1
|
Li Y, Wang Y, Jiang Z, Yang C, Wu Y, Wu A, Zhang Q, Liu X, Xiao B, Feng Y, Wu J, Liang Z, Yuan Z. Apoptosis mediated by crosstalk between mitochondria and endoplasmic reticulum: A possible cause of citrinin disruption of the intestinal barrier. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116877. [PMID: 39142118 DOI: 10.1016/j.ecoenv.2024.116877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/04/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Citrinin (CTN) is a mycotoxin commonly found in contaminated foods and feed, posing health risks to both humans and animals. However, the mechanism by which CTN damages the intestine remains unclear. In this study, a model of intestinal injury was induced by administering 1.25 mg/kg and 5 mg/kg of CTN via gavage for 28 consecutive days in 6-week-old Kunming mice, aiming to explore the potential mechanisms underlying intestinal injury. The results demonstrate that CTN can cause structural damage to the mouse jejunum. Additionally, CTN reduces the protein expression of Claudin-1, Occludin, ZO-1, and MUC2, thereby disrupting the physical and chemical barriers of the intestine. Furthermore, exposure to CTN alters the structure of the intestinal microbiota in mice, thus compromising the intestinal microbial barrier. Meanwhile, the results showed that CTN exposure could induce excessive apoptosis in intestinal cells by altering the expression of proteins such as CHOP and GRP78 in the endoplasmic reticulum and Bax and Cyt c in mitochondria. The mitochondria and endoplasmic reticulum are connected through the mitochondria-associated endoplasmic reticulum membrane (MAM), which regulates the membrane. We found that the expression of bridging proteins Fis1 and BAP31 on the membrane was increased after CTN treatment, which would exacerbate the endoplasmic reticulum dysfunction, and could activate proteins such as Caspase-8 and Bid, thus further inducing apoptosis via the mitochondrial pathway. Taken together, these results suggest that CTN exposure can cause intestinal damage by disrupting the intestinal barrier and inducing excessive apoptosis in intestinal cells.
Collapse
Affiliation(s)
- Yuanyuan Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Yongkang Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Zonghan Jiang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Chenglin Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - You Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Aoao Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Qike Zhang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Xiaofang Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Bo Xiao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Yiya Feng
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China; Institute of Yunnan Circular Agricultural Industry, Puer 665000, PR China
| | - Zengenni Liang
- Department of Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, PR China; Longping Branch Graduate School, Hunan University, Changsha 410125, PR China.
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China; Institute of Yunnan Circular Agricultural Industry, Puer 665000, PR China.
| |
Collapse
|
2
|
Tsai JF, Wu TS, Huang YT, Lin WJ, Yu FY, Liu BH. Exposure to Mycotoxin Citrinin Promotes Carcinogenic Potential of Human Renal Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19054-19065. [PMID: 37988173 DOI: 10.1021/acs.jafc.3c05218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Mycotoxin citrinin (CTN), commonly found in food and health supplements, may induce chromosomal instability. In this study, human renal proximal tubule epithelial cells (hRPTECs) that were exposed to CTN (10 and 20 μM) over 3 days exhibited numerical chromosomal aberrations. Short-term (3 days) and long-term (30 days) exposures to CTN significantly promoted mitotic spindle abnormalities, wound healing, cell migration, and anchorage-independent growth in human embryonic kidney 293 (HEK293) cells. Short-term exposure to 10 and 20 μM CTN increased the number of migrated cells on day 10 by 1.7 and 1.9 times, respectively. The number of anchorage-independent colonies increased from 2.2 ± 1.3 to 7.8 ± 0.6 after short-term exposure to 20 μM CTN and from 2.0 ± 1.0 to 12.0 ± 1.2 after long-term exposure. The transcriptomic profiles of CTN-treated HEK293 were subjected to over-representative analysis (ORA), gene set enrichment analysis (GSEA), and Ingenuity pathway analysis (IPA). Short-term exposure to CTN promoted the RTK/KRAS/RAF/MAPK cascade, while long-term exposure altered the extracellular matrix organization. Both short- and long-term CTN exposure activated cancer and cell cycle-related signaling pathways. These results demonstrate the carcinogenic potential of CTN in human cells and provide valuable insights into the cancer risk associated with CTN.
Collapse
Affiliation(s)
- Jui-Feng Tsai
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Ting-Shuan Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402306, Taiwan
| | - Ying-Tzu Huang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Wan-Ju Lin
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402306, Taiwan
| | - Feng-Yih Yu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402306, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402306, Taiwan
| | - Biing-Hui Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| |
Collapse
|
3
|
Qu Y, He Y, Meng B, Zhang X, Ding J, Kou X, Teng W, Shi S. Apoptotic vesicles inherit SOX2 from pluripotent stem cells to accelerate wound healing by energizing mesenchymal stem cells. Acta Biomater 2022; 149:258-272. [PMID: 35830925 DOI: 10.1016/j.actbio.2022.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023]
Abstract
Billions of cells undergo apoptosis every day in the human body, resulting in the generation of a large number of apoptotic vesicles (apoVs) to maintain organ and tissue homeostasis. However, the characteristics and function of pluripotent stem cell (PSC)-derived apoVs (PSC-apoVs) are largely unknown. In this study, we showed that human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) produced larger numbers of apoVs than human umbilical cord mesenchymal stem cells (UMSCs) do when induced by staurosporine. In addition to expressing the general apoV markers cleaved caspase 3, Annexin V, calreticulin, ALIX, CD63 and TSG101, ESC-apoVs inherited pluripotent-specific molecules SOX2 from ESCs in a caspase 3-dependent manner. Moreover, ESC-apoVs could promote mouse skin wound healing via transferring SOX2 into skin MSCs via activating Hippo signaling pathway. Collectively, these findings reveal that apoVs are capable of inheriting pluripotent molecules from ESCs to energize adult stem cells, suggesting the potential to use PSC-apoVs for clinical applications. STATEMENT OF SIGNIFICANCE: Apoptotic vesicles (apoVs) are essential to maintain organ and tissue homeostasis. However, the characteristics and function of pluripotent stem cell (PSC)-derived apoVs (PSC-apoVs) are largely unknown. This study showed that PSC-apoVs produced 100 times more apoVs than human umbilical cord mesenchymal stem cells (UMSCs). Despite expressing the general apoV makers, PSC-apoVs inherited pluripotent-specific molecule SOX2 from PSCs in a caspase 3-dependent manner. Moreover, PSC-apoVs promote mouse skin wound healing via transferring SOX2 into skin MSCs, thus activating Hippo signaling pathway. These findings reveal that apoVs are capable of inheriting pluripotent molecules from PSCs to energize adult stem cells, thus providing a cell-free strategy for clinical applications of PSCs.
Collapse
Affiliation(s)
- Yan Qu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055, Guangzhou, China
| | - Yifan He
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055, Guangzhou, China
| | - Bowen Meng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055, Guangzhou, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, Beijing 100081, China
| | - Junjun Ding
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055, Guangzhou, China; Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Wei Teng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| | - Songtao Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055, Guangzhou, China; Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China.
| |
Collapse
|
4
|
Huang YL, Pan WL, Cai WW, Ju JQ, Sun SC. Exposure to citrinin induces DNA damage, autophagy, and mitochondria dysfunction during first cleavage of mouse embryos. ENVIRONMENTAL TOXICOLOGY 2021; 36:2217-2224. [PMID: 34314561 DOI: 10.1002/tox.23335] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Citrinin (CTN) is a mycotoxin, which is isolated from Penicillium citrinum and widely existed in the contaminated feeds. It is reported that CTN is toxic to heart, liver, and reproductive system. Previous studies indicated that CTN induced apoptosis in oocytes and embryos. In this study, we reported the potential causes of CTN on embryo development. Our results showed that 40 μM CTN exposure significantly reduced the first cleavage of mouse embryos, showing with the low rate of 2-cell embryos. We found that CTN induced DNA damage, showing the higher positive γH2A.X signals. Autophagy was occurred since more LC3 positive autophagosomes were found in the cytoplasm. This could be confirmed by the enhanced lysosome function, since higher accumulated lysosome distribution were found and LAMP2 was also increased under CTN exposure. Besides, we showed that mitochondria distribution was disturbed, indicating that CTN could disrupt mitochondria function, which could be the possible reason for the oxidative stress and apoptosis in CTN-exposed embryos. In conclusion, our study showed that CTN exposure had adverse effects on the early embryo development during first cleavage through its effects on the induction of DNA damage, autophagy, and mitochondria dysfunction.
Collapse
Affiliation(s)
- Yi-Lin Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wen-Lin Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wen-Wu Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Gu LF, Chen JQ, Lin QY, Yang YZ. Roles of mitochondrial unfolded protein response in mammalian stem cells. World J Stem Cells 2021; 13:737-752. [PMID: 34367475 PMCID: PMC8316864 DOI: 10.4252/wjsc.v13.i7.737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/13/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is an evolutionarily conserved adaptive mechanism for improving cell survival under mitochondrial stress. Under physiological and pathological conditions, the UPRmt is the key to maintaining intracellular homeostasis and proteostasis. Important roles of the UPRmt have been demonstrated in a variety of cell types and in cell development, metabolism, and immune processes. UPRmt dysfunction leads to a variety of pathologies, including cancer, inflammation, neurodegenerative disease, metabolic disease, and immune disease. Stem cells have a special ability to self-renew and differentiate into a variety of somatic cells and have been shown to exist in a variety of tissues. These cells are involved in development, tissue renewal, and some disease processes. Although the roles and regulatory mechanisms of the UPRmt in somatic cells have been widely reported, the roles of the UPRmt in stem cells are not fully understood. The roles and functions of the UPRmt depend on stem cell type. Therefore, this paper summarizes the potential significance of the UPRmt in embryonic stem cells, tissue stem cells, tumor stem cells, and induced pluripotent stem cells. The purpose of this review is to provide new insights into stem cell differentiation and tumor pathogenesis.
Collapse
Affiliation(s)
- Li-Fang Gu
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Jia-Qi Chen
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Qing-Yin Lin
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yan-Zhou Yang
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan 750001, Ningxia Hui Autonomous Region, China,
| |
Collapse
|
6
|
Miyazaki H, Yamanaka T, Oyama F, Kino Y, Kurosawa M, Yamada-Kurosawa M, Yamano R, Shimogori T, Hattori N, Nukina N. FACS-array-based cell purification yields a specific transcriptome of striatal medium spiny neurons in a murine Huntington disease model. J Biol Chem 2020; 295:9768-9785. [PMID: 32499373 DOI: 10.1074/jbc.ra120.012983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/21/2020] [Indexed: 12/27/2022] Open
Abstract
Huntington disease (HD) is a neurodegenerative disorder caused by expanded CAG repeats in the Huntingtin gene. Results from previous studies have suggested that transcriptional dysregulation is one of the key mechanisms underlying striatal medium spiny neuron (MSN) degeneration in HD. However, some of the critical genes involved in HD etiology or pathology could be masked in a common expression profiling assay because of contamination with non-MSN cells. To gain insight into the MSN-specific gene expression changes in presymptomatic R6/2 mice, a common HD mouse model, here we used a transgenic fluorescent protein marker of MSNs for purification via FACS before profiling gene expression with gene microarrays and compared the results of this "FACS-array" with those obtained with homogenized striatal samples (STR-array). We identified hundreds of differentially expressed genes (DEGs) and enhanced detection of MSN-specific DEGs by comparing the results of the FACS-array with those of the STR-array. The gene sets obtained included genes ubiquitously expressed in both MSNs and non-MSN cells of the brain and associated with transcriptional regulation and DNA damage responses. We proposed that the comparative gene expression approach using the FACS-array may be useful for uncovering the gene cascades affected in MSNs during HD pathogenesis.
Collapse
Affiliation(s)
- Haruko Miyazaki
- Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan.,Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan.,Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan.,Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomoyuki Yamanaka
- Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan.,Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan.,Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan.,Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Fumitaka Oyama
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan.,Department of Chemistry and Life Science, Kogakuin University, Tokyo, Japan
| | - Yoshihiro Kino
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan.,Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Masaru Kurosawa
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan.,Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | | | - Risa Yamano
- Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Tomomi Shimogori
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobuyuki Nukina
- Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan .,Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan.,Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan.,Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Huang CH, Wang FT, Chan WH. Prevention of ochratoxin A-induced oxidative stress-mediated apoptotic processes and impairment of embryonic development in mouse blastocysts by liquiritigenin. ENVIRONMENTAL TOXICOLOGY 2019; 34:573-584. [PMID: 30698892 DOI: 10.1002/tox.22724] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
Ochratoxin A (OTA), a mycotoxin constituent of a range of food commodities, including coffee, wine, beer, grains, and spices, exerts toxicological and pathological effects in vivo, such as nephrotoxicity, hepatotoxicity, and immunotoxicity. In a previous report, we highlighted the potential of OTA to induce apoptosis via reactive oxygen species (ROS) generation in mouse blastocysts that led to impaired preimplantation and postimplantation embryo development in vitro and in vivo. Here, we have shown that liquiritigenin (LQ), a type of flavonoid isolated from Glycyrrhiza radix, effectively protects against OTA-mediated apoptosis and inhibition of cell proliferation in mouse blastocysts. Preincubation of blastocysts with LQ clearly prevented OTA-triggered impairment of preimplantation and postimplantation embryonic development and fetal weight loss, both in vitro and in vivo. Detailed investigation of regulatory mechanisms revealed that OTA mediated apoptosis and embryotoxicity through ROS generation, loss of mitochondrial membrane potential (MMP), and activation of caspase-9 and caspase-3, which were effectively prevented by LQ. The embryotoxic effects of OTA were further validated in an animal model in vivo. Intravenous injection of dams with OTA (3 mg/kg/day) led to apoptosis of blastocysts, impairment of embryonic development from zygote to blastocyst stage and decrease in day 18 fetal weight. Notably, preinjection of dams with LQ (5 mg/kg/day) effectively prevented OTA-induced apoptosis and toxic effects on embryo development. Our collective results clearly demonstrate that OTA exposure via injection has the potential to damage preimplantation and postimplantation embryonic development against which LQ has a protective effect.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health & Welfare, Taoyuan City, Taiwan
| | - Fu-Ting Wang
- Rehabilitation and Technical Aid Center, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Taoyuan City, Taiwan
| |
Collapse
|
8
|
Huang CH, Yeh JM, Chan WH. Hazardous impacts of silver nanoparticles on mouse oocyte maturation and fertilization and fetal development through induction of apoptotic processes. ENVIRONMENTAL TOXICOLOGY 2018; 33:1039-1049. [PMID: 29964317 DOI: 10.1002/tox.22590] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Silver nanoparticles (AgNPs) are antibacterial materials widely used in numerous products and medical supplies. Previously, we showed that AgNPs trigger apoptotic processes in mouse blastocysts, leading to a decrease in cell viability and impairment of preimplantation and postimplantation embryonic development in vitro and in vivo. In the present study, we further investigated the hazardous effects of AgNPs on mouse oocyte maturation, in vitro fertilization (IVF), and subsequent preimplantation and postimplantation development in vitro and in vivo. Data from in vitro experiments revealed that AgNPs impair mouse oocyte maturation, decrease IVF rates, and induce injury effects on subsequent embryonic development to a significant extent. In an animal model, intravenous injection of AgNPs (5 mg/kg body weight) led to a significant decrease in mouse oocyte maturation and IVF concomitant with impairment of early embryonic development in vivo. Importantly, pretreatment with N-acetylcysteine effectively prevented AgNP-triggered reactive oxygen species (ROS) production and apoptosis, clearly suggesting a critical role of ROS as an upstream initiator or key regulator of AgNP-induced hazardous effects on oocyte maturation and sequent embryonic development. Furthermore, preincubation of oocytes with Ac-DEVD-cho, a caspase-3-specific inhibitor, effectively prevented hazardous effects, highlighting the potential involvement of caspase-dependent apoptotic signaling cascades in AgNP-mediated events. Expression levels of p53 and p21 of blastocysts were upregulated upon preincubation of mouse oocytes with AgNPs. Our collective results imply that cell apoptosis in mouse blastocysts derived from the AgNP-pretreated oocytes via intracellular ROS generation, which is further mediated through p53-, p21-, and caspase-3-dependent regulatory mechanisms.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan City, Taiwan
| | - Jui-Ming Yeh
- Department of Chemistry and Center for Nanotechnology, Chung Yuan Christian University, Taoyuan City, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Taoyuan City, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
9
|
Huang CH, Huang ZW, Ho FM, Chan WH. Berberine impairs embryonic development in vitro and in vivo through oxidative stress-mediated apoptotic processes. ENVIRONMENTAL TOXICOLOGY 2018; 33:280-294. [PMID: 29168595 DOI: 10.1002/tox.22515] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Berberine, an isoquinoline alkaloid isolated from several traditional Chinese herbal medicines, has been shown to suppress growth and induce apoptosis in some tumor cell lines. However, berberine has also been reported to attenuate H2 O2 -induced oxidative injury and apoptosis. The basis for these ambiguous effects of berberine-triggering or preventing apoptosis-has not been well characterized to date. In the current investigation, we examined whether berberine exerts cytotoxic effects on mouse embryos at the blastocyst stage and affects subsequent embryonic development in vitro and in vivo. Treatment of blastocysts with berberine (2.5-10 μM) induced a significant increase in apoptosis and a corresponding decrease in trophectoderm cell number. Moreover, the implantation success rate of blastocysts pretreated with berberine was lower than that of their control counterparts. Pretreatment with berberine was also associated with increased resorption of postimplantation embryos and decreased fetal weight. In an animal model, intravenous injection of berberine (2, 4, or 6 mg/kg body weight/d) for 4 days resulted in apoptosis of blastocyst cells and early embryonic developmental injury. Berberine-induced injury of mouse blastocysts appeared to be attributable to oxidative stress-triggered intrinsic apoptotic signaling processes that impaired preimplantation and postimplantation embryonic development. Taken together, our results clearly demonstrate that berberine induces apoptosis and retards early preimplantation and postimplantation development of mouse embryos, both in vitro and in vivo.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health & Welfare, Taoyuan City 33004, Taiwan
| | - Zi-Wei Huang
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan
| | - Feng-Ming Ho
- Health and Longevity Biotechnology Company; Feng-Kwan Medical Clinic, Taichung, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
10
|
Huang CH, Chan WH. Protective Effects of Liquiritigenin against Citrinin-Triggered, Oxidative-Stress-Mediated Apoptosis and Disruption of Embryonic Development in Mouse Blastocysts. Int J Mol Sci 2017; 18:ijms18122538. [PMID: 29186930 PMCID: PMC5751141 DOI: 10.3390/ijms18122538] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 12/23/2022] Open
Abstract
The mycotoxin citrinin (CTN), a natural contaminant in foodstuffs and animal feeds, exerts cytotoxic and genotoxic effects on various mammalian cells and embryos. A previous investigation by our group revealed potentially hazardous effects of CTN on mouse oocyte maturation and pre- and post-implantation embryo development via the induction of apoptosis. The present study showed that CTN induces apoptosis and inhibits cell proliferation in the inner cell mass of mouse blastocysts. Notably, we observed for the first time that both these effects are suppressed by liquiritigenin (LQ). LQ is a type of flavonoid isolated from Glycyrrhiza radix with several biochemical and pharmacological activities, including antioxidant and anti-inflammatory properties. The preincubation of blastocysts with LQ clearly prevented CTN-induced disruption of pre- and post-implantation embryonic development and fetal weight loss, both in vitro and in vivo. CTN-induced damage processes directly promoted reactive oxygen species (ROS) generation, loss of mitochondrial membrane potential (MMP) and activation of caspase-9 and caspase-3, which were effectively blocked by LQ. Moreover, in an animal model, intravenous injection of dams with CTN (3 mg/kg/day) triggered apoptosis of blastocysts, disruption of embryonic development from the zygote to the blastocyst stage and a decrease in fetal weight. Pre-injection with LQ (5 mg/kg/day) effectively reduced apoptosis and impaired the cytotoxic effects of CTN on development. Our in vivo findings further confirm that CTN exposure via injection has the potential to impair pre- and post-implantation development, leading to apoptosis and the suppression of sequent embryonic development, which can be effectively prevented by LQ.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health & Welfare, Taoyuan City 33004, Taiwan.
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
11
|
Ratno Budiarto B, Chan WH. Oxidative stresses-mediated apoptotic effects of ginsenoside Rb1 on pre- and post-implantation mouse embryos in vitro and in vivo. ENVIRONMENTAL TOXICOLOGY 2017; 32:1990-2003. [PMID: 27640876 DOI: 10.1002/tox.22366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/15/2016] [Accepted: 08/27/2016] [Indexed: 06/06/2023]
Abstract
Ginsenoside Rb1, the major saponin component of ginseng root, has a wide range of therapeutic application. Previous studies have established that ginsenoside Rb1 inhibits the cell cycle and induces apoptosis. However, its side-effects, particularly those on embryonic development, have not been well characterized to date. In the current study, we examined whether ginsenoside Rb1 exerts a cytotoxic effect on mouse embryos at the blastocyst stage, and affects subsequent embryonic development in vitro and in vivo. Blastocysts treated with 25-100 μg mL-1 ginsenoside Rb1 exhibited significantly increased apoptosis and a corresponding decrease in total cell number. Notably, the implantation success rate of blastocysts pretreated with ginsenoside Rb1 was lower than that of their control counterparts. Moreover, in vitro treatment with 25-100 μg mL-1 ginsenoside Rb1 was associated with increased resorption of post-implantation embryos and decreased fetal weight. In an in vivo model, intravenous injection with ginsenoside Rb1 (1, 3, 5 mg kg-1 body weight/day) for 4 days resulted in apoptosis of blastocyst stage embryos and early embryonic developmental injury. In addition, ginsenoside Rb1 appeared to induce injury in mouse blastocysts through oxidative stresses-triggered intrinsic apoptotic signaling processes to impair sequent embryonic development. The collective results strongly indicate that ginsenoside Rb1 induces apoptosis and retards early pre- and post-implantation development of mouse embryos, both in vitro and in vivo. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1990-2003, 2017.
Collapse
Affiliation(s)
- Bugi Ratno Budiarto
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li District, Taoyuan City, 32023, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li District, Taoyuan City, 32023, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404, Taiwan
| |
Collapse
|
12
|
Anggelia MR, Chan WH. Impairment of preimplantation and postimplantation embryonic development through intrinsic apoptotic processes by ginsenoside Rg1 in vitro and in vivo. ENVIRONMENTAL TOXICOLOGY 2017; 32:1937-1951. [PMID: 28371286 DOI: 10.1002/tox.22416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 03/05/2017] [Accepted: 03/05/2017] [Indexed: 06/07/2023]
Abstract
Ginsenoside Rg1, which is the most abundant compound found in Asian ginseng (Panax ginseng), has demonstrated various pharmacological actions, including neuroprotective, immune-stimulatory, and antidiabetic effects. Pregnant women, especially in the Asian community, consume ginseng as a nutritive supplement. Thus, the effects of ginsenoside-Rg1 on embryonic development need to be investigated, such as in a mouse model. As previous investigations have found that ginsenoside Rg1 appears to either trigger or prevent apoptosis in different cell lines, the effects of this agent on apoptosis remain to be clarified. In this study, we investigated whether ginsenoside Rg1 exerts a hazardous effect on mouse blastocysts and/or affects subsequent embryonic development in vitro and in vivo. Blastocysts treated with 25-100 μM ginsenoside Rg1 exhibited significant induction of apoptosis and a corresponding decrease in the inner cell mass (ICM) cell number. Importantly, the implantation rate was lower among ginsenoside Rg1-treated blastocysts compared to untreated controls. Moreover, embryo transfer assays revealed that blastocysts treated with 100 μM ginsenoside Rg1 exhibited increased resorption of postimplantation embryos and decreased weight among surviving fetuses. In vivo, intravenous injection of mice with ginsenoside Rg1 (2, 4, or 6 mg/kg body weight/day) for 4 days was associated with increased apoptosis of blastocyst-stage embryos and negatively impacted early embryonic development. Further experiments revealed that these effects may reflect the ability of ginsenoside Rg1 to trigger oxidative stress-mediated intrinsic apoptotic signaling. Our in vitro results indicate that ginsenoside Rg1 treatment increases intracellular oxidative stress, decreases mitochondrial membrane potential, increases the Bax/Bcl-2 ratio, and activates caspase-9 and caspase-3, but not caspase-8. Taken together, our study results strongly suggest that ginsenoside Rg1 induces apoptosis and impairs the early preimplantation and postimplantation development of mouse embryos, both in vitro and in vivo.
Collapse
Affiliation(s)
- Madonna Rica Anggelia
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Taoyuan City, 32023, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Taoyuan City, 32023, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404, Taiwan
| |
Collapse
|
13
|
Salah A, Bouaziz C, Prola A, Pires Da Silva J, Bacha H, Abid-Essefi S, Lemaire C. Citrinin induces apoptosis in human HCT116 colon cancer cells through endoplasmic reticulum stress. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:1230-1241. [PMID: 29165056 DOI: 10.1080/15287394.2017.1359127] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
The mycotoxin citrinin (CTN) is a natural contaminant of various human foods that may produce serious adverse health problems. Several studies demonstrated that citrinin exerts cytotoxic and genotoxic effects in both in vivo and in vitro systems. However, the precise mechanisms of action (MOA), particularly in intestinal cells remain unclear. The aim of the present study was to examine the precise MOA of citrinin in vitro. Data demonstrated that CTN significantly decreased the number of viable human intestinal HCT116 cells and induced apoptotic events including (1) decrease in ΔѰm indicative of mitochondrial membrane permeabilization, (2) activation of caspase 3, (3) elevated production of reactive oxygen species (ROS) and (4) relative persistence of plasma membrane integrity. Further, the genetic deficiency of the pro-apoptotic protein Bax protected cells against CTN-induced apoptosis, indicating that Bax is required for CTN-mediated toxicity. It was also found that CTN triggered endoplasmic reticulum (ER) stress and activated different arms of the unfolded protein response (UPR) as demonstrated by increase in expression of GRP78 (glucose-regulated protein-78), GRP94 (glucose-regulated protein-94), GADD34 (growth arrest and DNA damage-inducible protein-34), the protein disulfide isomerase associated 6 (PDIA6), CHOP (C/EBP-homologous protein) and the splicing of XBP1 (X-Box Binding Protein 1). Pretreatment of cells with the chemical chaperone 4-phenylbutyrate (PBA), known to alleviate ER stress, prevented significantly the apoptotic process triggered by CTN. Taken together, these results suggest that CTN exerts its cytotoxic effects in HCT116 cells by inducing apoptosis, at least in part, through induction of ER stress.
Collapse
Affiliation(s)
- Amal Salah
- a Laboratory of Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Monastir University, Monastir , Tunisia
- b Faculty of Sciences of Bizerte, Carthage University, Bizerte , Tunisia
| | - Chayma Bouaziz
- a Laboratory of Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Monastir University, Monastir , Tunisia
| | - Alexandre Prola
- c INSERM UMR-S 1180, Univ. Paris-Sud, Université Paris Saclay , Chatenay-Malabry , France
| | - Julie Pires Da Silva
- c INSERM UMR-S 1180, Univ. Paris-Sud, Université Paris Saclay , Chatenay-Malabry , France
| | - Hassen Bacha
- a Laboratory of Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Monastir University, Monastir , Tunisia
| | - Salwa Abid-Essefi
- a Laboratory of Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Monastir University, Monastir , Tunisia
| | - Christophe Lemaire
- d Université Versailles St-Quentin, Inserm UMR-S 1180, Univ Paris-Sud, Université Paris Saclay , Chatenay-Malabry , France
| |
Collapse
|
14
|
Nakajima Y, Iguchi H, Kamisuki S, Sugawara F, Furuichi T, Shinoda Y. Low doses of the mycotoxin citrinin protect cortical neurons against glutamate-induced excitotoxicity. J Toxicol Sci 2016; 41:311-9. [PMID: 26961616 DOI: 10.2131/jts.41.311] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Citrinin, a natural mycotoxin that is found in fermented foods, is known as a cytotoxin and nephrotoxin. Exposure to high doses of citrinin result in apoptosis; however, the effects of low doses are not fully understood. Glutamate excitotoxicity is responsible for neuronal death in acute neurological disorders including stroke, trauma and other neurodegenerative diseases. Here, we show the neuroprotective effect of low doses of citrinin against glutamate-induced excitotoxicity. We examined the effect of citrinin exposure on glutamate-induced cell death in cultured rat cortical neurons under two conditions: simultaneous treatment with citrinin 0.1 to 1,000 nM and glutamate (30 μM) for 1, 3 hr; the same simultaneous treatment for 3 hr after pretreatment with citrinin for 21 hr. Both the MTT and immunocytochemical assay showed significant neuroprotective effects at several doses and exposure times tested. All concentrations of citrinin tested showed no remarkable cell death following 14-day exposure, and no marked alterations to synapses. These data suggest that low doses of citrinin can be used as a neuroprotective agent against glutamate-induced excitotoxicity without additional harmful cellular alterations.
Collapse
Affiliation(s)
- Yui Nakajima
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Gayathri L, Dhivya R, Dhanasekaran D, Periasamy VS, Alshatwi AA, Akbarsha MA. Hepatotoxic effect of ochratoxin A and citrinin, alone and in combination, and protective effect of vitamin E: In vitro study in HepG2 cell. Food Chem Toxicol 2015; 83:151-63. [PMID: 26111808 DOI: 10.1016/j.fct.2015.06.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/02/2015] [Accepted: 06/08/2015] [Indexed: 10/23/2022]
Abstract
Ochratoxin A (OTA) and citrinin (CTN) are the most commonly co-occurring mycotoxins in a wide variety of food and feed commodities. The major target organ of these toxins is kidney but liver could also be a target organ. The combined toxicity of these two toxins in kidney cells has been studied but not in liver cell. In this study HepG2 cells were exposed to OTA and CTN, alone and in combination, with a view to compare the molecular and cellular mechanisms underlying OTA, CTN and OTA + CTN hepatotoxicity. OTA and CTN alone as well as in combination affected the viability of HepG2 cells in a dose-dependent manner. OTA + CTN, at a dose of 20% of IC50 of each, produced effect almost similar to that produced by either of the toxins at its IC50 concentration, indicating that the two toxins in combination act synergistically. The cytotoxicity of OTA + CTN on hepatocytes is mediated by increased level of intracellular ROS followed/accompanied by DNA strand breaks and mitochondria-mediated intrinsic apoptosis. Co-treatment of vitamin E (Vit E) with OTA, CTN and OTA + CTN reduced the levels of ROS and the cytotoxicity. But the genotoxic effect of OTA and OTA + CTN was not completely alleviated by Vit E treatment whereas the DNA damage as caused by CTN when treated alone was obviated, indicating that OTA induces DNA damage directly whereas CTN induces ROS-mediated DNA damage and OTA + CTN combination induces DNA damage not exclusively relying on but influenced by ROS generation. Taken together, these findings indicate that OTA and CTN in combination affect hepatocytes at very low concentrations and, thereby, pose a potential threat to public and animal health.
Collapse
Affiliation(s)
- Loganathan Gayathri
- Department of Microbiology, Bharathidasan University, Tiruchirappalli 620024, India; Mahatma Gandhi-Doerenkamp Center, Bharathidasan University, Tiruchirappalli 620024, India
| | - Rajakumar Dhivya
- Mahatma Gandhi-Doerenkamp Center, Bharathidasan University, Tiruchirappalli 620024, India
| | | | - Vaiyapuri S Periasamy
- Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Ali A Alshatwi
- Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mohammad A Akbarsha
- Mahatma Gandhi-Doerenkamp Center, Bharathidasan University, Tiruchirappalli 620024, India; Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia.
| |
Collapse
|
16
|
Doi K, Uetsuka K. Mechanisms of Mycotoxin-induced Dermal Toxicity and Tumorigenesis Through Oxidative Stress-related Pathways. J Toxicol Pathol 2014; 27:1-10. [PMID: 24791061 PMCID: PMC4000067 DOI: 10.1293/tox.2013-0062] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 11/24/2013] [Indexed: 12/17/2022] Open
Abstract
Among the many mycotoxins, T-2 toxin, citrinin (CTN), patulin (PAT), aflatoxin B1 (AFB1) and ochratoxin A (OTA) are known to have the potential to induce dermal toxicity and/or tumorigenesis in rodent models. T-2 toxin, CTN, PAT and OTA induce apoptosis in mouse or rat skin. PAT, AFB1 and OTA have tumor initiating properties, and OTA is also a tumor promoter in mouse skin. This paper reviews the molecular mechanisms of dermal toxicity and tumorigenesis induced in rodent models by these mycotoxins especially from the viewpoint of oxidative stress-mediated pathways.
Collapse
Affiliation(s)
- Kunio Doi
- Bozo Research Center Inc., 8 Ohkubo, Tsukuba, Ibaraki 300-2611, Japan ; Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Koji Uetsuka
- Animal Health Laboratory, College of Agriculture, Ibaraki University, 3-21-1, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan
| |
Collapse
|
17
|
Guo X, Fan W, Bian X, Ma D. Upregulation of the Kank1 gene-induced brain glioma apoptosis and blockade of the cell cycle in G0/G1 phase. Int J Oncol 2014; 44:797-804. [PMID: 24399197 DOI: 10.3892/ijo.2014.2247] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/19/2013] [Indexed: 11/06/2022] Open
Abstract
The Kank1 gene is one of the important members of the Kank gene family. As an important adaptor protein, Kank1 plays a significant role in the genesis and development of many malignant tumors. It was recently discovered that the Kank1 gene is a new cancer suppressor, and its expression is significantly downregulated or it is not expressed in kidney cancer, bladder cancer, prostate cancer, lung cancer and breast cancer. However, no report on the role of Kank1 in the genesis of brain glioma is available to date. In this study, we found significantly lower expression of the Kank1 gene in human brain glioma cells compared to the other cells evaluated. We used RNA interference techniques to silence Kank1 gene expression and found acceleration of tumor cell proliferation. However, when the Kank1 gene was upregulated, cell apoptosis occurred and the cell cycle was blocked in the G0/G1 phase. Also, we found that upregulating the Kank1 gene may result in the change of mitochondrial membrane potential, and the regulation of Bax and Bcl-2 may promote the mitochondria to release cytochrome C so as to activate Caspase-9 and -3. Thus, the human brain glioma apoptosis induced by upregulation of the Kank1 gene is closely relevant to the mitochondrial pathway.
Collapse
Affiliation(s)
- Xiaohang Guo
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, P.R. China
| | - Wenhai Fan
- Department of Neurosurgery, The Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, P.R. China
| | - Xinchao Bian
- Department of Neurosurgery, Zibo Central Hospital, Zibo 255000, P.R. China
| | - Dihui Ma
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, P.R. China
| |
Collapse
|
18
|
Characterization of apoptosis induced by emodin and related regulatory mechanisms in human neuroblastoma cells. Int J Mol Sci 2013; 14:20139-56. [PMID: 24113589 PMCID: PMC3821607 DOI: 10.3390/ijms141020139] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/26/2013] [Accepted: 09/26/2013] [Indexed: 12/23/2022] Open
Abstract
Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a major constituent of rhubarb, has a wide range of therapeutic applications. Recent studies have shown that emodin can induce or prevent cell apoptosis, although the precise molecular mechanisms underlying these effects are unknown. Experiments from the current study revealed that emodin (10–20 μM) induces apoptotic processes in the human neuroblastoma cell line, IMR-32, but exerts no injury effects at treatment doses below 10 μM. Treatment with emodin at concentrations of 10–20 μM led to a direct increase in the reactive oxygen species (ROS) content in IMR-32 cells, along with significant elevation of cytoplasmic free calcium and nitric oxide (NO) levels, loss of mitochondrial membrane potential (MMP), activation of caspases-9 and -3, and cell death. Pretreatment with nitric oxide (NO) scavengers suppressed the apoptotic biochemical changes induced by 20 μM emodin, and attenuated emodin-induced p53 and p21 expression involved in apoptotic signaling. Our results collectively indicate that emodin at concentrations of 10–20 μM triggers apoptosis of IMR-32 cells via a mechanism involving both ROS and NO. Based on the collective results, we propose a model for an emodin-triggered apoptotic signaling cascade that sequentially involves ROS, Ca2+, NO, p53, caspase-9 and caspase-3.
Collapse
|
19
|
Huang FJ, Chin TY, Chan WH. Resveratrol protects against methylglyoxal-induced apoptosis and disruption of embryonic development in mouse blastocysts. ENVIRONMENTAL TOXICOLOGY 2013; 28:431-441. [PMID: 21793156 DOI: 10.1002/tox.20734] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/28/2011] [Accepted: 04/30/2011] [Indexed: 05/31/2023]
Abstract
Methylglyoxal (MG) is a glucose metabolite. Diabetic patients have increased serum levels of MG, and MG is also implicated in tissue injury during embryonic development. In the present work, we show that MG induces apoptosis in the inner cell mass of mouse blastocysts and inhibits cell proliferation. Both effects are suppressed by resveratrol, a grape-derived phytoalexin with known antioxidant and anti-inflammatory properties. MG-treated blastocysts displayed lower levels of implantation (compared to controls) when plated on culture dishes in vitro and a reduced ability to proceed to later stages of embryonic development. Pretreatment with resveratrol prevented MG-induced disruption of embryonic development, both in vitro and in vivo. Further investigation of these processes revealed that MG directly promotes reactive oxygen species (ROS) generation, loss of mitochondrial membrane potential (MMP), and activation of caspase-3, whereas resveratrol effectively blocks MG-induced ROS production and the accompanying apoptotic biochemical changes. Our results collectively imply that MG triggers the mitochondrion-dependent apoptotic pathway via ROS generation, and the antioxidant activity of resveratrol prevents MG-induced toxicity.
Collapse
Affiliation(s)
- Fu-Jen Huang
- Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | |
Collapse
|
20
|
Chan WH, Houng WL, Lin CAJ, Lee CH, Li PW, Hsieh JT, Shen JL, Yeh HI, Chang WH. Impact of dihydrolipoic acid on mouse embryonic stem cells and related regulatory mechanisms. ENVIRONMENTAL TOXICOLOGY 2013; 28:87-97. [PMID: 21462292 DOI: 10.1002/tox.20700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 01/03/2011] [Accepted: 01/06/2011] [Indexed: 05/30/2023]
Abstract
α-Lipoic acid (LA) is a thiol with antioxidant properties that protects against oxidative stress-induced apoptosis. LA is absorbed from the diet, taken up by cells and tissues, and subsequently reduced to dihydrolipoic acid (DHLA). Recently, DHLA has been used as the hydrophilic nanomaterial preparations, and therefore, determination of its bio-safety profile is essential. In this article, we show that DHLA (50-100 μM) induces apoptotic processes in mouse embryonic stem cells (ESC-B5), but exerts no injury effects at treatment dosages below 50 μM. Higher concentrations of DHLA (50-100 μM) directly increased the reactive oxygen species (ROS) content in ESC-B5 cells, along with a significant increase in cytoplasmic free calcium and nitric oxide (NO) levels, loss of mitochondrial membrane potential (MMP), activation of caspases-9 and -3, and cell death. Pretreatment with NO scavengers suppressed the apoptotic biochemical changes induced by 100 μM DHLA and promoted the gene expression levels of p53 and p21 involved in apoptotic signaling. Our results collectively indicate that DHLA at concentrations of 50-100 μM triggers apoptosis of ESC-B5 cells, which involves both ROS and NO. Importantly, at doses of less than 50 μM (0-25 μM), DHLA does not exert hazardous effects on ESC-B5 cell properties, including viability, development and differentiation. These results provide important information in terms of dosage safety and biocompatibility of DHLA to facilitate its further use as a precursor for biomaterial preparation.
Collapse
Affiliation(s)
- Wen-Hsiung Chan
- Department of Bioscience Technology, Chung Yuan Christian University, Chung Li 32023, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ochratoxin a inhibits mouse embryonic development by activating a mitochondrion-dependent apoptotic signaling pathway. Int J Mol Sci 2013; 14:935-53. [PMID: 23296271 PMCID: PMC3565299 DOI: 10.3390/ijms14010935] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/10/2012] [Accepted: 12/24/2012] [Indexed: 12/23/2022] Open
Abstract
Ochratoxin A (OTA), a mycotoxin found in many foods worldwide, causes nephrotoxicity, hepatotoxicity, and immunotoxicity, both in vitro and in vivo. In the present study, we explored the cytotoxic effects exerted by OTA on the blastocyst stage of mouse embryos, on subsequent embryonic attachment, on outgrowth in vitro, and following in vivo implantation via embryo transfer. Mouse blastocysts were incubated with or without OTA (1, 5, or 10 μM) for 24 h. Cell proliferation and growth were investigated using dual differential staining; apoptosis was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay; and embryo implantation and post-implantation development were assessed by examination of in vitro growth and the outcome of in vivo embryo transfer, respectively. Blastocysts treated with 10 μM OTA displayed a significantly increased level of apoptosis and a reduction in total cell number. Interestingly, we observed no marked difference in implantation success rate between OTA-pretreated and control blastocysts either during in vitro embryonic development (following implantation in a fibronectin-coated culture dish) or after in vivo embryo transfer. However, in vitro treatment with 10 μM OTA was associated with increased resorption of post-implantation embryos by the mouse uterus, and decreased fetal weight upon embryo transfer. Our results collectively indicate that in vitro exposure to OTA triggers apoptosis and retards early post-implantation development after transfer of embryos to host mice. In addition, OTA induces apoptosis-mediated injury of mouse blastocysts, via reactive oxygen species (ROS) generation, and promotes mitochondrion-dependent apoptotic signaling processes that impair subsequent embryonic development.
Collapse
|
22
|
Khromov T, Dressel R, Siamishi I, Nolte J, Opitz L, Engel W, Pantakani DVK. Apoptosis-related gene expression profiles of mouse ESCs and maGSCs: role of Fgf4 and Mnda in pluripotent cell responses to genotoxicity. PLoS One 2012; 7:e48869. [PMID: 23145002 PMCID: PMC3492253 DOI: 10.1371/journal.pone.0048869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 10/02/2012] [Indexed: 01/27/2023] Open
Abstract
Stem cells in the developing embryo proliferate and differentiate while maintaining genomic integrity, failure of which may lead to accumulation of mutations and subsequent damage to the embryo. Embryonic stem cells (ESCs), the in vitro counterpart of embryo stem cells are highly sensitive to genotoxic stress. Defective ESCs undergo either efficient DNA damage repair or apoptosis, thus maintaining genomic integrity. However, the genotoxicity- and apoptosis-related processes in germ-line derived pluripotent cells, multipotent adult germ-line stem cells (maGSCs), are currently unknown. Here, we analyzed the expression of apoptosis-related genes using OligoGEArray in undifferentiated maGSCs and ESCs and identified a similar set of genes expressed in both cell types. We detected the expression of intrinsic, but not extrinsic, apoptotic pathway genes in both cell types. Further, we found that apoptosis-related gene expression patterns of differentiated ESCs and maGSCs are identical to each other. Comparative analysis revealed that several pro- and anti-apoptotic genes are expressed specifically in pluripotent cells, but markedly downregulated in the differentiated counterparts of these cells. Activation of the intrinsic apoptotic pathway cause approximately ∼35% of both ESCs and maGSCs to adopt an early-apoptotic phenotype. Moreover, we performed transcriptome studies using early-apoptotic cells to identify novel pluripotency- and apoptosis-related genes. From these transcriptome studies, we selected Fgf4 (Fibroblast growth factor 4) and Mnda (Myeloid cell nuclear differentiating antigen), which are highly downregulated in early-apoptotic cells, as novel candidates and analyzed their roles in apoptosis and genotoxicity responses in ESCs. Collectively, our results show the existence of common molecular mechanisms for maintaining the pristine stem cell pool of both ESCs and maGSCs.
Collapse
Affiliation(s)
- Tatjana Khromov
- Institute of Human Genetics, University of Goettingen, Goettingen, Germany
| | - Ralf Dressel
- Department of Cellular and Molecular Immunology, University of Goettingen, Goettingen, Germany
| | - Iliana Siamishi
- Institute of Human Genetics, University of Goettingen, Goettingen, Germany
| | - Jessica Nolte
- Institute of Human Genetics, University of Goettingen, Goettingen, Germany
| | - Lennart Opitz
- DNA Microarray Facility, University of Goettingen, Goettingen, Germany
| | - Wolfgang Engel
- Institute of Human Genetics, University of Goettingen, Goettingen, Germany
| | | |
Collapse
|
23
|
Liu S, Wang D, Zhang J, Zhang D, Gong M, Wang C, Wei N, Liu W, Wang Y, Zhao C, Cui Y, Hu D. Citrinin reduces testosterone secretion by inducing apoptosis in rat Leydig cells. Toxicol In Vitro 2012; 26:856-61. [DOI: 10.1016/j.tiv.2012.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/14/2012] [Accepted: 04/26/2012] [Indexed: 10/28/2022]
|
24
|
Resveratrol protects against 2-bromopropane-induced apoptosis and disruption of embryonic development in blastocysts. Int J Mol Sci 2011; 12:4991-5010. [PMID: 21954340 PMCID: PMC3179147 DOI: 10.3390/ijms12084991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/18/2011] [Accepted: 07/28/2011] [Indexed: 01/31/2023] Open
Abstract
2-Bromopropane (2-BP) is used as an alternative to ozone-depleting cleaning solvents. Previously, we reported that 2-BP has cytotoxic effects on mouse blastocysts and is associated with defects in subsequent development. In the present work, we show that 2-BP induces apoptosis in the inner cell mass of mouse blastocysts, and inhibits cell proliferation. Both effects are suppressed by resveratrol, a grape-derived phytoalexin with known antioxidant and anti-inflammatory properties. 2-BP-treated blastocysts displayed lower levels of implantation (compared to controls) when plated on culture dishes in vitro, and a reduced ability to proceed to later stages of embryonic development. Pretreatment with resveratrol prevented 2-BP-induced disruption of embryonic development, both in vitro and in vivo. Further investigation of these processes revealed that 2-BP directly promotes ROS generation, loss of mitochondrial membrane potential (MMP), and activation of caspase-3, whereas resveratrol effectively blocks 2-BP-induced ROS production and the accompanying apoptotic biochemical changes. Our results collectively imply that 2-BP triggers the mitochondrion-dependent apoptotic pathway via ROS generation, and the antioxidant activity of resveratrol prevents 2-BP-induced toxicity.
Collapse
|
25
|
Hazardous effects of curcumin on mouse embryonic development through a mitochondria-dependent apoptotic signaling pathway. Int J Mol Sci 2010; 11:2839-55. [PMID: 21152277 PMCID: PMC2996731 DOI: 10.3390/ijms11082839] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 07/26/2010] [Accepted: 07/28/2010] [Indexed: 01/08/2023] Open
Abstract
In this study, we examined the cytotoxic effects of curcumin, the yellow pigment of Curcuma longa, on the blastocyst stage of mouse embryos, subsequent embryonic attachment, and outgrowth in vitro and in vivo implantation by embryo transfer. Mouse blastocysts were incubated in medium with or without curcumin (6, 12 or 24 μM) for 24 h. Cell proliferation and growth were investigated using dual differential staining, apoptosis was analyzed with terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), and implantation and post-implantation development of embryos were measured by in vitro development analysis and in vivo embryo transfer, respectively. Blastocysts treated with 24 μM curcumin displayed significantly increased apoptosis and decreased total cell number. Interestingly, we observed no marked differences in the implantation success rates between curcumin-pretreated and control blastocysts during in vitro embryonic development through implantation with a fibronectin-coated culture dish. However, in vitro treatment with 24 μM curcumin was associated with decreased implantation rate and increased resorption of postimplantation embryos in mouse uterus, as well as decreased fetal weight in the embryo transfer assay. Our results collectively indicate that in vitro exposure to curcumin triggers apoptosis and retards early postimplantation development after transfer to host mice. In addition, curcumin induces apoptotic injury effects on mouse blastocysts through ROS generation, and further promotes mitochondria-dependent apoptotic signaling processes to impair sequent embryonic development.
Collapse
|
26
|
Chan WH. Cytotoxic effects of 2-bromopropane on embryonic development in mouse blastocysts. Int J Mol Sci 2010; 11:731-744. [PMID: 20386664 PMCID: PMC2852864 DOI: 10.3390/ijms11020731] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Accepted: 02/10/2010] [Indexed: 01/20/2023] Open
Abstract
2-Bromopropane (2-BP), an alternative to ozone-depleting solvents, is used as a cleaning solvent. Here, we examined the cytotoxic effects of 2-bromopropane (2-BP) on mouse embryos at the blastocyst stage, subsequent embryonic attachment and outgrowth in vitro, and in vivo implantation via embryo transfer. Mouse blastocysts were incubated in medium with or without 2-BP (2.5, 5 or 10 μM) for 24 h. Cell proliferation and growth were investigated with dual differential staining, apoptosis was analyzed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) analysis, and implantation and post-implantation development of embryos were assessed using in vitro development analysis and in vivo embryo transfer, respectively. Blastocysts treated with 5 or 10 μM 2-BP displayed significantly increased apoptosis, and decreased inner cell mass (ICM) and trophectoderm (TE) cell number. Additionally, the implantation success rates of 2-BP-pretreated blastocysts were lower than those of untreated controls. In vitro treatment with 5 or 10 μM 2-BP was associated with increased resorption of postimplantation embryos, and decreased placental and fetal weights. Our results collectively indicate that in vitro exposure to 2-BP induces apoptosis, suppresses implantation rates after transfer to host mice, and retards early postimplantation development.
Collapse
Affiliation(s)
- Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li 32023, Taiwan
| |
Collapse
|
27
|
Inhibition of citrinin-induced apoptotic biochemical signaling in human hepatoma G2 cells by resveratrol. Int J Mol Sci 2009; 10:3338-3357. [PMID: 20111678 PMCID: PMC2812821 DOI: 10.3390/ijms10083338] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 12/25/2022] Open
Abstract
The mycotoxin citrinin (CTN), a natural contaminant in foodstuffs and animal feeds, exerts cytotoxic and genotoxic effects on various mammalian cells. CTN causes cell injury, including apoptosis, but its precise regulatory mechanisms of action are currently unclear. Resveratrol, a member of the phytoalexin family found in grapes and other dietary plants, possesses antioxidant and anti-tumor properties. In the present study, we examined the effects of resveratrol on apoptotic biochemical events in Hep G2 cells induced by CTN. Resveratrol inhibited CTN-induced ROS generation, activation of JNK, loss of mitochondrial membrane potential (MMP), as well as activation of caspase-9, caspase-3 and PAK2. Moreover, resveratrol and the ROS scavengers, NAC and α-tocopherol, abolished CTN-stimulated intracellular oxidative stress and apoptosis. Active JNK was required for CTN-induced mitochondria-dependent apoptotic biochemical changes, including loss of MMP, and activation of caspases and PAK2. Activation of PAK2 was essential for apoptosis triggered by CTN. These results collectively demonstrate that CTN stimulates ROS generation and JNK activation for mitochondria-dependent apoptotic signaling in Hep G2 cells, and these apoptotic biochemical events are blocked by pretreatment with resveratrol, which exerts antioxidant effects.
Collapse
|