1
|
Kruszewska A, Slonimski PP. Mitochondrial and nuclear mitoribosomal suppressors that enable misreading of ochre codons in yeast mitochondria : II. Specificity and extent of suppressor action. Curr Genet 2013; 9:11-9. [PMID: 24173505 DOI: 10.1007/bf00396199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/1984] [Indexed: 10/26/2022]
Abstract
We describe studies on the action spectra of the mitochondrial suppressor mim3-1 and the three alleles of nuclear suppressor nam3. Their specificity of action was tested on 516 mit (-) mutations located in different mitochondrial genes. The degree of suppression was quantified by the extent of cytochrome oxidase and cytochrome b synthesis. We show that the four suppressors are allele-specific gene-nonspecific informational suppressors. They would act by changing the structure of the small mitoribosomal subunit which would decrease fidelity of translation enabling misreading of some but not all ochre codons. The implications of the results on the role of intron encoded maturases are discussed.
Collapse
Affiliation(s)
- A Kruszewska
- Centre de Génétique Moléculaire Laboratoire propre du C.N.R.S. associé a l'Université Pierre et Marie Curie, F-91190, Gif-sur-Yvette, France
| | | |
Collapse
|
2
|
Kikovska E, Wu S, Mao G, Kirsebom LA. Cleavage mediated by the P15 domain of bacterial RNase P RNA. Nucleic Acids Res 2011; 40:2224-33. [PMID: 22102593 PMCID: PMC3299987 DOI: 10.1093/nar/gkr1001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Independently folded domains in RNAs frequently adopt identical tertiary structures regardless of whether they are in isolation or are part of larger RNA molecules. This is exemplified by the P15 domain in the RNA subunit (RPR) of the universally conserved endoribonuclease P, which is involved in the processing of tRNA precursors. One of its domains, encompassing the P15 loop, binds to the 3'-end of tRNA precursors resulting in the formation of the RCCA-RNase P RNA interaction (interacting residues underlined) in the bacterial RPR-substrate complex. The function of this interaction was hypothesized to anchor the substrate, expose the cleavage site and result in re-coordination of Mg(2+) at the cleavage site. Here we show that small model-RNA molecules (~30 nt) carrying the P15-loop mediated cleavage at the canonical RNase P cleavage site with significantly reduced rates compared to cleavage with full-size RPR. These data provide further experimental evidence for our model that the P15 domain contributes to both substrate binding and catalysis. Our data raises intriguing evolutionary possibilities for 'RNA-mediated' cleavage of RNA.
Collapse
Affiliation(s)
- Ema Kikovska
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24 Uppsala, Sweden
| | | | | | | |
Collapse
|
3
|
Abstract
We recently reported deoxyribozymes (DNA enzymes) that synthesize 2',5'-branched RNA. The in vitro-selected 9F7 and 9F21 deoxyribozymes mediate reaction of a branch-site adenosine 2'-hydroxyl on one RNA substrate with the 5'-triphosphate of another RNA substrate. Here we characterize these DNA enzymes with respect to their branch-forming activity. Both 9F7 and 9F21 are much more active with Mn(2+) than with Mg(2+). The K(d,app)(Mg(2+)) > 400 mM but K(d,app)(Mn(2+)) approximately 20-50 mM, and the ligation rates k(obs) are orders of magnitude faster with Mn(2+) than with Mg(2+) (e.g., 9F7 approximately 0.3 min(-1) with 20 mM Mn(2+) versus 0.4 h(-1) with 100 mM Mg(2+), both at pH 7.5 and 37 degrees C). Of the other tested transition metal ions Zn(2+), Ni(2+), Co(2+), and Cd(2+), only Co(2+) supports a trace amount of activity. 9F7 is more tolerant than 9F21 of varying the RNA substrate sequences. For the RNA substrate that donates the adenosine 2'-hydroxyl, 9F7 requires YUA, where Y = pyrimidine and A is the branch site. The 3'-tail emerging from the branch-site A may have indefinite length, but it must be at least one nucleotide long for high activity. The 5'-triphosphate RNA substrate requires several additional nucleotides with varying sequence requirements (5'-pppGRMWR). Outside of these regions that flank the ligation site, 9F7 and 9F21 tolerate any RNA substrate sequences via Watson-Crick covariation of the DNA binding arms that interact directly with the substrates. 9F7 provides a high yield of 2',5'-branched RNA on the preparative nanomole scale. The ligation reaction is effectively irreversible; the pyrophosphate leaving group in the ligation reaction does not induce 2',5'-cleavage, and pyrophosphate does not significantly inhibit ligation except in 1000-fold excess. Deleting a specific nucleotide in one of the DNA binding arms near the ligation junction enhances ligation activity, suggesting an interesting structure near this region of the deoxyribozyme-substrate complex. These data support the utility of deoxyribozymes in creating synthetic 2',5'-branched RNAs for investigations of group II intron splicing, debranching enzyme (Dbr) activity, and other biochemical reactions.
Collapse
Affiliation(s)
- Yangming Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | |
Collapse
|
4
|
Keller M, Michel F. The introns of the Euglena
gracilis
chloroplast gene which codes for the 32-kDa protein of photosystem II. FEBS Lett 2001. [DOI: 10.1016/0014-5793(85)80193-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Hertweck M, Mueller MW. Mapping divalent metal ion binding sites in a group II intron by Mn(2+)- and Zn(2+)-induced site-specific RNA cleavage. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4610-20. [PMID: 11531997 DOI: 10.1046/j.1432-1327.2001.02389.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The function of group II introns depends on positively charged divalent metal ions that stabilize the ribozyme structure and may be directly involved in catalysis. We investigated Mn2+- and Zn2+-induced site-specific RNA cleavage to identify metal ions that fit into binding pockets within the structurally conserved bI1 group II intron domains (DI-DVI), which might fulfill essential roles in intron function. Ten cleavage sites were identified in DI, two sites in DIII and two in DVI. All cleavage sites are located in the center or close to single-stranded and flexible RNA structures. Strand scissions mediated by Mn2+/Zn2+ are competed for by Mg2+, indicating the existence of Mg2+ binding pockets in physical proximity to the observed Mn2+-/Zn2+-induced cleavage positions. To distinguish between metal ions with a role in structure stabilization and those that play a more specific and critical role in the catalytic process of intron splicing, we combined structural and functional assays, comparing wild-type precursor and multiple splicing-deficient mutants. We identified six regions with binding pockets for Mg2+ ions presumably playing an important role in bI1 structure stabilization. Remarkably, assays with DI deletions and branch point mutants revealed the existence of one Mg2+ binding pocket near the branching A, which is involved in first-step catalysis. This pocket formation depends on precise interaction between the branching nucleotide and the 5' splice site, but does not require exon-binding site 1/intron binding site 1 interaction. This Mg2+ ion might support the correct placing of the branching A into the 'first-step active site'.
Collapse
Affiliation(s)
- M Hertweck
- Vienna BioCenter, Institute of Microbiology and Genetics, Austria
| | | |
Collapse
|
6
|
Costa M, Déme E, Jacquier A, Michel F. Multiple tertiary interactions involving domain II of group II self-splicing introns. J Mol Biol 1997; 267:520-36. [PMID: 9126835 DOI: 10.1006/jmbi.1996.0882] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The ribozyme core of group II introns is organized into six domains of secondary structure. Of these, domain II was long thought to be relatively unimportant for group II self-splicing. However, we now demonstrate the existence, in both major subdivisions of the group II family, of essential tertiary interactions involving domain II. theta-theta' is a novel tertiary interaction between the terminal loop of the IC1 stem of domain I and the basal stem of domain II. The theta-theta' interaction appears to stabilize the group II ribozyme core: it is essential for efficient self-splicing at elevated temperatures but, as shown by the use of a bimolecular reaction system, molecules with a defective theta-theta' contact are not affected in catalysis. An interaction, eta-eta', between domains II and VI of subgroup IIB introns was recently reported to mediate a conformational rearrangement between the two steps of the self-splicing reaction. We now show that domains II and VI of subgroup IIA introns also contact each other, although in a somewhat different way. Reinforcement of the eta-eta' interaction of a subgroup IIA intron prevents the use of a specific 2'-hydroxyl group in domain VI to initiate splicing by transesterification at the 5' splice site; the 5' intron-exon junction is hydrolyzed instead. Since disruption of eta-eta' has exactly opposite effects, and promotes reversal of the first transesterification step, it is concluded that formation of eta-eta' mediates a conformational change in subgroup IIA introns as well. Just like the eta-eta' interaction of subgroup IIB introns, the eta-eta' interaction of subgroup IIA introns (and the theta-theta' interaction) involves terminal loops of the GNRA family and their RNA receptors. Therefore, these motifs are used by nature not only to stabilize three-dimensional RNA architectures, but also in situations that require dynamic interactions.
Collapse
Affiliation(s)
- M Costa
- Centre de Génétique Moléculaire du CNRS, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
7
|
Robineau S, Bergantino E, Carignani G, Michel F, Netter P. Suppressors of cis-acting splicing-deficient mutations that affect the ribozyme core of a group II intron. J Mol Biol 1997; 267:537-47. [PMID: 9126836 DOI: 10.1006/jmbi.1997.0872] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Many of the cis-dominant mutations that lead to respiratory deficiency by preventing maturation of specific yeast mitochondrial transcripts are found to affect the ribozyme core of group I and group II introns. We have searched for suppressors of mutations in the ribozyme-encoding sections of a group II intron, the first intron in the COX1 gene of Saccharomyces cerevisiae, which was independently subjected to in vitro site-directed mutagenesis. Three of the original mutants bore multiple mutations, which act synergistically, since for most individual mutations, suppressors could be obtained that ensured at least partial recovery of respiratory competence and splicing. Out of a total of ten suppressor mutations that were identified, three were second-site substitutions that restored postulated base-pairings in the ribozyme core. Remarkably, and as is observed for group I introns, at least half of the cis-dominant mutations in the first two group II introns of the COX1 gene affect sites that have been shown to participate in RNA tertiary interactions. We propose that this bias reflects cooperativity in the formation of ribozyme tertiary but not secondary structure, on the one hand, and the need for synergistic effects in order to generate a respiratory-deficient phenotype in the laboratory on the other. Finally, a novel in vivo splicing product of mutant cells is attributed to bimolecular splicing at high concentrations of defective transcripts.
Collapse
Affiliation(s)
- S Robineau
- Centre de Génétique Moléculaire du CNRS (associé a l'Université Pierre et Marie CURIE), Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
8
|
Affiliation(s)
- P S Perlman
- Department of Biochemistry, University of Texas South-western Medical Center, Dallas 75235, USA
| | | |
Collapse
|
9
|
Smooker PM, Macreadie IJ, Wright JL, Lukins HB. Suppression of a yeast mitochondrial RNA processing defect by nuclear mutations. Curr Genet 1994; 25:239-44. [PMID: 7923410 DOI: 10.1007/bf00357168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The S. cerevisiae strain h56 is a temperature-sensitive mit- mutant containing a single nucleotide substitution in the region 5' to the reading frame of the mitochondrial var1 gene. The mutation decreases the efficiency of processing of a precursor RNA such that little var1 mRNA is produced at the restrictive temperature, 36 degrees C. This communication reports the isolation and characterization of several strains carrying nuclear mutations which suppress the temperature-sensitivity of h56. Both dominant and recessive suppressor mutations were isolated. One dominant suppressor strain (h56-S4) was characterized biochemically, and the mechanism of suppression shown to involve a restoration of precursor RNA processing at the restrictive temperature, with a concomitant increase in the synthesis of the var1 protein. It appears likely that the suppressing allele encodes a component of an RNA processing endoribonuclease active on var1 transcripts. A genomic library was constructed from the h56-S4 strain, and several plasmids showing suppressed activity were isolated. A preliminary analysis of these plasmids is presented.
Collapse
Affiliation(s)
- P M Smooker
- Department of Biochemistry, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
10
|
Wiesenberger G, Waldherr M, Schweyen R. The nuclear gene MRS2 is essential for the excision of group II introns from yeast mitochondrial transcripts in vivo. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50522-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
11
|
Suchy M, Schmelzer C. Restoration of the self-splicing activity of a defective group II intron by a small trans-acting RNA. J Mol Biol 1991; 222:179-87. [PMID: 1960721 DOI: 10.1016/0022-2836(91)90204-j] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The yeast mitochondrial group II intron bI1 is self-splicing in vitro. We have introduced a deletion of hairpin C1 within the structural domain 1 that abolishes catalytic activity of the intron in the normal splicing reaction in cis, but does less severely affect a reaction in trans, the reopening of ligated exons. Since exon reopening is supposed to correspond to a reverse 3' cleavage this suggests that the deletion specifically blocks the first reaction step. The intron regains its activity to self-splice in cis by intermolecular complementation with a small RNA harbouring sequences lacking in the mutant intron. These results demonstrate the feasibility to reconstitute a functionally active structure of the truncated intron by intermolecular complementation in vitro. Furthermore, the data support the hypothesis that group II introns are predecessors of nuclear pre-mRNA introns and that the small nuclear RNAs of the spliceosome arose by segregation from the original intron.
Collapse
Affiliation(s)
- M Suchy
- Institut für Genetik und Mikrobiologie, Universität München, Germany
| | | |
Collapse
|
12
|
Hardy CM, Clark-Walker GD. Nucleotide sequence of the COX1 gene in Kluyveromyces lactis mitochondrial DNA: evidence for recent horizontal transfer of a group II intron. Curr Genet 1991; 20:99-114. [PMID: 1657415 DOI: 10.1007/bf00312772] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The cytochrome oxidase subunit 1 gene (COX1) in K. lactis K8 mtDNA spans 8,826 bp and contains five exons (termed E1-E5) totalling 1,602 bp that show 88% nucleotide base matching and 91% amino acid homology to the equivalent gene in S. cerevisiae. The four introns (termed K1 cox1.1-1.4) contain open reading frames encoding proteins of 786, 333, 319 and 395 amino acids respectively that potentially encode maturase enzymes. The first intron belongs to group II whereas the remaining three are group I type B. Introns K1 cox1.1, 1.3, and 1.4 are found at identical locations to introns Sc cox1.2, 1.5 a, and 1.5 b respectively from S. cerevisiae. Horizontal transfer of an intron between recent progenitors of K. lactis and S. cerevisiae is suggested by the observation that K1 cox1.1 and Sc cox1.2 show 96% base matching. Sequence comparisons between K1 cox1.3/Sc cox1.5 a and K1 cox1.4/Sc cox1.5 b suggest that these introns are likely to have been present in the ancestral COX1 gene of these yeasts. Intron K1 cox1.2 is not found in S. cerevisiae and appears at an unique location in K. lactis. A feature of the DNA sequences of the group I introns K1 cox1.2, 1.3, and 1.4 is the presence of 11 GC-rich clusters inserted into both coding and noncoding regions. Immediately downstream of the COX1 gene is the ATPase subunit 8 gene (A8) that shows 82.6% base matching to its counterpart in S. cerevisiae mtDNA.
Collapse
Affiliation(s)
- C M Hardy
- Molecular and Population Genetics Group, Research School of Biological Sciences, Australian National University, Canberra
| | | |
Collapse
|
13
|
Wiesenberger G, Link TA, von Ahsen U, Waldherr M, Schweyen RJ. MRS3 and MRS4, two suppressors of mtRNA splicing defects in yeast, are new members of the mitochondrial carrier family. J Mol Biol 1991; 217:23-37. [PMID: 1703236 DOI: 10.1016/0022-2836(91)90608-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
When present in high copy number plasmids, the nuclear genes MRS3 and MRS4 from Saccharomyces cerevisiae can suppress the mitochondrial RNA splicing defects of several mit- intron mutations. Both genes code for closely related proteins of about Mr 32,000; they are 73% identical. Sequence comparisons indicate that MRS3 and MRS4 may be related to the family of mitochondrial carrier proteins. Support for this notion comes from a structural analysis of these proteins. Like the ADP/ATP carrier protein (AAC), the mitochondrial phosphate carrier protein (PiC) and the uncoupling protein (UCP), the two MRS proteins have a tripartite structure; each of the three repeats consists of two hydrophobic domains that are flanked by specific amino acid residues. The spacing of these specific residues is identical in all domains of all proteins of the family, whereas spacing between the hydrophobic domains is variable. Like the AAC protein, the MRS3 and MRS4 proteins are imported into mitochondria in vitro and without proteolytic cleavage of a presequence and they are located in the inner mitochondrial membrane. In vivo studies support this mitochondrial localization of the MRS proteins. Overexpression of the MRS3 and MRS4 proteins causes a temperature-dependent petite phenotype; this is consistent with a mitochondrial function of these proteins. Disruption of these genes affected neither mitochondrial functions nor cellular viability. Their products thus have no essential function for mitochondrial biogenesis or for whole yeast cells that could not be taken over by other gene products. The findings are discussed in relation to possible functions of the MRS proteins in mitochondrial solute translocation and RNA splicing.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cation Transport Proteins
- Chromosome Mapping
- Chromosomes, Fungal
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Gene Expression Regulation, Fungal
- Genes, Fungal
- Genes, Suppressor
- Mitochondria/metabolism
- Mitochondrial Proteins
- Molecular Sequence Data
- Phenotype
- Plasmids
- RNA/genetics
- RNA/metabolism
- RNA Splicing
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Mitochondrial
- Repressor Proteins
- Restriction Mapping
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins
- Sequence Homology, Nucleic Acid
- Temperature
Collapse
Affiliation(s)
- G Wiesenberger
- Institut für Mikrobiologie und Genetik Universität Wien, Austria
| | | | | | | | | |
Collapse
|
14
|
Kwakman JH, Konings DA, Hogeweg P, Pel HJ, Grivell LA. Structural analysis of a group II intron by chemical modifications and minimal energy calculations. J Biomol Struct Dyn 1990; 8:413-30. [PMID: 1702639 DOI: 10.1080/07391102.1990.10507813] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Folding of the yeast mitochondrial group II intron aI5c has been analysed by chemical modification of the in vitro synthesised RNA with dimethylsulfate and diethylpyrocarbonate. Computer calculations of the intron secondary structure through minimization of free energy were also performed in order to study thermodynamic properties of the intron and to relate these to data obtained from chemical modification. Comparison of the two sets of data with the current phylogenetic model structure of the intron aI5 reveals close agreement, thus lending strong support for the existence of a typical group II intron core structure comprising six neighbouring stem-loop domains. Local discrepancies between the experimental data and the model structures have been analyzed by reference to thermodynamic properties of the structure. This shows that use of the latest refined set of free energy values improves the structure calculation significantly.
Collapse
Affiliation(s)
- J H Kwakman
- Department of Molecular Cell Biology, University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
15
|
Jacquier A, Michel F. Base-pairing interactions involving the 5' and 3'-terminal nucleotides of group II self-splicing introns. J Mol Biol 1990; 213:437-47. [PMID: 2191139 DOI: 10.1016/s0022-2836(05)80206-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
By combining comparative sequence analyses and nucleotide replacements, we show that formation of the active center of group II introns rests in part on two novel long-range base-pairing interactions. (1) The last nucleotide of group II introns forms a solitary Watson-Crick base-pair with one of the nucleotides in the short sequence stretch connecting domains II and III. Formation of this base-pair is rate-limiting for the 3' cleavage and ligation step. (2) Nucleotides 3 and 4 form base-pairs with two consecutive nucleotides in a well-conserved internal loop of domain I. This interaction is involved in both the 5' and 3' cleavage steps. Possible relationships between group II and nuclear pre-mRNA introns are reassessed by taking into account these new pieces of information.
Collapse
Affiliation(s)
- A Jacquier
- Institut Pasteur, Département de Biologie Moléculaire, Paris, France
| | | |
Collapse
|
16
|
Bachl J, Schmelzer C. Effect of deletions at structural domains of group II intron bI1 on self-splicing in vitro. J Mol Biol 1990; 212:113-25. [PMID: 2319592 DOI: 10.1016/0022-2836(90)90308-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Some group II introns can undergo a protein-independent splicing reaction with the basic reaction pathway similar to nuclear pre-mRNA splicing and the catalytic functions of some of the structural components have been determined. To identify further functional domains, we have generated an ensemble of partial and complete deletions of domains I, II, III and IV of the self-splicing group II intron bI1 from yeast mitochondria and studied their effects on the splicing reaction in vitro. Our results indicate that domains II and IV, which vary considerably in length and structure among group II introns, do not play a direct role in catalysis but mainly help to ensure the proper interaction between upstream and downstream catalytically active structural elements. Deletions of sub-domains of domain I and domain III indicate that these elements are involved in 5' cleavage by hydrolysis and in a reaction in trans (exon reopening), and that this function can be inhibited without affecting the normal 5' cleavage by transesterification. Yet, we infer that the helical structures affected by the mutational alterations might not contribute to this reaction mode per se but that changes within local secondary structures perturb the internal conformation of the ribozyme. Furthermore, we have designed an abbreviated version of intron bI1, with a length of 542 nucleotides, which is still catalytically active.
Collapse
Affiliation(s)
- J Bachl
- Institut für Genetik und Mikrobiologie, Universität München, FRG
| | | |
Collapse
|
17
|
|
18
|
Michel F, Umesono K, Ozeki H. Comparative and functional anatomy of group II catalytic introns--a review. Gene X 1989; 82:5-30. [PMID: 2684776 DOI: 10.1016/0378-1119(89)90026-7] [Citation(s) in RCA: 626] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The 70 published sequences of group II introns from fungal and plant mitochondria and plant chloroplasts are analyzed for conservation of primary sequence, secondary structure and three-dimensional base pairings. Emphasis is put on structural elements with known or suspected functional significance with respect to self-splicing: the exon-binding and intron-binding sites, the bulging A residue involved in lariat formation, structural domain V and two isolated base pairs, one of them involving the last intron nucleotide and the other one, the first nt of the 3' exon. Separate sections are devoted to the 29 group II-like introns from Euglena chloroplasts and to the possible relationship of catalytic group II introns to nuclear premessenger introns. Alignments of all available sequences of group II introns are provided in the APPENDIX.
Collapse
Affiliation(s)
- F Michel
- Centre de Génétique Moléculaire du C.N.R.S., 91190 Gif-sur-Yvette, France
| | | | | |
Collapse
|
19
|
Boyer SK, Mullet JE. Pea chloroplast tRNA(Lys) (UUU) gene: transcription and analysis of an intron-containing gene. PHOTOSYNTHESIS RESEARCH 1988; 17:7-22. [PMID: 24429659 DOI: 10.1007/bf00047679] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/1987] [Accepted: 12/15/1987] [Indexed: 06/03/2023]
Abstract
The pea chloroplast trnK gene which encodes tRNA(Lys) (UUU) was sequenced. TrnK is located 210 bp upstream from the promoter of psbA and immediately downstream from the 3'-end of rbcL. The gene is transcribed from the same DNA strand as psbA and rbcL. A 2447 bp intron with class II features is located in the trnK anticodon loop. The intron contains a 506 amino acid open reading frame which could encode an RNA maturase. The primary transcript of trnK is 2.9 kb long; its 5'-end was identified as a site of transcription initiation by in vitro transcription experiments. The 5'-terminus is adjacent to DNA sequences previously identified as transcription promoter elements. The most abundant trnK transcript is 2.5 kb long with termini corresponding to the 5' and 3' ends of the trnK exons. Intron specific RNAs were not detected. This suggests that RNA processing which produces tRNA(Lys) leads to rapid degradation of intron sequences.
Collapse
Affiliation(s)
- S K Boyer
- Biological Sciences Department, Purdue University, Lilly hall of Life Sciences, 47907, West Lafayette, Indiana, USA
| | | |
Collapse
|
20
|
Plant AL, Gray JC. Introns in chloroplast protein-coding genes of land plants. PHOTOSYNTHESIS RESEARCH 1988; 16:23-39. [PMID: 24430990 DOI: 10.1007/bf00039484] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/1987] [Accepted: 12/01/1987] [Indexed: 05/08/2023]
Abstract
Several protein-coding genes from land plant chloroplasts have been shown to contain introns. The majority of these introns resemble the fungal mitochondrial group II introns due to considerable nucleotide sequence homology at their 5' and 3' ends and they can readily be folded to form six hairpins characteristic of the predicted secondary structure of the mitochondrial group II introns. Recently it has been demonstrated that some mitochondrial group II introns are capable of self-splicing in vitro in the absence of protein co-factors. However evidence presented in this overview suggests that this is probably not the case for chloroplast introns and that trans-acting factors are almost certainly involved in their processing reactions.
Collapse
Affiliation(s)
- A L Plant
- Botany School, University of Cambridge, Downing Street, CB2 3EA, Cambridge, UK
| | | |
Collapse
|
21
|
Wolf K, Del Giudice L. The variable mitochondrial genome of ascomycetes: organization, mutational alterations, and expression. ADVANCES IN GENETICS 1988; 25:185-308. [PMID: 3057820 DOI: 10.1016/s0065-2660(08)60460-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- K Wolf
- Institut für Genetik und Mikrobiologie, Universität München, Munich, Federal Republic of Germany
| | | |
Collapse
|
22
|
Schmelzer C, Müller MW. Self-splicing of group II introns in vitro: lariat formation and 3' splice site selection in mutant RNAs. Cell 1987; 51:753-62. [PMID: 2445492 DOI: 10.1016/0092-8674(87)90098-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Deletion or substitution of the branch A residue in group II intron bl1 significantly reduces splicing activity; yet, residual exon ligation is correct, and lariats have their branch points at the normal distance from the 3' end of the intron. Mutations in the sequence facing the branch point also allow residual lariat formation; however, free 3' exons are generated with false 5' termini, all of which are within a UCACA consensus sequence located upstream or downstream of the normal 3' splice site. These results indicate that both the conserved 3' splice site APy and the spatial arrangements in stem 6 are crucial for correct 3' splice site selection.
Collapse
Affiliation(s)
- C Schmelzer
- Institut für Genetik und Mikrobiologie, Universität München, FRG
| | | |
Collapse
|
23
|
Koll H, Schmidt C, Wiesenberger G, Schmelzer C. Three nuclear genes suppress a yeast mitochondrial splice defect when present in high copy number. Curr Genet 1987; 12:503-9. [PMID: 2452028 DOI: 10.1007/bf00419559] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A gene bank of a yeast wild type DNA in the high copy number vector YEp13 was screened for recombinant plasmids which suppress the mitochondrial RNA splice defect exerted by mutant M1301, a -1 bp deletion in the first intron of the mitochondrial COB gene (bI1). A total of 17 recombinant plasmids with similar suppressor activity were found. Restriction mapping and cross-hybridization of the inserts revealed that these 17 plasmids contain three different inserts, all lacking any extended sequence homology. Each of the inserts, when present in high copy number, has a similar suppressor activity: high in the presence of mutation M1301 in bI1, a group II intron, and low but significant with the presence of few mutants in bI2 and bI3 of the COB gene, both of which are group I introns.
Collapse
Affiliation(s)
- H Koll
- Institut für Genetik und Mikrobiologie, Universität München, Federal Republic of Germany
| | | | | | | |
Collapse
|
24
|
Schmidt C, Söllner T, Schweyen RJ. Nuclear suppression of a mitochondrial RNA splice defect: nucleotide sequence and disruption of the MRS3 gene. MOLECULAR & GENERAL GENETICS : MGG 1987; 210:145-52. [PMID: 2448588 DOI: 10.1007/bf00337771] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A mitochondrial RNA splice defect in the first intron of the COB gene (bI1) can be suppressed by a dominant nuclear mutation SUP-101. Starting with a gene bank of yeast nuclear DNA from a SUP-101 suppressor strain cloned in the YEp13 plasmid, we have isolated a recombinant plasmid which exerts a suppressor activity similar to the SUP-101 allele. The N3(2) insert of this plasmid contains an open reading frame (ORF) of 1014 bp which is transcribed to a 12 S RNA. Deletion of the 5' end of this ORF and its upstream sequences abolishes the suppressor activity. The N3(2) insert thus carries a functional gene (called MRS3) which can suppress a mitochondrial splice defect. The chromosomal equivalent of the cloned gene has been mapped to chromosome 10. Disruption of this chromosomal gene has no phenotypic effect on wild-type cells.
Collapse
Affiliation(s)
- C Schmidt
- Institut für Genetik und Mikrobiologie, Universität München, Federal Republic of Germany
| | | | | |
Collapse
|
25
|
Söllner T, Schmidt C, Schmelzer C. Amplification of the yeast nuclear gene MRS3 confers suppression of a mitochondrial RNA splice defect. Curr Genet 1987; 12:497-501. [PMID: 2452027 DOI: 10.1007/bf00419558] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The MRS3 gene cloned in the multicopy plasmid YEp13 suppresses the mitochondrial splice defect exerted by mutation M1301 in the group II intron bI1. In this article we report on the behavior of the MRS3 gene cloned in the integration vector pEMBLYi27 and in the CEN4-ARS vector YCp50. Transformation of mutant M1301 cells with these recombinant vectors produced transformants, the majority of which showed the original splice defect and contained the recombinant vectors in single or low copy; a minority, however, was splicing competent and showed exceptionally high copy numbers of the MRS3 gene. These latter transformants had either the pEMBLYi27/MRS3 sequence repeated at least 20 times in tandem at the chromosomal site of the MRS3 gene or they had the YCp50/MRS3 sequence established as a multicopy plasmid lacking the copy number control usually exerted by the CEN4 sequence in this plasmid.
Collapse
Affiliation(s)
- T Söllner
- Institut für Genetik und Mikrobiologie, Universität München, Federal Republic of Germany
| | | | | |
Collapse
|
26
|
Abstract
Partial deletion of the exon 5' to S. cerevisiae intron a5, a self-splicing mitochondrial class II intron, reveals the existence of several sites of intron-exon interaction. We have identified two of the corresponding exon-binding sites in intron a5 by comparative sequence analysis and RNAase H digestion of the intron complexed to a DNA version of its 5' exon. Introduction of mutations in either the intronic sites or the complementary exonic sequences affects splicing in vitro, whereas double mutants in which intron-exon pairings have been restored show normal activity. Some of the mutants accumulate a product that was shown to be the intron-3' exon lariat, a postulated splicing intermediate. The possible role of one of the intronic sites in aligning exons for the ligation step is discussed.
Collapse
|
27
|
Kreike J, Schulze M, Pillar T, Körte A, Rödel G. Cloning of a nuclear gene MRS1 involved in the excision of a single group I intron (bI3) from the mitochondrial COB transcript in S. cerevisiae. Curr Genet 1986; 11:185-91. [PMID: 2834089 DOI: 10.1007/bf00420605] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The respiratory deficient yeast nuclear mutant MK3 is defective in the synthesis of the mature transcripts of the mitochondrial COB and OX13 genes, which code for apocytochrome b and subunit I of cytochrome c oxidase, resp. Introns 3 and 4 of the COB transcript (bI3 and bI4) and intron 4 (aI4) of the OXI3 transcript can not be excised (Pillar et al. 1983a, b). When combined with mitochondrial genomes lacking introns bI1, bI2 and bI3, or lacking intron bI3 alone the mutant is respiratory competent. Thus, the non-excision of bI4 and aI4 turns out to be an indirect effect of the mutation. From a wild type yeast genebank a plasmid has been isolated with a 3.3 kb DNA insert, which complements the mutant. Subcloning experiments assigned the functional gene to a 1.6 kb HaeIII-Sau3A fragment. Hybridization experiments showed, that it is (i) a single copy gene, (ii) also present in strain D273-10B, containing the "short form" mitochondrial genome (lacking the COB introns bI1-bI3), and (iii) located on chromosome IX. The nuclear gene defective in mutant MK3, was named MRS1 (Mitochondrial RNA Splicing). The involvement of this nuclear gene in the excision of a single group I mitochondrial intron (bI3) of the COB transcript is discussed.
Collapse
Affiliation(s)
- J Kreike
- Institut für Genetik und Mikrobiologie, Universität München, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
28
|
Schmelzer C, Schweyen RJ. Self-splicing of group II introns in vitro: mapping of the branch point and mutational inhibition of lariat formation. Cell 1986; 46:557-65. [PMID: 3524857 DOI: 10.1016/0092-8674(86)90881-0] [Citation(s) in RCA: 164] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Group II intron bl1 from yeast mitochondria can undergo self-splicing in vitro. Exons become correctly ligated, and the excised intron has a lariat structure similar to that of introns from nuclear mRNA. The branch point of the bl1 lariat is located eight or nine nucleotides upstream of the 3' end of the intron and is part of a hairpin structure that is well conserved among group II introns. Several mutations next to the branch point and in other parts of the core structure of group II introns are shown to affect lariat formation. One of them, carried by strain M4873, abolishes splicing in vivo and in vitro, apparently by changing the architecture of the hairpin structure containing the branch point. Similarities between group II introns and nuclear pre-mRNA introns are discussed in terms of evolutionary relatedness.
Collapse
|
29
|
Excised group II introns in yeast mitochondria are lariats and can be formed by self-splicing in vitro. Cell 1986; 44:225-34. [PMID: 2417726 DOI: 10.1016/0092-8674(86)90756-7] [Citation(s) in RCA: 250] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Excised group II introns in yeast mitochondria appear as covalently closed circles under the electron microscope. We show that these circular molecules are branched and resemble the lariats arising through splicing of nuclear pre-mRNAs in yeast and higher eukaryotes. One member of this intron class (aI5c in the gene for cytochrome c oxidase subunit I) is capable of self-splicing in vitro, giving correct exon-exon ligation and resulting in the appearance of both linear and lariat forms of the excised intron. Nuclease digestion of the latter molecules reveals the presence of a complex oligonucleotide with the probable structure AGU, which thus resembles the branch point formed in the spliceosome-dependent reactions undergone by nuclear pre-mRNAs. Unlike group I introns, this group II intron is not demonstrably dependent on GTP for self-splicing and circularization of the isolated, linear intron is not observed. A model accounting for these observations is presented.
Collapse
|
30
|
|
31
|
Lang BF, Ahne F, Bonen L. The mitochondrial genome of the fission yeast Schizosaccharomyces pombe. The cytochrome b gene has an intron closely related to the first two introns in the Saccharomyces cerevisiae cox1 gene. J Mol Biol 1985; 184:353-66. [PMID: 4046021 DOI: 10.1016/0022-2836(85)90286-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The DNA sequence of the cob region of the Schizosaccharomyces pombe mitochondrial DNA has been determined. The cytochrome b structural gene is interrupted by an intron of 2526 base-pairs, which has an open reading frame of 2421 base-pairs in phase with the upstream exon. The position of the intron differs from those found in the cob genes of Saccharomyces cerevisiae, Aspergillus nidulans or Neurospora crassa. The Sch. pombe cob intron has the potential of assuming an RNA secondary structure almost identical to that proposed for the first two cox1 introns (group II) in S. cerevisiae and the p1-cox1 intron in Podospora anserina. It has most of the consensus nucleotides in the central core structure described for this group of introns and its comparison with other group II introns allows the identification of an additional conserved nucleotide stretch. A comparison of the predicted protein sequences of group II intronic coding regions reveals three highly conserved blocks showing pairwise amino acid identities of 34 to 53%. These regions comprise over 50% of the coding length of the intron but do not include the 5' region, which has strong secondary structural features. In addition to the potential intron folding, long helical structures involving repetitive sequences can be formed in the flanking cob exon regions. A comparison of the Sch. pombe cytochrome b sequence with those available from other organisms indicates that Sch. pombe is evolutionarily distant from both budding yeasts and filamentous fungi. As was seen for the Sch. pombe cox1 gene (Lang, 1984), the cob exons are translated using the universal genetic code and this distinguishes Sch. pombe mitochondria from all other fungal and animal mitochondrial systems.
Collapse
|
32
|
Holl J, Rödel G, Schweyen RJ. Suppressor mutations identify box9 as a central nucleotide sequence in the highly ordered structure of intron RNA in yeast mitochondria. EMBO J 1985. [PMID: 2415358 PMCID: PMC554465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Data presented here lend support to the notion that RNA splicing in yeast mitochondria depends on the formation of hybrid structures involving the well-conserved intron sequences box9 and box2. Starting with the cis-dominant splicing-defective box2 mutant G2590, a G----A transition, we isolated a revertant having a mitochondrial second site suppressor mutation, which restores splicing competence in the presence of the original mutation. Sequence analysis reveals that the suppressor mutation is a C----T transition in box9(5' part). This second mutation compensates for the first one in box2 and restores a box2/box9(5') hybrid. Combined with previous data demonstrating an interaction of the adjacent sequence box9(3' part) with the upstream box9c sequence in intron 4, the central role of box9 in the formation of the intron 4, the central role of box9 in the formation of the intron 4 RNA high order structure becomes evident.
Collapse
|
33
|
Kruszewska A, Szcześniak B. Functional nuclear suppressor of mitochondrial oxi2 mutations in yeast. Curr Genet 1985; 10:87-93. [PMID: 2842069 DOI: 10.1007/bf00636472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A semidominant nuclear suppressor, called nam6, of oxi2-V276 mitochondrial mutation has been isolated and characterized. The nuclear character of nam6 was proved by its retention in rho degree strains, lack of mitotic segregation in diploids and meiotic 2:2 segregation in tetrads. The specificity of nam6 was tested on 315 mit- mutations of four mitochondrial genes (oxi1, oxi2, oxi3, and cob-box). It suppresses clearly only three mutations in the oxi2 gene, restoring partially or completely cytochrome aa3 formation. The results suggest a functional character of the suppression.
Collapse
Affiliation(s)
- A Kruszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw
| | | |
Collapse
|
34
|
Dujardin G, Lund P, Slonimski PP. The effect of paromomycin and [psi] on the suppression of mitochondrial mutations in Saccharomyces cerevisiae. Curr Genet 1984; 9:21-30. [DOI: 10.1007/bf00396200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/1984] [Indexed: 11/24/2022]
|
35
|
|
36
|
Waring RB, Davies RW. Assessment of a model for intron RNA secondary structure relevant to RNA self-splicing--a review. Gene 1984; 28:277-91. [PMID: 6086458 DOI: 10.1016/0378-1119(84)90145-8] [Citation(s) in RCA: 162] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A widespread class of introns is characterized by a particular RNA secondary structure, based upon four conserved nucleotide sequences. Among such "class I" introns are found the majority of introns in fungal mitochondrial genes and the self-splicing intron of the large ribosomal RNA of several species of Tetrahymena. A model of the RNA secondary structure, which must underlie the self-splicing activity, is here evaluated in the light of data on 16 further introns. The main body or "core structure" of the intron always consists of the base-paired regions P3 to P9 with the associated single-stranded loops, with P2 present also in most cases. Two minority sub-classes of core structure occur, one of which is typical of introns in fungal ribosomal RNA. Introns in which the core structure is close to the 5' splice site all have an internal guide sequence (IGS) which can pair with exon sequences adjacent to the 5' and 3' splice sites to align them precisely, as proposed by Davies et al. [Nature 300 (1982) 719-724]. In these cases, the internal guide model allows us to predict correctly the exact location of splice sites. All other introns probably use other mechanisms of alignment. This analysis provides strong support for the RNA splicing model which we have developed.
Collapse
|