1
|
Huang YH, Lin SY, Ou LC, Huang WC, Chao PK, Chang YC, Chang HF, Lee PT, Yeh TK, Kuo YH, Tien YW, Xi JH, Tao PL, Chen PY, Chuang JY, Shih C, Chen CT, Tung CW, Loh HH, Ueng SH, Yeh SH. Discovery of a mu-opioid receptor modulator that in combination with morphinan antagonists induces analgesia. Cell Chem Biol 2024:S2451-9456(24)00272-1. [PMID: 39025070 DOI: 10.1016/j.chembiol.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/09/2024] [Accepted: 06/22/2024] [Indexed: 07/20/2024]
Abstract
Morphinan antagonists, which block opioid effects at mu-opioid receptors, have been studied for their analgesic potential. Previous studies have suggested that these antagonists elicit analgesia with fewer adverse effects in the presence of the mutant mu-opioid receptor (MOR; S196A). However, introducing a mutant receptor for medical applications represents significant challenges. We hypothesize that binding a chemical compound to the MOR may elicit a comparable effect to the S196A mutation. Through high-throughput screening and structure-activity relationship studies, we identified a modulator, 4-(2-(4-fluorophenyl)-4-oxothiazolidin-3-yl)-3-methylbenzoic acid (BPRMU191), which confers agonistic properties to small-molecule morphinan antagonists, which induce G protein-dependent MOR activation. Co-application of BPRMU191 and morphinan antagonists resulted in MOR-dependent analgesia with diminished side effects, including gastrointestinal dysfunction, antinociceptive tolerance, and physical and psychological dependence. Combining BPRMU191 and morphinan antagonists could serve as a potential therapeutic strategy for severe pain with reduced adverse effects and provide an avenue for studying G protein-coupled receptor modulation.
Collapse
Affiliation(s)
- Yi-Han Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan; Research Center for Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Shu-Yu Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Li-Chin Ou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Wei-Cheng Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Po-Kuan Chao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Yung-Chiao Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Hsiao-Fu Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Pin-Tse Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Yu-Hsien Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Ya-Wen Tien
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Jing-Hua Xi
- Department of Pharmacology, Medical School University of Minnesota, Minneapolis, MN 55455-0217, USA
| | - Pao-Luh Tao
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Pin-Yuan Chen
- Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Chang Gung University, Keelung 20401, Taiwan
| | - Jian-Ying Chuang
- Research Center for Neuroscience, Taipei Medical University, Taipei 110, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan
| | - Chuan Shih
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Chun-Wei Tung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Horace H Loh
- Department of Pharmacology, Medical School University of Minnesota, Minneapolis, MN 55455-0217, USA; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.
| | - Shau-Hua Ueng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan; School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Shiu-Hwa Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan.
| |
Collapse
|
2
|
Chao PK, Chang HF, Ou LC, Chuang JY, Lee PT, Chang WT, Chen SC, Ueng SH, Hsu JTA, Tao PL, Law PY, Loh HH, Yeh SH. Convallatoxin enhance the ligand-induced mu-opioid receptor endocytosis and attenuate morphine antinociceptive tolerance in mice. Sci Rep 2019; 9:2405. [PMID: 30787373 PMCID: PMC6382827 DOI: 10.1038/s41598-019-39555-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/07/2019] [Indexed: 11/29/2022] Open
Abstract
Morphine is a unique opioid analgesic that activates the mu-opioid receptor (MOR) without efficiently promoting its endocytosis that may underlie side effects. Our objective was to discover a novel enhancer of ligand-induced MOR endocytosis and determine its effects on analgesia, tolerance and dependence. We used high-throughput screening to identify convallatoxin as an enhancer of ligand-induced MOR endocytosis with high potency and efficacy. Treatment of cells with convallatoxin enhanced morphine-induced MOR endocytosis through an adaptor protein 2 (AP2)/clathrin-dependent mechanism, attenuated morphine-induced phosphorylation of MOR, and diminished desensitization of membrane hyperpolarization. Furthermore, co-treatment with chronic convallatoxin reduced morphine tolerance in animal models of acute thermal pain and chronic inflammatory pain. Acute convallatoxin administration reversed morphine tolerance and dependence in morphine-tolerant mice. These findings suggest convallatoxin are potentially therapeutic for morphine side effects and open a new avenue to study MOR trafficking.
Collapse
Affiliation(s)
- Po-Kuan Chao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Hsiao-Fu Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Li-Chin Ou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Jian-Ying Chuang
- The PhD Program for Neural Regenerative Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Pin-Tse Lee
- Cellular Pathobiology Section, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Baltimore, MD, 21224, USA
| | - Wan-Ting Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Shu-Chun Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Shau-Hua Ueng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - John Tsu-An Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Pao-Luh Tao
- Center for Neuropsychiatric Research, National Heath Research Institutes, Zhunan, 35053, Taiwan
| | - Ping-Yee Law
- Department of Pharmacology, Medical School University of Minnesota, Minneapolis, MN, 55455-0217, USA
| | - Horace H Loh
- Department of Pharmacology, Medical School University of Minnesota, Minneapolis, MN, 55455-0217, USA
| | - Shiu-Hwa Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, 35053, Taiwan.
- The PhD Program for Neural Regenerative Medicine, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
3
|
Vardanyan RS, Cain JP, Haghighi SM, Kumirov VK, McIntosh MI, Sandweiss AJ, Porreca F, Hruby VJ. Synthesis and Investigation of Mixed μ-Opioid and δ-Opioid Agonists as Possible Bivalent Ligands for Treatment of Pain. J Heterocycl Chem 2017; 54:1228-1235. [PMID: 28819330 PMCID: PMC5557416 DOI: 10.1002/jhet.2696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several studies have suggested functional association between μ-opioid and δ-opioid receptors and showed that μ-activity could be modulated by δ-ligands. The general conclusion is that agonists for the δ-receptor can enhance the analgesic potency and efficacy of μ-agonists. Our preliminary investigations demonstrate that new bivalent ligands constructed from the μ-agonist fentanyl and the δ-agonist enkephalin-like peptides are promising entities for creation of new analgesics with reduced side effects for treatment of neuropathic pain. A new superposition of the mentioned pharmacophores led to novel μ-bivalent/δ-bivalent compounds that demonstrate both μ-opioid and δ-opioid receptor agonist activity and high efficacy in anti-inflammatory and neuropathic pain models with the potential of reduced unwanted side effects.
Collapse
Affiliation(s)
- Ruben S. Vardanyan
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, US
| | - James P. Cain
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, US
| | | | - Vlad K. Kumirov
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, US
| | - Mary I. McIntosh
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | - Alexander J. Sandweiss
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | - Frank Porreca
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | - Victor J. Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, US
| |
Collapse
|
4
|
Ukrainets IV, Petrushova LA, Dzyubenko SP, Sim G, Grinevich LA. The Effective Synthesis of N-(Arylalkyl)-1-R-4-hydroxy-2,2-dioxo- 1H-2λ(6),1-benzothiazine-3-carboxamides as Promising Analgesics of a New Chemical Class. Sci Pharm 2015; 83:549-66. [PMID: 26839838 PMCID: PMC4727766 DOI: 10.3797/scipharm.1506-04] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/17/2015] [Indexed: 11/22/2022] Open
Abstract
A new, effective preparative method has been proposed and the synthesis of a series of N-(arylalkyl)-1-R-4-hydroxy-2,2-dioxo-1H-2λ(6),1-benzothiazine-3-car-boxamides has been carried out. It has been shown that amidation of alkyl 1-R-4-hydroxy-2,2-dioxo-1H-2λ(6),1-benzothiazine-3-carboxylates with arylalkyl-amines in boiling xylene proceeds with good yield and purity to the corresponding N-(arylalkyl)-amides. However, the presence of water in the reaction mixture has been shown to cause the formation of specific impurities: N-(arylalkyl)-1-R-2,2-dioxo-1H-2λ(6),1-benzothiazin-4-amines. According to the results of the pharmacological studies, powerful analgesics have been found among the substances synthesized.
Collapse
Affiliation(s)
- Igor V Ukrainets
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 53 Pushkinska St., 61002, Kharkiv, Ukraine
| | - Lidiya A Petrushova
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 53 Pushkinska St., 61002, Kharkiv, Ukraine
| | - Sergiy P Dzyubenko
- Department of Pharmaceutical Chemistry, N. I. Pirogov Vinnitsa National Medical University, 56 Pirogov St., Vinnitsa, 21018, Ukraine
| | - Galina Sim
- Department of Pharmaceutical Chemistry, Far Eastern State Medical University, 35 Murav'eva-Amurskogo St., 680000, Khabarovsk, Russia
| | - Lina A Grinevich
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 53 Pushkinska St., 61002, Kharkiv, Ukraine
| |
Collapse
|