intestinal epithelial cells. Next, miR-16 and TLR4 were overexpressed or inhibited to characterize their roles in the viability and apoptosis of intestinal epithelial cells, inflammation, and epithelial tight junction. We found that miR-16 overexpression increased the viability of intestinal epithelial cells, maintained tight junction integrity, and inhibited cell apoptosis and inflammation. We showed that miR-16 targeted TLR4 and inhibited the TLR4/NF-κB signaling pathway. Additionally, inhibition of NF-κB suppressed the long noncoding RNA XIST, thereby promoting enterocyte viability, inhibiting apoptosis and cytokine production, and maintaining tight junction integrity. In vivo experiments further verified the alleviatory effect of miR-16 on IBS-D symptoms in mice. Taken together, we conclude that miR-16 downregulates XIST through the TLR4/NF-κB pathway, thereby relieving IBS-D. This study suggests that miR-16 may represent a potential target for therapeutic intervention against IBS-D.
Collapse
|
17
|
Nishi K, Fu W, Kiyama R. Novel estrogen-responsive genes (ERGs) for the evaluation of estrogenic activity. PLoS One 2022; 17:e0273164. [PMID: 35976950 PMCID: PMC9385026 DOI: 10.1371/journal.pone.0273164] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/03/2022] [Indexed: 11/19/2022] Open
Abstract
Estrogen action is mediated by various genes, including estrogen-responsive genes (ERGs). ERGs have been used as reporter-genes and markers for gene expression. Gene expression profiling using a set of ERGs has been used to examine statistically reliable transcriptomic assays such as DNA microarray assays and RNA sequencing (RNA-seq). However, the quality of ERGs has not been extensively examined. Here, we obtained a set of 300 ERGs that were newly identified by six sets of RNA-seq data from estrogen-treated and control human breast cancer MCF-7 cells. The ERGs exhibited statistical stability, which was based on the coefficient of variation (CV) analysis, correlation analysis, and examination of the functional association with estrogen action using database searches. A set of the top 30 genes based on CV ranking were further evaluated quantitatively by RT-PCR and qualitatively by a functional analysis using the GO and KEGG databases and by a mechanistic analysis to classify ERα/β-dependent or ER-independent types of transcriptional regulation. The 30 ERGs were characterized according to (1) the enzymes, such as metabolic enzymes, proteases, and protein kinases, (2) the genes with specific cell functions, such as cell-signaling mediators, tumor-suppressors, and the roles in breast cancer, (3) the association with transcriptional regulation, and (4) estrogen-responsiveness. Therefore, the ERGs identified here represent various cell functions and cell signaling pathways, including estrogen signaling, and thus, may be useful to evaluate estrogenic activity.
Collapse
Affiliation(s)
- Kentaro Nishi
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University Matsukadai, Higashi-ku, Fukuoka, Japan
| | - Wenqiang Fu
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University Matsukadai, Higashi-ku, Fukuoka, Japan
| | - Ryoiti Kiyama
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University Matsukadai, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
18
|
Down-regulating GRP78 reverses pirarubicin resistance of triple negative breast cancer by miR-495-3p mimics and involves the p-AKT/mTOR pathway. Biosci Rep 2021; 42:230551. [PMID: 34935899 PMCID: PMC8738866 DOI: 10.1042/bsr20210245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 11/23/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
Due to the lack of known therapeutic targets for triple-negative breast cancer (TNBC), chemotherapy is the only available pharmacological treatment. Pirarubicin (tetrahydropyranyl Adriamycin, THP) is the most commonly used anthracycline chemotherapy agent. However, TNBC has a high recurrence rate after chemotherapy, and the mechanisms of chemoresistance and recurrence are not entirely understood. To study the chemoresistance mechanisms, we first screened compounds on a pirarubicin-resistant cell line (MDA-MB-231R) derived from MDA-MB-231. The drug resistance index of MDA-MB-231R cells was approximately five times higher than that of MDA-MB-231 cells. MDA-MB-231R cells have higher GRP78 and lower miR-495-3p expression levels than MDA-MB-231 cells. Transfecting MDA-MB-231R cells with a siGRP78 plasmid reduced GRP78 expression, which restored pirarubicin sensitivity. Besides, transfecting MDA-MB-231R cells with miR-495-3p mimics increased miR-495-3p expression, which also reversed pirarubicin chemoresistance. Cell counting kit-8 (CCK-8), EdU, wound healing, and Transwell assays showed that the miR-495-3p mimics also inhibited cell proliferation and migration. Based on our results, miR-495-3p mimics could down-regulate GRP78 expression via the p-AKT/mTOR signaling pathway in TNBC cells. Remarkably, chemo-resistant and chemo-sensitive TNBC tissues had opposite trends in GRP78 and miR-495-3p expressions. The lower the GRP78 and the higher the miR-495-3p expression, the better prognosis in TNBC patients. Therefore, the mechanism of pirarubicin resistance might involve the miR-495-3p/GRP78/Akt axis, which would provide a possible strategy for treating TNBC.
Collapse
|
19
|
Zhang Y, Yu F, Hao J, Nsabimana E, Wei Y, Chang X, Liu C, Wang X, Li Y. Study on the Effective Material Basis and Mechanism of Traditional Chinese Medicine Prescription (QJC) Against Stress Diarrhea in Mice. Front Vet Sci 2021; 8:724491. [PMID: 34671661 PMCID: PMC8520981 DOI: 10.3389/fvets.2021.724491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022] Open
Abstract
Stress diarrhea is a major challenge for weaned piglets and restricts pig production efficiency and incurs massive economic losses. A traditional Chinese medicine prescription (QJC) composed of Astragalus propinquus Schischkin (HQ), Zingiber officinale Roscoe (SJ), and Plantago asiatica L. (CQC) has been developed by our laboratory and shows marked anti-stress diarrhea effect. However, the active compounds, potential targets, and mechanism of this effect remain unclear and warrant further investigation. In our study, we verified the bioactive compounds of QJC and relevant mechanisms underlying the anti-stress diarrhea effect through network pharmacology and in vivo experimental studies. After establishing a successful stress-induced diarrhea model, histomorphology of intestinal mucosa was studied, and Quantitative real-time PCR (RT-qPCR) probe was used for the phosphoinositide 3-kinase (PI3K)-Akt signaling pathway to verify the therapeutic effect of QJC on diarrhea. First, using the network pharmacology approach, we identified 35 active components and 130 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in QJC. From among these, we speculated that quercetin, luteolin, kaempferol, scutellarein, and stigmasterol were the main bioactive compounds and assumed that the anti-diarrhea effect of QJC was related to the PI3K-Akt signaling pathway. The RT-qPCR indicated that QJC and its bioactive components increased the expression levels of PI3K and Akt, inhibited the expression of phosphatase and tensin homolog (PTEN), and activated the PI3K-Akt signaling pathway to relieve stress-induced diarrhea. Furthermore, we found that QJC alleviated the pathological condition of small intestine tissue and improved the integrity of the intestinal barrier. Taken together, our study showed that the traditional Chinese medicine QJC, quercetin, luteolin, kaempferol, scutellarein, and stigmasterol alleviated the pathological condition of small intestine tissue and relieved stress-induced diarrhea by increasing the expression levels of PI3K and Akt and inhibiting the expression levels of PTEN.
Collapse
Affiliation(s)
- Yuefeng Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Fei Yu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jingyou Hao
- Harbin Lvda Sheng Animal Medicine Manufacture Co., Ltd., Harbin, China
| | - Eliphaz Nsabimana
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanru Wei
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaohan Chang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chang Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaozhen Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanhua Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Harbin Herb and Herd Bio-Technology Co., Ltd., Harbin, China
| |
Collapse
|
20
|
Singh R, Zogg H, Ro S. Role of microRNAs in Disorders of Gut-Brain Interactions: Clinical Insights and Therapeutic Alternatives. J Pers Med 2021; 11:jpm11101021. [PMID: 34683162 PMCID: PMC8541612 DOI: 10.3390/jpm11101021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Disorders of gut–brain interactions (DGBIs) are heterogeneous in nature and intertwine with diverse pathophysiological mechanisms. Regular functioning of the gut requires complex coordinated interplay between a variety of gastrointestinal (GI) cell types and their functions are regulated by multiple mechanisms at the transcriptional, post-transcriptional, translational, and post-translational levels. MicroRNAs (miRNAs) are small non-coding RNA molecules that post-transcriptionally regulate gene expression by binding to specific mRNA targets to repress their translation and/or promote the target mRNA degradation. Dysregulation of miRNAs might impair gut physiological functions leading to DGBIs and gut motility disorders. Studies have shown miRNAs regulate gut functions such as visceral sensation, gut immune response, GI barrier function, enteric neuronal development, and GI motility. These biological processes are highly relevant to the gut where neuroimmune interactions are key contributors in controlling gut homeostasis and functional defects lead to DGBIs. Although extensive research has explored the pathophysiology of DGBIs, further research is warranted to bolster the molecular mechanisms behind these disorders. The therapeutic targeting of miRNAs represents an attractive approach for the treatment of DGBIs because they offer new insights into disease mechanisms and have great potential to be used in the clinic as diagnostic markers and therapeutic targets. Here, we review recent advances regarding the regulation of miRNAs in GI pacemaking cells, immune cells, and enteric neurons modulating pathophysiological mechanisms of DGBIs. This review aims to assess the impacts of miRNAs on the pathophysiological mechanisms of DGBIs, including GI dysmotility, impaired intestinal barrier function, gut immune dysfunction, and visceral hypersensitivity. We also summarize the therapeutic alternatives for gut microbial dysbiosis in DGBIs, highlighting the clinical insights and areas for further exploration. We further discuss the challenges in miRNA therapeutics and promising emerging approaches.
Collapse
Affiliation(s)
| | | | - Seungil Ro
- Correspondence: ; Tel.: +1-775-784-1462; Fax: +1-775-784-6903
| |
Collapse
|
21
|
Singh R, Wei L, Ghoshal UC. Micro-organic basis of functional gastrointestinal (GI) disorders: Role of microRNAs in GI pacemaking cells. Indian J Gastroenterol 2021; 40:102-110. [PMID: 33738768 DOI: 10.1007/s12664-021-01159-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Rajan Singh
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, 89557, USA
| | - Lai Wei
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, 89557, USA
| | - Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226 014, India.
| |
Collapse
|
22
|
Tan X, Pei W, Xie C, Wang Z, Mao T, Zhao X, Kou F, Lu Q, Sun Z, Xue X, Li J. Network Pharmacology Identifies the Mechanisms of Action of Tongxie Anchang Decoction in the Treatment of Irritable Bowel Syndrome with Diarrhea Predominant. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:2723705. [PMID: 33281910 PMCID: PMC7685835 DOI: 10.1155/2020/2723705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
AIM This study aims to uncover the pharmacological mechanism of Tongxie Anchang Decoction (TXACD), a new and effective traditional Chinese medicine (TCM) prescription, for treating irritable bowel syndrome with diarrhea predominant (IBS-D) using network pharmacology. METHODS The active compounds and putative targets of TXACD were retrieved from TCMSP database and published literature; related target genes of IBS-D were retrieved from GeneCards; PPI network of the common target hub gene was constructed by STRING. Furthermore, these hub genes were analyzed using gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. RESULTS A total of 54 active compounds and 639 targets were identified through a database search. The compound-target network was constructed, and the key compounds were screened out according to the degree. By using the PPI and GO and KEGG enrichment analyses, the pharmacological mechanism network of TXACD in the treatment of IBS-D was constructed. CONCLUSIONS This study revealed the possible mechanisms by which TXACD treatment alleviated IBS-D involvement in the modulation of multiple targets and multiple pathways, including the immune regulation, inflammatory response, and oxidative stress. These findings provide novel insights into the regulatory role of TXACD in the prevention and treatment of IBS-D and hold promise for herb-based complementary and alternative therapy.
Collapse
Affiliation(s)
- Xiang Tan
- Graduate School of Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Wenjing Pei
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Chune Xie
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Zhibin Wang
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Tangyou Mao
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Xingjie Zhao
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Fushun Kou
- Graduate School of Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Qiongqiong Lu
- Graduate School of Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Zhongmei Sun
- Graduate School of Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Xiaoxuan Xue
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Junxiang Li
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| |
Collapse
|
23
|
Ashrafizadeh M, Zarrabi A, Orouei S, Saberifar S, Salami S, Hushmandi K, Najafi M. Recent advances and future directions in anti-tumor activity of cryptotanshinone: A mechanistic review. Phytother Res 2020; 35:155-179. [PMID: 33507609 DOI: 10.1002/ptr.6815] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/29/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
In respect to the enhanced incidence rate of cancer worldwide, studies have focused on cancer therapy using novel strategies. Chemotherapy is a common strategy in cancer therapy, but its adverse effects and chemoresistance have limited its efficacy. So, attempts have been directed towards minimally invasive cancer therapy using plant derived-natural compounds. Cryptotanshinone (CT) is a component of salvia miltiorrihiza Bunge, well-known as Danshen and has a variety of therapeutic and biological activities such as antioxidant, anti-inflammatory, anti-diabetic and neuroprotective. Recently, studies have focused on anti-tumor activity of CT against different cancers. Notably, this herbal compound is efficient in cancer therapy by targeting various molecular signaling pathways. In the present review, we mechanistically describe the anti-tumor activity of CT with an emphasis on molecular signaling pathways. Then, we evaluate the potential of CT in cancer immunotherapy and enhancing the efficacy of chemotherapy by sensitizing cancer cells into anti-tumor activity of chemotherapeutic agents, and elevating accumulation of anti-tumor drugs in cancer cells. Finally, we mention strategies to enhance the anti-tumor activity of CT, for instance, using nanoparticles to provide targeted drug delivery.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.,Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, Turkey
| | - Sima Orouei
- MSc. Student, Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sedigheh Saberifar
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Saeed Salami
- DVM. Graduated, Kazerun Branch, Islamic Azad University, Kazeroon, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|