1
|
Mihalko EP, Nellenbach K, Krishnakumar M, Moiseiwitsch N, Sollinger J, Cooley BC, Brown AC. Fibrin-specific poly(N-isopropylacrylamide) nanogels for targeted delivery of tissue-type plasminogen activator to treat thrombotic complications are well tolerated in vivo. Bioeng Transl Med 2022; 7:e10277. [PMID: 35600656 PMCID: PMC9115681 DOI: 10.1002/btm2.10277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/28/2022] Open
Abstract
Targeted drug delivery for maintaining blood fluidity can reduce the risks associated with systemic anticoagulants that can lead to off-target bleeding. Recently, there has been much interest in targeted delivery of tissue-type plasminogen activator (tPA) for treating thrombotic complications. The work presented here characterizes a fibrin-specific nanogel (FSN) design for targeted delivery of tPA to treat thrombotic complications. Fibrin binding and clot degradation were characterized in vitro, and animal models of thrombosis were used to examine nanogel effects on coagulation parameters. In vitro assays showed tPA-FSNs attach to fibrin in a dose-dependent manner independent of tPA loading. In animal models of thrombosis, including an electrolytic injury to monitor clot properties in real time, and a lipopolysaccharide-induced disseminated intravascular coagulation (DIC) animal model, tPA-FSNs modulated fibrin/fibrinogen and platelet incorporation into clots and at optimized dosing could recover consumptive coagulopathy in DIC. Distribution of unloaded and tPA-loaded FSNs showed potential clearance of tPA-FSNs after 24 h, although unloaded FSNs may be retained at sites of fibrin deposits. Maximum tolerated dose studies showed tPA-FSNs have minimal toxicity up to 20 times the optimized therapeutic dose. Overall, these studies demonstrate the therapeutic efficacy of targeted fibrinolysis for systemic microthrombi and begin to evaluate key translational parameters for tPA-FSN therapeutics, including optimal tPA-FSN dosage in a DIC rodent model and safety of intravenous tPA-FSN therapeutics.
Collapse
Affiliation(s)
- Emily P. Mihalko
- Joint Department of Biomedical Engineering of University of North CarolinaChapel Hill and North Carolina State UniversityRaleighNorth CarolinaUSA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Kimberly Nellenbach
- Joint Department of Biomedical Engineering of University of North CarolinaChapel Hill and North Carolina State UniversityRaleighNorth CarolinaUSA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Manasi Krishnakumar
- Joint Department of Biomedical Engineering of University of North CarolinaChapel Hill and North Carolina State UniversityRaleighNorth CarolinaUSA
| | - Nina Moiseiwitsch
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Jennifer Sollinger
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Brian C. Cooley
- Department of Pathology and Laboratory MedicineUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Ashley C. Brown
- Joint Department of Biomedical Engineering of University of North CarolinaChapel Hill and North Carolina State UniversityRaleighNorth CarolinaUSA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
2
|
Nanotechnology applications for cardiovascular disease treatment: Current and future perspectives. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 34:102387. [PMID: 33753283 DOI: 10.1016/j.nano.2021.102387] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 11/22/2022]
Abstract
A large majority of cardiovascular nanomedicine research has focused on fabricating designer nanoparticles for improved targeting as a means to overcome biological barriers. For cardiac related disorders, such as atherosclerosis, hypertension, and myocardial infarction, designer micro or nanoparticles are often administered into the vasculature or targeted vessel with the hope to circumvent problems associated with conventional drug delivery, including negative systemic side effects. Additionally, novel nano-drug carriers that enter circulation can be selectively uptaken by immune cells with the intended purpose that they modulate inflammatory processes and migrate locally to plaque for therapeutic payload delivery. Indeed, innovative design in nanoparticle composition, formulation, and functionalization has advanced the field as a means to achieve therapeutic efficacy for a variety of cardiac disease indications. This perspective aims to discuss these advances and provide new interpretations of how nanotechnology can be best applied to aid in cardiovascular disease treatment. In an effort to spark discussions on where the field of research should go, we share our outlook in new areas of nanotechnological inclusion and integration, such as in vascular, implantable, or wearable device technologies as well as nanocomposites and nanocoatings. Further, as cardiovascular diseases (CVD) increasingly claim a number of lives globally, we propose more attention should be placed by researchers on nanotechnological approaches for risk factor treatment to aid in early prevention and treatment of CVD.
Collapse
|
3
|
Pitek AS, Wang Y, Gulati S, Gao H, Stewart PL, Simon DI, Steinmetz NF. Elongated Plant Virus-Based Nanoparticles for Enhanced Delivery of Thrombolytic Therapies. Mol Pharm 2017; 14:3815-3823. [PMID: 28881141 DOI: 10.1021/acs.molpharmaceut.7b00559] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thrombotic cardiovascular disease, including acute myocardial infarction, ischemic stroke, and venous thromboembolic disease, is the leading cause of morbidity and mortality worldwide. While reperfusion therapy with thrombolytic agents reduces mortality from acute myocardial infarction and disability from stroke, thrombolysis is generally less effective than mechanical reperfusion and is associated with fatal intracerebral hemorrhage in up to 2-5% of patients. To address these limitations, we propose the tobacco mosaic virus (TMV)-based platform technology for targeted delivery of thrombolytic therapies. TMV is a plant virus-based nanoparticle with a high aspect ratio shape measuring 300 × 18 nm. These soft matter nanorods have favorable flow and margination properties allowing the targeting of the diseased vessel wall. We have previously shown that TMV homes to thrombi in a photochemical mouse model of arterial thrombosis. Here we report the synthesis of TMV conjugates loaded with streptokinase (STK). Various TMV-STK formulations were produced through bioconjugation of STK to TMV via intervening PEG linkers. TMV-STK was characterized using SDS-PAGE and Western blot, transmission electron microscopy, cryo-electron microscopy, and cryo-electron tomography. We investigated the thrombolytic activity of TMV-STK in vitro using static phantom clots, and in a physiologically relevant hydrodynamic model of shear-induced thrombosis. Our findings demonstrate that conjugation of STK to the TMV surface does not compromise the activity of STK. Moreover, the nanoparticle conjugate significantly enhances thrombolysis under flow conditions, which can likely be attributed to TMV's shape-mediated flow properties resulting in enhanced thrombus accumulation and dissolution. Together, these data suggest TMV to be a promising platform for the delivery of thrombolytics to enhance clot localization and potentially minimize bleeding risk.
Collapse
Affiliation(s)
- Andrzej S Pitek
- Department of Biomedical Engineering, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Yunmei Wang
- Harrington Heart and Vascular Institute, Case Cardiovascular Research Institute, Department of Medicine, University Hospitals Case Medical Center and Case Western Reserve University School of Medicine , Cleveland, Ohio 44106, United States
| | - Sahil Gulati
- Department of Pharmacology, Case Western Reserve University , Cleveland, Ohio 44106, United States.,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Huiyun Gao
- Harrington Heart and Vascular Institute, Case Cardiovascular Research Institute, Department of Medicine, University Hospitals Case Medical Center and Case Western Reserve University School of Medicine , Cleveland, Ohio 44106, United States
| | - Phoebe L Stewart
- Department of Pharmacology, Case Western Reserve University , Cleveland, Ohio 44106, United States.,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Daniel I Simon
- Harrington Heart and Vascular Institute, Case Cardiovascular Research Institute, Department of Medicine, University Hospitals Case Medical Center and Case Western Reserve University School of Medicine , Cleveland, Ohio 44106, United States
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University , Cleveland, Ohio 44106, United States.,Department of Radiology, Case Western Reserve University , Cleveland, Ohio 44106, United States.,Department of Materials Science and Engineering, Case Western Reserve University , Cleveland, Ohio 44106, United States.,Department of Macromolecular Science and Engineering, Case Western Reserve University , Cleveland, Ohio 44106, United States.,Case Comprehensive Cancer Center, Division of General Medical Sciences-Oncology, Case Western Reserve University , Cleveland, Ohio 44106, United States
| |
Collapse
|
4
|
Mechanism of Collaborative Enhancement of Binding of Paired Antibodies to Distinct Epitopes of Platelet Endothelial Cell Adhesion Molecule-1. PLoS One 2017; 12:e0169537. [PMID: 28085903 PMCID: PMC5234847 DOI: 10.1371/journal.pone.0169537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/18/2016] [Indexed: 11/19/2022] Open
Abstract
Monoclonal antibodies (mAbs) directed to extracellular epitopes of human and mouse Platelet Endothelial Cell Adhesion Molecule-1 (CD31 or PECAM-1) stimulate binding of other mAbs to distinct adjacent PECAM-1 epitopes. This effect, dubbed Collaborative Enhancement of Paired Affinity Ligands, or CEPAL, has been shown to enhance delivery of mAb-targeted drugs and nanoparticles to the vascular endothelium. Here we report new insights into the mechanism underlying this effect, which demonstrates equivalent amplitude in the following models: i) cells expressing a full length PECAM-1 and mutant form of PECAM-1 unable to form homodimers; ii) isolated fractions of cellular membranes; and, iii) immobilized recombinant PECAM-1. These results indicate that CEPAL is mediated not by interference in cellular functions or homophilic PECAM-1 interactions, but rather by conformational changes within the cell adhesion molecule induced by ligand binding. This mechanism, mediated by exposure of partially occult epitopes, is likely to occur in molecules other than PECAM-1 and may represent a generalizable phenomenon with valuable practical applications.
Collapse
|
5
|
Koudelka S, Mikulik R, Mašek J, Raška M, Turánek Knotigová P, Miller AD, Turánek J. Liposomal nanocarriers for plasminogen activators. J Control Release 2016; 227:45-57. [PMID: 26876783 DOI: 10.1016/j.jconrel.2016.02.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 12/18/2022]
Abstract
Several plasminogen activators (PAs) have been found effective in treating different thromboembolic diseases. However, administration of conventional thrombolytic therapy is limited by a low efficacy of present formulations of PAs. Conventional treatments using these therapeutic proteins are associated with several limitations including rapid inactivation and clearance, short half-life, bleeding complications or non-specific tissue targeting. Liposome-based formulations of PAs such as streptokinase, tissue-plasminogen activator and urokinase have been developed to improve the therapeutic efficacy of these proteins. Resulting liposomal formulations were found to preserve the original activity of PAs, promote their selective delivery and improve thrombus targeting. Therapeutic potential of these liposome-based PAs has been demonstrated successfully in various pre-clinical models in vivo. Reductions in unwanted side effects (e.g., hemorrhage or immunogenicity) as well as enhancements of efficacy and safety were achieved in comparison to currently existing treatment options based on conventional formulations of PAs. This review summarizes present achievements in: (i) preparation of liposome-based formulations of various PAs, (ii) development of PEGylated and targeted liposomal PAs, (iii) physico-chemical characterization of these developed systems, and (iv) testing of their thrombolytic efficacy. We also look to the future and the imminent arrival of theranostic liposomal formulations to move this field forward.
Collapse
Affiliation(s)
- Stepan Koudelka
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| | - Robert Mikulik
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic; Neurology Department of Masaryk University and St. Anne's University Hospital Brno, Czech Republic
| | - Josef Mašek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
| | - Milan Raška
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic; Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | | | - Andrew D Miller
- Institute of Pharmaceutical Science, King's College London, United Kingdom and Global Acorn Ltd, London, United Kingdom
| | - Jaroslav Turánek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic.
| |
Collapse
|
8
|
Abstract
Despite continued achievements in antithrombotic pharmacotherapy, difficulties remain in managing patients at high risk for both thrombosis and hemorrhage. Utility of antithrombotic agents (ATAs) in these settings is restricted by inadequate pharmacokinetics and narrow therapeutic indices. Use of advanced drug delivery systems (ADDSs) may help to circumvent these problems. Various nanocarriers, affinity ligands, and polymer coatings provide ADDSs that have the potential to help optimize ATA pharmacokinetics, target drug delivery to sites of thrombosis, and sense pathologic changes in the vascular microenvironment, such as altered hemodynamic forces, expression of inflammatory markers, and structural differences between mature hemostatic and growing pathological clots. Delivery of ATAs using biomimetic synthetic carriers, host blood cells, and recombinant fusion proteins that are activated preferentially at sites of thrombus development has shown promising outcomes in preclinical models. Further development and translation of ADDSs that spare hemostatic fibrin clots hold promise for extending the utility of ATAs in the management of acute thrombotic disorders through rapid, transient, and targeted thromboprophylaxis. If the potential benefit of this technology is to be realized, a systematic and concerted effort is required to develop clinical trials and translate the use of ADDSs to the clinical arena.
Collapse
|