1
|
Liu L, Manley JL. Modulation of diverse biological processes by CPSF, the master regulator of mRNA 3' ends. RNA (NEW YORK, N.Y.) 2024; 30:1122-1140. [PMID: 38986572 PMCID: PMC11331416 DOI: 10.1261/rna.080108.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
The cleavage and polyadenylation specificity factor (CPSF) complex plays a central role in the formation of mRNA 3' ends, being responsible for the recognition of the poly(A) signal sequence, the endonucleolytic cleavage step, and recruitment of poly(A) polymerase. CPSF has been extensively studied for over three decades, and its functions and those of its individual subunits are becoming increasingly well-defined, with much current research focusing on the impact of these proteins on the normal functioning or disease/stress states of cells. In this review, we provide an overview of the general functions of CPSF and its subunits, followed by a discussion of how they exert their functions in a surprisingly diverse variety of biological processes and cellular conditions. These include transcription termination, small RNA processing, and R-loop prevention/resolution, as well as more generally cancer, differentiation/development, and infection/immunity.
Collapse
Affiliation(s)
- Lizhi Liu
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
2
|
Mofayezi A, Jadaliha M, Zangeneh FZ, Khoddami V. Poly(A) tale: From A to A; RNA polyadenylation in prokaryotes and eukaryotes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1837. [PMID: 38485452 DOI: 10.1002/wrna.1837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Most eukaryotic mRNAs and different non-coding RNAs undergo a form of 3' end processing known as polyadenylation. Polyadenylation machinery is present in almost all organisms except few species. In bacteria, the machinery has evolved from PNPase, which adds heteropolymeric tails, to a poly(A)-specific polymerase. Differently, a complex machinery for accurate polyadenylation and several non-canonical poly(A) polymerases are developed in eukaryotes. The role of poly(A) tail has also evolved from serving as a degradative signal to a stabilizing modification that also regulates translation. In this review, we discuss poly(A) tail emergence in prokaryotes and its development into a stable, yet dynamic feature at the 3' end of mRNAs in eukaryotes. We also describe how appearance of novel poly(A) polymerases gives cells flexibility to shape poly(A) tail. We explain how poly(A) tail dynamics help regulate cognate RNA metabolism in a context-dependent manner, such as during oocyte maturation. Finally, we describe specific mRNAs in metazoans that bear stem-loops instead of poly(A) tails. We conclude with how recent discoveries about poly(A) tail can be applied to mRNA technology. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Processing > 3' End Processing RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Ahmadreza Mofayezi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
- ReNAP Therapeutics, Tehran, Iran
| | - Mahdieh Jadaliha
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | | - Vahid Khoddami
- ReNAP Therapeutics, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Li Z, Li Y, Zhang B, Li Y, Long Y, Zhou J, Zou X, Zhang M, Hu Y, Chen W, Gao X. DeeReCT-APA: Prediction of Alternative Polyadenylation Site Usage Through Deep Learning. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:483-495. [PMID: 33662629 PMCID: PMC9801043 DOI: 10.1016/j.gpb.2020.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/28/2020] [Accepted: 06/12/2020] [Indexed: 01/26/2023]
Abstract
Alternative polyadenylation (APA) is a crucial step in post-transcriptional regulation. Previous bioinformatic studies have mainly focused on the recognition of polyadenylation sites (PASs) in a given genomic sequence, which is a binary classification problem. Recently, computational methods for predicting the usage level of alternative PASs in the same gene have been proposed. However, all of them cast the problem as a non-quantitative pairwise comparison task and do not take the competition among multiple PASs into account. To address this, here we propose a deep learning architecture, Deep Regulatory Code and Tools for Alternative Polyadenylation (DeeReCT-APA), to quantitatively predict the usage of all alternative PASs of a given gene. To accommodate different genes with potentially different numbers of PASs, DeeReCT-APA treats the problem as a regression task with a variable-length target. Based on a convolutional neural network-long short-term memory (CNN-LSTM) architecture, DeeReCT-APA extracts sequence features with CNN layers, uses bidirectional LSTM to explicitly model the interactions among competing PASs, and outputs percentage scores representing the usage levels of all PASs of a gene. In addition to the fact that only our method can quantitatively predict the usage of all the PASs within a gene, we show that our method consistently outperforms other existing methods on three different tasks for which they are trained: pairwise comparison task, highest usage prediction task, and ranking task. Finally, we demonstrate that our method can be used to predict the effect of genetic variations on APA patterns and sheds light on future mechanistic understanding in APA regulation. Our code and data are available at https://github.com/lzx325/DeeReCT-APA-repo.
Collapse
Affiliation(s)
- Zhongxiao Li
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955-6900, Saudi Arabia
| | - Yisheng Li
- Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Bin Zhang
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Yu Li
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955-6900, Saudi Arabia
| | - Yongkang Long
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955-6900, Saudi Arabia,Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Juexiao Zhou
- Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Xudong Zou
- Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Min Zhang
- Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yuhui Hu
- Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China,Corresponding authors.
| | - Wei Chen
- Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China,Corresponding authors.
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955-6900, Saudi Arabia,Corresponding authors.
| |
Collapse
|
4
|
Kwon B, Fansler MM, Patel ND, Lee J, Ma W, Mayr C. Enhancers regulate 3' end processing activity to control expression of alternative 3'UTR isoforms. Nat Commun 2022; 13:2709. [PMID: 35581194 PMCID: PMC9114392 DOI: 10.1038/s41467-022-30525-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
Multi-UTR genes are widely transcribed and express their alternative 3'UTR isoforms in a cell type-specific manner. As transcriptional enhancers regulate mRNA expression, we investigated if they also regulate 3'UTR isoform expression. Endogenous enhancer deletion of the multi-UTR gene PTEN did not impair transcript production but prevented 3'UTR isoform switching which was recapitulated by silencing of an enhancer-bound transcription factor. In reporter assays, enhancers increase transcript production when paired with single-UTR gene promoters. However, when combined with multi-UTR gene promoters, they change 3'UTR isoform expression by increasing 3' end processing activity of polyadenylation sites. Processing activity of polyadenylation sites is affected by transcription factors, including NF-κB and MYC, transcription elongation factors, chromatin remodelers, and histone acetyltransferases. As endogenous cell type-specific enhancers are associated with genes that increase their short 3'UTRs in a cell type-specific manner, our data suggest that transcriptional enhancers integrate cellular signals to regulate cell type-and condition-specific 3'UTR isoform expression.
Collapse
Affiliation(s)
- Buki Kwon
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mervin M Fansler
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Graduate College, New York, NY, 10021, USA
| | - Neil D Patel
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jihye Lee
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Weirui Ma
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Graduate College, New York, NY, 10021, USA.
| |
Collapse
|
5
|
Ropero P, González Fernández FA, Nieto JM, Recasens V, Montañés Á, Murúzabal MJ, Sarasa M, Fernández C, Villegas A, Benavente CC. Does size matter? Two new deletions in the HBB gene cause β 0-thalassemia. Ann Hematol 2022; 101:1465-1471. [PMID: 35467101 DOI: 10.1007/s00277-022-04837-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/02/2022] [Indexed: 11/22/2022]
Abstract
Most β-thalassemias are caused by mutations involving one or a limited number of nucleotides within the gene or its adjacent regions. They can be substitutions or deletions; in these cases, the loss ranges from a single nucleotide to even the entire HBB gene, so we wonder if the phenotype is due to the size of the deletion or the location of the mutation. To clarify this, we present two new deletions in the β-globin gene that cause β0-thalassemia. The hematological parameters were determined with an automated cell counter; the Hb A2 and Hb F levels were measured by performance liquid chromatography. Hemoglobins were analyzed by capillary zone electrophoresis (Sebia Capillarys Flex system) and ion-exchange HPLC (BioRad Variant II β-thalassemia Short Program). Molecular characterization was performed by automatic Sanger sequencing. The screening of common α-thalassemia point mutations and deletions in the world (21 in total) were carried out using multiplex PCR followed by reverse-hybridization with a commercial Alpha-Globin StripAssay kit. We have characterized two new mutations-(1) 1-bp deletion [CD61/62(-G)] [HBB:c.186_187delG], (2) 105-bp deletion [IVS-2-nt767-CD111] [HBB:c.316-84_333del]-and we have described, for first time in Spain, the 25-bp deletion [β nts 252 - 276 deleted] [HBB:c.93-22_95del] mutation. These mutations were classified as pathogenic by UniProt Variants confirmed according to the American College of Medical Genetics and Genomics guidelines. These mutations present a phenotype compatible with β0-thalassemia, supported by hematological parameters that correlate the degree of reduction in the synthesis of the β-globin chain. Identification of this type of mutation is important for genetic counselling of partners where both are carriers, so that they are aware of the genetic risk of having affected children, allowing them to take an informed decision about their reproductive choices.
Collapse
Affiliation(s)
- Paloma Ropero
- Hematology Service, Hospital Clínico San Carlos, C/Profesor Martín Lagos s/n, 28040, Madrid, Spain. .,Instituto de Investigación Sanitaria Hospital Clínico San Carlos, Madrid, Spain.
| | | | - Jorge M Nieto
- Hematology Service, Hospital Clínico San Carlos, C/Profesor Martín Lagos s/n, 28040, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital Clínico San Carlos, Madrid, Spain
| | - Valle Recasens
- Hematology Service, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Ángeles Montañés
- Hematology Service, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - María José Murúzabal
- Hematology Service, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - María Sarasa
- Hematology Service, Hospital Comarcal de Laredo, Laredo, Cantabria, Spain
| | - Cristina Fernández
- Hematology Service, Hospital Comarcal de Laredo, Laredo, Cantabria, Spain
| | - Ana Villegas
- Hematology Service, Hospital Clínico San Carlos, C/Profesor Martín Lagos s/n, 28040, Madrid, Spain
| | - Cuesta C Benavente
- Hematology Service, Hospital Clínico San Carlos, C/Profesor Martín Lagos s/n, 28040, Madrid, Spain
| |
Collapse
|
6
|
Fe-S clusters masquerading as zinc finger proteins. J Inorg Biochem 2022; 230:111756. [DOI: 10.1016/j.jinorgbio.2022.111756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 02/06/2023]
|
7
|
Mohanan NK, Shaji F, Koshre GR, Laishram RS. Alternative polyadenylation: An enigma of transcript length variation in health and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1692. [PMID: 34581021 DOI: 10.1002/wrna.1692] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/16/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Alternative polyadenylation (APA) is a molecular mechanism during a pre-mRNA processing that involves usage of more than one polyadenylation site (PA-site) generating transcripts of varying length from a single gene. The location of a PA-site affects transcript length and coding potential of an mRNA contributing to both mRNA and protein diversification. This variation in the transcript length affects mRNA stability and translation, mRNA subcellular and tissue localization, and protein function. APA is now considered as an important regulatory mechanism in the pathophysiology of human diseases. An important consequence of the changes in the length of 3'-untranslated region (UTR) from disease-induced APA is altered protein expression. Yet, the relationship between 3'-UTR length and protein expression remains a paradox in a majority of diseases. Here, we review occurrence of APA, mechanism of PA-site selection, and consequences of transcript length variation in different diseases. Emerging evidence reveals coordinated involvement of core RNA processing factors including poly(A) polymerases in the PA-site selection in diseases-associated APAs. Targeting such APA regulators will be therapeutically significant in combating drug resistance in cancer and other complex diseases. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease Translation > Regulation.
Collapse
Affiliation(s)
- Neeraja K Mohanan
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Feba Shaji
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ganesh R Koshre
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Rakesh S Laishram
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| |
Collapse
|
8
|
Zingone A, Sinha S, Ante M, Nguyen C, Daujotyte D, Bowman ED, Sinha N, Mitchell KA, Chen Q, Yan C, Loher P, Meerzaman D, Ruppin E, Ryan BM. A comprehensive map of alternative polyadenylation in African American and European American lung cancer patients. Nat Commun 2021; 12:5605. [PMID: 34556645 PMCID: PMC8460807 DOI: 10.1038/s41467-021-25763-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 07/22/2021] [Indexed: 11/09/2022] Open
Abstract
Deciphering the post-transcriptional mechanisms (PTM) regulating gene expression is critical to understand the dynamics underlying transcriptomic regulation in cancer. Alternative polyadenylation (APA)-regulation of mRNA 3'UTR length by alternating poly(A) site usage-is a key PTM mechanism whose comprehensive analysis in cancer remains an important open challenge. Here we use a method and analysis pipeline that sequences 3'end-enriched RNA directly to overcome the saturation limitation of traditional 5'-3' based sequencing. We comprehensively map the APA landscape in lung cancer in a cohort of 98 tumor/non-involved tissues derived from European American and African American patients. We identify a global shortening of 3'UTR transcripts in lung cancer, with notable functional implications on the expression of both coding and noncoding genes. We find that APA of non-coding RNA transcripts (long non-coding RNAs and microRNAs) is a recurrent event in lung cancer and discover that the selection of alternative polyA sites is a form of non-coding RNA expression control. Our results indicate that mRNA transcripts from EAs are two times more likely than AAs to undergo APA in lung cancer. Taken together, our findings comprehensively map and identify the important functional role of alternative polyadenylation in determining transcriptomic heterogeneity in lung cancer.
Collapse
Affiliation(s)
- Adriana Zingone
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, US
| | - Sanju Sinha
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, US
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, US
| | - Michael Ante
- Lexogen GmbH, Campus Vienna Biocenter 5, 1030, Vienna, Austria
- Ares Genetics GmbH, Karl-Farkas-Gasse 18, 1030, Vienna, Austria
| | - Cu Nguyen
- Computational Genomics Research, Center for Biomedical Informatics and Information Technology (CBIIT), National Cancer Institute, 9609 Medical Center Drive, Rockville, MD, 20850, US
| | - Dalia Daujotyte
- Lexogen GmbH, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Elise D Bowman
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, US
| | - Neelam Sinha
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, US
| | - Khadijah A Mitchell
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, US
| | - Qingrong Chen
- Computational Genomics Research, Center for Biomedical Informatics and Information Technology (CBIIT), National Cancer Institute, 9609 Medical Center Drive, Rockville, MD, 20850, US
| | - Chunhua Yan
- Computational Genomics Research, Center for Biomedical Informatics and Information Technology (CBIIT), National Cancer Institute, 9609 Medical Center Drive, Rockville, MD, 20850, US
| | - Phillipe Loher
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19017, US
| | - Daoud Meerzaman
- Computational Genomics Research, Center for Biomedical Informatics and Information Technology (CBIIT), National Cancer Institute, 9609 Medical Center Drive, Rockville, MD, 20850, US
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, US
| | - Bríd M Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, US.
| |
Collapse
|
9
|
Mitschka S, Fansler MM, Mayr C. Generation of 3'UTR knockout cell lines by CRISPR/Cas9-mediated genome editing. Methods Enzymol 2021; 655:427-457. [PMID: 34183132 DOI: 10.1016/bs.mie.2021.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In addition to the protein code, messenger RNAs (mRNAs) also contain untranslated regions (UTRs). 3'UTRs span the region between the translational stop codon and the poly(A) tail. Sequence elements located in 3'UTRs are essential for pre-mRNA processing. 3'UTRs also contain elements that can regulate protein abundance, localization, and function. At least half of all human genes use alternative cleavage and polyadenylation (APA) to further diversify the regulatory potential of protein functions. Traditional gene editing approaches are designed to disrupt the production of functional proteins. Here, we describe a method that allows investigators to manipulate 3'UTR sequences of endogenous genes for both single- 3'UTR and multi-3'UTR genes. As 3'UTRs can regulate individual functions of proteins, techniques to manipulate 3'UTRs at endogenous gene loci will help to disentangle multi-functionality of proteins. Furthermore, the ability to directly examine the impact of gene regulatory elements in 3'UTRs will provide further insights into their functional significance.
Collapse
Affiliation(s)
- Sibylle Mitschka
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Mervin M Fansler
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Tri-Institutional Training Program in Computational Biology and Medicine, Weill-Cornell Graduate College, New York, NY, United States
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Tri-Institutional Training Program in Computational Biology and Medicine, Weill-Cornell Graduate College, New York, NY, United States.
| |
Collapse
|
10
|
Sommerkamp P, Cabezas-Wallscheid N, Trumpp A. Alternative Polyadenylation in Stem Cell Self-Renewal and Differentiation. Trends Mol Med 2021; 27:660-672. [PMID: 33985920 DOI: 10.1016/j.molmed.2021.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
Cellular function is shaped by transcriptional and post-transcriptional mechanisms, including alternative polyadenylation (APA). By directly controlling 3'- untranslated region (UTR) length and the selection of the last exon, APA regulates up to 70% of all cellular transcripts influencing RNA stability, output, and protein isoform expression. Cell-state-dependent 3'-UTR shortening has been identified as a hallmark of cellular proliferation. Hence, quiescent/dormant stem cells are characterized by long 3'-UTRs, whereas proliferative stem/progenitor cells exhibit 3'-UTR shortening. Here, the latest studies analyzing the role of APA in regulating stem cell state, self-renewal, differentiation, and metabolism are reviewed. The new role of APA in controlling stem cell fate opens novel potential therapeutic avenues in the field of regenerative medicine.
Collapse
Affiliation(s)
- Pia Sommerkamp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | | | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
| |
Collapse
|
11
|
Roos D, de Boer M. Mutations in cis that affect mRNA synthesis, processing and translation. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166166. [PMID: 33971252 DOI: 10.1016/j.bbadis.2021.166166] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
Genetic mutations that cause hereditary diseases usually affect the composition of the transcribed mRNA and its encoded protein, leading to instability of the mRNA and/or the protein. Sometimes, however, such mutations affect the synthesis, the processing or the translation of the mRNA, with similar disastrous effects. We here present an overview of mRNA synthesis, its posttranscriptional modification and its translation into protein. We then indicate which elements in these processes are known to be affected by pathogenic mutations, but we restrict our review to mutations in cis, in the DNA of the gene that encodes the affected protein. These mutations can be in enhancer or promoter regions of the gene, which act as binding sites for transcription factors involved in pre-mRNA synthesis. We also describe mutations in polyadenylation sequences and in splice site regions, exonic and intronic, involved in intron removal. Finally, we include mutations in the Kozak sequence in mRNA, which is involved in protein synthesis. We provide examples of genetic diseases caused by mutations in these DNA regions and refer to databases to help identify these regions. The over-all knowledge of mRNA synthesis, processing and translation is essential for improvement of the diagnosis of patients with genetic diseases.
Collapse
Affiliation(s)
- Dirk Roos
- Sanquin Blood Supply Organization, Dept. of Blood Cell Research, Landsteiner Laboratory, Amsterdam University Medical Centre, location AMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Martin de Boer
- Sanquin Blood Supply Organization, Dept. of Blood Cell Research, Landsteiner Laboratory, Amsterdam University Medical Centre, location AMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Chen M, Wei R, Wei G, Xu M, Su Z, Zhao C, Ni T. Systematic evaluation of the effect of polyadenylation signal variants on the expression of disease-associated genes. Genome Res 2021; 31:890-899. [PMID: 33875481 PMCID: PMC8092010 DOI: 10.1101/gr.270256.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 03/02/2021] [Indexed: 01/18/2023]
Abstract
Single nucleotide variants (SNVs) within polyadenylation signals (PASs), a specific six-nucleotide sequence required for mRNA maturation, can impair RNA-level gene expression and cause human diseases. However, there is a lack of genome-wide investigation and systematic confirmation tools for identifying PAS variants. Here, we present a computational strategy to integrate the most reliable resources for discovering distinct genomic features of PAS variants and also develop a credible and convenient experimental tool to validate the effect of PAS variants on expression of disease-associated genes. This approach will greatly accelerate the deciphering of PAS variation-related human diseases.
Collapse
Affiliation(s)
- Meng Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Eye & ENT Hospital, Fudan University, Shanghai, 200438, China.,Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China
| | - Ran Wei
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Gang Wei
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, China.,MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Mingqing Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center of Genetics and Development, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhixi Su
- Singlera Genomics (Shanghai) Limited, Shanghai, 201318, China
| | - Chen Zhao
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, China.,Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
13
|
Pritts JD, Oluyadi AA, Huang W, Shimberg GD, Kane MA, Wilks A, Michel SLJ. Understanding RNA Binding by the Nonclassical Zinc Finger Protein CPSF30, a Key Factor in Polyadenylation during Pre-mRNA Processing. Biochemistry 2021; 60:780-790. [PMID: 33615774 DOI: 10.1021/acs.biochem.0c00940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cleavage and polyadenylation specificity factor 30 (CPSF30) is a zinc finger protein that regulates pre-mRNA processing. CPSF30 contains five CCCH domains and one CCHC domain and recognizes two conserved 3' pre-mRNA sequences: an AU hexamer and a U-rich motif. AU hexamer motifs are common in pre-mRNAs and are typically defined as AAUAAA. Variations within the AAUAAA hexamer occur in certain pre-mRNAs and can affect polyadenylation efficiency or be linked to diseases. The effects of disease-related variations on CPSF30/pre-mRNA binding were determined using a construct of CPSF30 that contains just the five CCCH domains (CPSF30-5F). Bioinformatics was utilized to identify the variability within the AU hexamer sequence in pre-mRNAs. The effects of this sequence variability on CPSF30-5F/RNA binding affinities were measured. Bases at positions 1, 2, 4, and 5 within the AU hexamer were found to be important for RNA binding. Bioinformatics revealed that the three bases flanking the AU hexamer at the 5' and 3' ends are twice as likely to be adenine or uracil as guanine and cytosine. The presence of A and U residues in these flanking regions was determined to promote higher-affinity CPSF30-5F/RNA binding than G and C residues. The addition of the zinc knuckle domain to CPSF30-5F (CPSF30-FL) restored binding to AU hexamer variants. This restoration of binding is connected to the presence of a U-rich sequence within the pre-mRNA to which the zinc knuckle binds. A mechanism of differential RNA binding by CPSF30, modulated by accessibility of the two RNA binding sites, is proposed.
Collapse
Affiliation(s)
- Jordan D Pritts
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| | - Abdulafeez A Oluyadi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| | - Geoffrey D Shimberg
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| |
Collapse
|
14
|
Population-scale genetic control of alternative polyadenylation and its association with human diseases. QUANTITATIVE BIOLOGY 2021. [DOI: 10.15302/j-qb-021-0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Shulman ED, Elkon R. Systematic identification of functional SNPs interrupting 3'UTR polyadenylation signals. PLoS Genet 2020; 16:e1008977. [PMID: 32804959 PMCID: PMC7451987 DOI: 10.1371/journal.pgen.1008977] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 08/27/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022] Open
Abstract
Alternative polyadenylation (APA) is emerging as a widespread regulatory layer since the majority of human protein-coding genes contain several polyadenylation (p(A)) sites in their 3’UTRs. By generating isoforms with different 3’UTR length, APA potentially affects mRNA stability, translation efficiency, nuclear export, and cellular localization. Polyadenylation sites are regulated by adjacent RNA cis-regulatory elements, the principals among them are the polyadenylation signal (PAS) AAUAAA and its main variant AUUAAA, typically located ~20-nt upstream of the p(A) site. Mutations in PAS and other auxiliary poly(A) cis-elements in the 3’UTR of several genes have been shown to cause human Mendelian diseases, and to date, only a few common SNPs that regulate APA were associated with complex diseases. Here, we systematically searched for SNPs that affect gene expression and human traits by modulation of 3’UTR APA. First, focusing on the variants most likely to exert the strongest effect, we identified 2,305 SNPs that interrupt the canonical PAS or its main variant. Implementing pA-QTL tests using GTEx RNA-seq data, we identified 330 PAS SNPs (called PAS pA-QTLs) that were significantly associated with the usage of their p(A) site. As expected, PAS-interrupting alleles were mostly linked with decreased cleavage at their p(A) site and the consequential 3’UTR lengthening. However, interestingly, in ~10% of the cases, the PAS-interrupting allele was associated with increased usage of an upstream p(A) site and 3’UTR shortening. As an indication of the functional effects of these PAS pA-QTLs on gene expression and complex human traits, we observed for few dozens of them marked colocalization with eQTL and/or GWAS signals. The PAS-interrupting alleles linked with 3’UTR lengthening were also strongly associated with decreased gene expression, indicating that shorter isoforms generated by APA are generally more stable than longer ones. Last, we carried out an extended, genome-wide analysis of 3’UTR variants and detected thousands of additional pA-QTLs having weaker effects compared to the PAS pA-QTLs. mRNA molecules that encode for proteins end with a long stretch of adenosines, called poly(A) tail. The poly(A) tail contributes to the stability of the mRNA molecules, their translation to proteins and their import from the nucleus to the cytoplasm. The process of adding this tail to the mRNAs is called polyadenylation, and the termination site on the mRNAs at which the poly(A) tail is added is called the poly(A) site. In recent years it became evident that the vast majority of mRNAs of human genes contain several alternative poly(A) sites and their usage generates different mRNA isoforms that differ in their stability and translation efficiency. Therefore, alternative polyadenylation (APA) is emerging as a novel and important, yet underexplored, mechanism that regulate gene expression. The choice between alternative p(A) sites in an mRNA molecule is regulated by regulatory sequences located within a region in the mRNA called the 3’ untranslated region (3’UTR). A major challenge in present human genetics research is to understand how common genetic variants affect individuals’ health. In our study, we systematically identified dozens of genetic variants that affect the choice between alternative p(A) sites and demonstrated that by that, these variants influence the expression level of the target genes. Our results help to illuminate a novel mechanism by which genetic variants that are common in the population affect different traits including our risk for developing diseases.
Collapse
Affiliation(s)
- Eldad David Shulman
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
16
|
Wachs AS, Bohne J. Two sides of the same medal: Noncoding mutations reveal new pathological mechanisms and insights into the regulation of gene expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1616. [PMID: 32633083 DOI: 10.1002/wrna.1616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022]
Abstract
Noncoding sequences constitute the major part of the human genome and also of pre-mRNAs. Single nucleotide variants in these regions are often overlooked, but may be responsible for much of the variation of phenotypes observed. Mutations in the noncoding part of pre-mRNAs often reveal new and meaningful insights into the regulation of cellular gene expression. Thus, the mechanistic analysis of the pathological mechanism of such mutations will both foster a deeper understanding of the disease and the underlying cellular pathways. Even synonymous mutations can cause diseases, since the primary mRNA sequence not only encodes amino acids, but also encrypts information on RNA-binding proteins and secondary structure. In fact, the RNA sequence directs assembly of a specific mRNP complex, which in turn dictates the fate of the mRNA or regulates its biogenesis. The accumulation of genomic sequence information is increasing at a rapid pace. However, much of the diversity uncovered may not explain the phenotype of a certain syndrome or disease. For this reason, we also emphasize the value of mechanistic studies on pathological mechanisms being complementary to genome-wide studies and bioinformatic approaches. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Amelie S Wachs
- Institute of Virology, Hannover Medical School, Hanover, Germany
| | - Jens Bohne
- Institute of Virology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
17
|
Nourse J, Spada S, Danckwardt S. Emerging Roles of RNA 3'-end Cleavage and Polyadenylation in Pathogenesis, Diagnosis and Therapy of Human Disorders. Biomolecules 2020; 10:biom10060915. [PMID: 32560344 PMCID: PMC7356254 DOI: 10.3390/biom10060915] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022] Open
Abstract
A crucial feature of gene expression involves RNA processing to produce 3′ ends through a process termed 3′ end cleavage and polyadenylation (CPA). This ensures the nascent RNA molecule can exit the nucleus and be translated to ultimately give rise to a protein which can execute a function. Further, alternative polyadenylation (APA) can produce distinct transcript isoforms, profoundly expanding the complexity of the transcriptome. CPA is carried out by multi-component protein complexes interacting with multiple RNA motifs and is tightly coupled to transcription, other steps of RNA processing, and even epigenetic modifications. CPA and APA contribute to the maintenance of a multitude of diverse physiological processes. It is therefore not surprising that disruptions of CPA and APA can lead to devastating disorders. Here, we review potential CPA and APA mechanisms involving both loss and gain of function that can have tremendous impacts on health and disease. Ultimately we highlight the emerging diagnostic and therapeutic potential CPA and APA offer.
Collapse
Affiliation(s)
- Jamie Nourse
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Stefano Spada
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Sven Danckwardt
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main, Germany
- Correspondence:
| |
Collapse
|
18
|
Sripusanapan A, Phusua A, Fanhchaksai K, Charoenkwan P. Compound heterozygosity of a silent beta-thalassemia mutation at the 3'-untranslated region (HBB: c.*132 C>T) and beta-zero thalassemia results in thalassemia intermedia. Pediatr Blood Cancer 2020; 67:e28157. [PMID: 31930713 DOI: 10.1002/pbc.28157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/11/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Adivitch Sripusanapan
- Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Arunee Phusua
- Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kanda Fanhchaksai
- Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pimlak Charoenkwan
- Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
19
|
Murphy MR, Kleiman FE. Connections between 3' end processing and DNA damage response: Ten years later. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1571. [PMID: 31657151 PMCID: PMC7295566 DOI: 10.1002/wrna.1571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 12/23/2022]
Abstract
Ten years ago we reviewed how the cellular DNA damage response (DDR) is controlled by changes in the functional and structural properties of nuclear proteins, resulting in a timely coordinated control of gene expression that allows DNA repair. Expression of genes that play a role in DDR is regulated not only at transcriptional level during mRNA biosynthesis but also by changing steady-state levels due to turnover of the transcripts. The 3' end processing machinery, which is important in the regulation of mRNA stability, is involved in these gene-specific responses to DNA damage. Here, we review the latest mechanistic connections described between 3' end processing and DDR, with a special emphasis on alternative polyadenylation, microRNA and RNA binding proteins-mediated deadenylation, and discuss the implications of deregulation of these steps in DDR and human disease. This article is categorized under: RNA Processing > 3' End Processing RNA-Based Catalysis > Miscellaneous RNA-Catalyzed Reactions RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Michael Robert Murphy
- Department of Chemistry, Hunter College and Biochemistry Program, The Graduate Center, City University of New York, New York, New York
| | - Frida Esther Kleiman
- Department of Chemistry, Hunter College and Biochemistry Program, The Graduate Center, City University of New York, New York, New York
| |
Collapse
|
20
|
|
21
|
Kumar A, Clerici M, Muckenfuss LM, Passmore LA, Jinek M. Mechanistic insights into mRNA 3'-end processing. Curr Opin Struct Biol 2019; 59:143-150. [PMID: 31499460 PMCID: PMC6900580 DOI: 10.1016/j.sbi.2019.08.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/01/2019] [Accepted: 08/13/2019] [Indexed: 11/29/2022]
Abstract
Integrated structural biology approaches have provided new insights into the mechanism of eukaryotic mRNA 3′-end processing. The polymerase modules of yeast and human cleavage and polyadenylation factors share a conserved architecture. CryoEM structures of human CPSF have revealed the mechanism of AAUAAA polyadenylation signal recognition. Cleavage and polyadenylation of mRNA 3′-ends likely involves a dynamic assembly of CPF/CPSF and accessory factors.
The polyadenosine (poly(A)) tail found on the 3′-end of almost all eukaryotic mRNAs is important for mRNA stability and regulation of translation. mRNA 3′-end processing occurs co-transcriptionally and involves more than 20 proteins to specifically recognize the polyadenylation site, cleave the pre-mRNA, add a poly(A) tail, and trigger transcription termination. The polyadenylation site (PAS) defines the end of the 3′-untranslated region (3′-UTR) and, therefore, selection of the cleavage site is a critical event in regulating gene expression. Integrated structural biology approaches including biochemical reconstitution of multi-subunit complexes, cross-linking mass spectrometry, and structural analyses by X- ray crystallography and single-particle electron cryo-microscopy (cryoEM) have enabled recent progress in understanding the molecular mechanisms of the mRNA 3′-end processing machinery. Here, we describe new molecular insights into pre-mRNA recognition, cleavage and polyadenylation.
Collapse
Affiliation(s)
| | - Marcello Clerici
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Lena M Muckenfuss
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Lori A Passmore
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom.
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
22
|
Thore S, Fribourg S. Structural insights into the 3′-end mRNA maturation machinery: Snapshot on polyadenylation signal recognition. Biochimie 2019; 164:105-110. [DOI: 10.1016/j.biochi.2019.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/26/2019] [Indexed: 12/22/2022]
|
23
|
Abstract
Most human genes have multiple sites at which RNA 3' end cleavage and polyadenylation can occur, enabling the expression of distinct transcript isoforms under different conditions. Novel methods to sequence RNA 3' ends have generated comprehensive catalogues of polyadenylation (poly(A)) sites; their analysis using innovative computational methods has revealed how poly(A) site choice is regulated by core RNA 3' end processing factors, such as cleavage factor I and cleavage and polyadenylation specificity factor, as well as by other RNA-binding proteins, particularly splicing factors. Here, we review the experimental and computational methods that have enabled the global mapping of mRNA and of long non-coding RNA 3' ends, quantification of the resulting isoforms and the discovery of regulators of alternative cleavage and polyadenylation (APA). We highlight the different types of APA-derived isoforms and their functional differences, and illustrate how APA contributes to human diseases, including cancer and haematological, immunological and neurological diseases.
Collapse
|
24
|
A hit deconstruction approach for the discovery of fetal hemoglobin inducers. Bioorg Med Chem Lett 2018; 28:3676-3680. [PMID: 30554630 DOI: 10.1016/j.bmcl.2018.10.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/17/2018] [Accepted: 10/20/2018] [Indexed: 11/21/2022]
Abstract
Beta-hemoglobinopathies such as sickle cell disease represent a major global unmet medical need. De-repression of fetal hemoglobin in erythrocytes is a clinically validated approach for the management of sickle cell disease, but the only FDA-approved medicine for this purpose has limitations to its use. We conducted a phenotypic screen in human erythroid progenitor cells to identify molecules with the ability to de-repress fetal hemoglobin, which resulted in the identification of the benzoxaborole-containing hit compound 1. This compound was found to have modest cellular potency and lead-like pharmacokinetics, but no identifiable SAR to enable optimization. Systematic deconstruction of a closely related analog of 1 revealed the fragment-like carboxylic acid 12, which was then optimized to provide tetrazole 31, which had approximately 100-fold improved cellular potency compared to 1, high levels of oral exposure in rats, and excellent solubility.
Collapse
|
25
|
Turkgenc B, Sanlidag B, Eker A, Giray A, Kutuk O, Yakicier C, Tolun A, Temel SG. STUB1 polyadenylation signal variant AACAAA does not affect polyadenylation but decreases STUB1 translation causing SCAR16. Hum Mutat 2018; 39:1344-1348. [PMID: 30058754 DOI: 10.1002/humu.23601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/30/2018] [Accepted: 07/04/2018] [Indexed: 11/09/2022]
Abstract
We present three siblings afflicted with a disease characterized by cerebellar ataxia, cerebellar atrophy, pyramidal tract damage with increased lower limb tendon reflexes, and onset of 31 to 57 years, which is not typical for a known disease. In a region of shared homozygosity in patients, exome sequencing revealed novel homozygous c.*240T > C variant in the 3'UTR of STUB1, the gene responsible for autosomal recessive spinocerebellar ataxia 16 (SCAR16). In other genes, such an alteration of the evolutionarily highly conserved polyadenylation signal from AATAAA to AACAAA is known to highly impair polyadenylation. In contrast, RNA sequencing and quantification revealed that neither polyadenylation nor stability of STUB1 mRNA is affected. In silico analysis predicted that the secondary structure of the mRNA is altered. We propose that this change underlies the extremely low amounts of the encoded protein in patient leukocytes.
Collapse
Affiliation(s)
| | - Burcin Sanlidag
- Department of Pediatric Neurology, Near East University Faculty of Medicine, Nicosia, Cyprus
| | - Amber Eker
- Department of Neurology, Near East University Faculty of Medicine, Nicosia, Cyprus
| | - Aslı Giray
- Faculty of Engineering, Department of Genetics and Bioengineering, Alaaddin Keykubat University, Antalya, Turkey
| | - Ozgur Kutuk
- Department of Medical Genetics, Adana Dr. Turgut Noyan Medical and Research Center, Baskent University School of Medicine, Adana, Turkey
| | - Cengiz Yakicier
- Department of Molecular Biology and Genetics, Acıbadem University, Istanbul, Turkey
| | - Aslıhan Tolun
- Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Sehime G Temel
- Department of Medical Genetics, Uludağ University, Bursa, Turkey.,Department of Histology and Embryology, Uludağ University, Bursa, Turkey.,Department of Histology and Embryology, Near East University, Nicosia, Cyprus
| |
Collapse
|
26
|
Genome-wide atlas of alternative polyadenylation in the forage legume red clover. Sci Rep 2018; 8:11379. [PMID: 30054540 PMCID: PMC6063945 DOI: 10.1038/s41598-018-29699-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022] Open
Abstract
Studies on prevalence and significance of alternative polyadenylation (APA) in plants have been so far limited mostly to the model plants. Here, a genome-wide analysis of APA was carried out in different tissue types in the non-model forage legume red clover (Trifolium pratense L). A profile of poly(A) sites in different tissue types was generated using so-called 'poly(A)-tag sequencing' (PATseq) approach. Our analysis revealed tissue-wise dynamics of usage of poly(A) sites located at different genomic locations. We also identified poly(A) sites and underlying genes displaying APA in different tissues. Functional categories enriched in groups of genes manifesting APA between tissue types were determined. Analysis of spatial expression of genes encoding different poly(A) factors showed significant differential expression of genes encoding orthologs of FIP1(V) and PCFS4, suggesting that these two factors may play a role in regulating spatial APA in red clover. Our analysis also revealed a high degree of conservation in diverse plant species of APA events in mRNAs encoding two key polyadenylation factors, CPSF30 and FIP1(V). Together with our previously reported study of spatial gene expression in red clover, this study will provide a comprehensive account of transcriptome dynamics in this non-model forage legume.
Collapse
|
27
|
Steri M, Idda ML, Whalen MB, Orrù V. Genetic variants in mRNA untranslated regions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1474. [PMID: 29582564 DOI: 10.1002/wrna.1474] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/05/2018] [Accepted: 02/11/2018] [Indexed: 12/24/2022]
Abstract
Genome Wide Association Studies (GWAS) have mapped thousands of genetic variants associated with complex disease risk and regulating quantitative traits, thus exploiting an unprecedented high-resolution genetic characterization of the human genome. A small fraction (3.7%) of the identified associations is located in untranslated regions (UTRs), and the molecular mechanism has been elucidated for few of them. Genetic variations at UTRs may modify regulatory elements affecting the interaction of the UTRs with proteins and microRNAs. The overall functional consequences include modulation of messenger RNA (mRNA) transcription, secondary structure, stability, localization, translation, and access to regulators like microRNAs (miRNAs) and RNA-binding proteins (RBPs). Alterations of these regulatory mechanisms are known to modify molecular pathways and cellular processes, potentially leading to disease processes. Here, we analyze some examples of genetic risk variants mapping in the UTR regulatory elements. We describe a recently identified genetic variant localized in the 3'UTR of the TNFSF13B gene, associated with autoimmunity risk and responsible of an increased stability and translation of TNFSF13B mRNA. We discuss how the correct use and interpretation of public GWAS repositories could lead to a better understanding of etiopathogenetic mechanisms and the generation of robust biological hypothesis as starting point for further functional studies. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Evolution and Genomics > Computational Analyses of RNA RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Maristella Steri
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - M Laura Idda
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institute of Health, Baltimore, Maryland
| | - Michael B Whalen
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Trento, Italy
| | - Valeria Orrù
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| |
Collapse
|
28
|
Molecular basis for the recognition of the human AAUAAA polyadenylation signal. Proc Natl Acad Sci U S A 2017; 115:E1419-E1428. [PMID: 29208711 DOI: 10.1073/pnas.1718723115] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nearly all eukaryotic messenger RNA precursors must undergo cleavage and polyadenylation at their 3'-end for maturation. A crucial step in this process is the recognition of the AAUAAA polyadenylation signal (PAS), and the molecular mechanism of this recognition has been a long-standing problem. Here, we report the cryo-electron microscopy structure of a quaternary complex of human CPSF-160, WDR33, CPSF-30, and an AAUAAA RNA at 3.4-Å resolution. Strikingly, the AAUAAA PAS assumes an unusual conformation that allows this short motif to be bound directly by both CPSF-30 and WDR33. The A1 and A2 bases are recognized specifically by zinc finger 2 (ZF2) of CPSF-30 and the A4 and A5 bases by ZF3. Interestingly, the U3 and A6 bases form an intramolecular Hoogsteen base pair and directly contact WDR33. CPSF-160 functions as an essential scaffold and preorganizes CPSF-30 and WDR33 for high-affinity binding to AAUAAA. Our findings provide an elegant molecular explanation for how PAS sequences are recognized for mRNA 3'-end formation.
Collapse
|
29
|
Chang JW, Yeh HS, Yong J. Alternative Polyadenylation in Human Diseases. Endocrinol Metab (Seoul) 2017; 32:413-421. [PMID: 29271615 PMCID: PMC5744726 DOI: 10.3803/enm.2017.32.4.413] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 12/02/2022] Open
Abstract
Varying length of messenger RNA (mRNA) 3'-untranslated region is generated by alternating the usage of polyadenylation sites during pre-mRNA processing. It is prevalent through all eukaryotes and has emerged as a key mechanism for controlling gene expression. Alternative polyadenylation (APA) plays an important role for cell growth, proliferation, and differentiation. In this review, we discuss the functions of APA related with various physiological conditions including cellular metabolism, mRNA processing, and protein diversity in a variety of disease models. We also discuss the molecular mechanisms underlying APA regulation, such as variations in the concentration of mRNA processing factors and RNA-binding proteins, as well as global transcriptome changes under cellular signaling pathway.
Collapse
Affiliation(s)
- Jae Woong Chang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities College of Biological Sciences, Minneapolis, MN, USA
| | - Hsin Sung Yeh
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities College of Biological Sciences, Minneapolis, MN, USA
| | - Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities College of Biological Sciences, Minneapolis, MN, USA.
| |
Collapse
|
30
|
Neve J, Patel R, Wang Z, Louey A, Furger AM. Cleavage and polyadenylation: Ending the message expands gene regulation. RNA Biol 2017; 14:865-890. [PMID: 28453393 PMCID: PMC5546720 DOI: 10.1080/15476286.2017.1306171] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
Cleavage and polyadenylation (pA) is a fundamental step that is required for the maturation of primary protein encoding transcripts into functional mRNAs that can be exported from the nucleus and translated in the cytoplasm. 3'end processing is dependent on the assembly of a multiprotein processing complex on the pA signals that reside in the pre-mRNAs. Most eukaryotic genes have multiple pA signals, resulting in alternative cleavage and polyadenylation (APA), a widespread phenomenon that is important to establish cell state and cell type specific transcriptomes. Here, we review how pA sites are recognized and comprehensively summarize how APA is regulated and creates mRNA isoform profiles that are characteristic for cell types, tissues, cellular states and disease.
Collapse
Affiliation(s)
- Jonathan Neve
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Radhika Patel
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Zhiqiao Wang
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Alastair Louey
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
31
|
Haddad F, Trabelsi N, Chaouch L, Darragi I, Oueslati M, Boudriga I, Chaouachi D, El-Borgi W, Hafsia R, Abbes S, Ouragini H. Homozygous Mutation on the β-Globin Polyadenylation Signal in a Tunisian Patient with β-Thalassemia Intermedia and Coinheritance of Gilbert's Syndrome. Hemoglobin 2017; 41:147-150. [PMID: 28592168 DOI: 10.1080/03630269.2017.1322610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We report here the clinical, hematological and molecular data in a 50-year-old patient with β-thalassemia intermedia (β-TI) caused by a homozygous β+ mutation on the β-globin gene polyadenylation (polyA) signal (AATAAA>AAAAAA). β Haplotype analysis was accomplished by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Haplotype and framework analysis showed that this mutation is associated with the [- - - - + + +] β haplotype and framework 1 (CCGCT) (FW1). This mutation was previously reported in the heterozygous state in association with the codon 9 (+TA) mutation in a β-TI patient originating from Tunisia. To the best of our knowledge, this is the first report describing this mutation in the homozygous state. The case reported here, coinherited Gilbert's syndrome, which is characterized by hyperbilirubinemia. This conclusion was reached by the investigation of the promoter region [A(TA)nTAA] motif of the UGT1A1 gene, showing the (TA)6/(TA)7 genotype.
Collapse
Affiliation(s)
- Faten Haddad
- a Laboratory of Molecular and Cellular Hematology , Pasteur Institute of Tunis-Tunis El Manar University , Tunis , Tunisia
| | - Nawel Trabelsi
- a Laboratory of Molecular and Cellular Hematology , Pasteur Institute of Tunis-Tunis El Manar University , Tunis , Tunisia
| | - Leila Chaouch
- a Laboratory of Molecular and Cellular Hematology , Pasteur Institute of Tunis-Tunis El Manar University , Tunis , Tunisia
| | - Imen Darragi
- a Laboratory of Molecular and Cellular Hematology , Pasteur Institute of Tunis-Tunis El Manar University , Tunis , Tunisia
| | - Meriem Oueslati
- b Laboratory of Biological Hematology , Aziza Othmana Hospital-Tunis El Manar University , Tunis , Tunisia
| | - Imen Boudriga
- a Laboratory of Molecular and Cellular Hematology , Pasteur Institute of Tunis-Tunis El Manar University , Tunis , Tunisia
| | - Dorra Chaouachi
- a Laboratory of Molecular and Cellular Hematology , Pasteur Institute of Tunis-Tunis El Manar University , Tunis , Tunisia
| | - Wijdene El-Borgi
- b Laboratory of Biological Hematology , Aziza Othmana Hospital-Tunis El Manar University , Tunis , Tunisia
| | - Raouf Hafsia
- b Laboratory of Biological Hematology , Aziza Othmana Hospital-Tunis El Manar University , Tunis , Tunisia
| | - Salem Abbes
- a Laboratory of Molecular and Cellular Hematology , Pasteur Institute of Tunis-Tunis El Manar University , Tunis , Tunisia
| | - Houyem Ouragini
- a Laboratory of Molecular and Cellular Hematology , Pasteur Institute of Tunis-Tunis El Manar University , Tunis , Tunisia
| |
Collapse
|
32
|
Peart N, Wagner EJ. A distal auxiliary element facilitates cleavage and polyadenylation of Dux4 mRNA in the pathogenic haplotype of FSHD. Hum Genet 2017; 136:1291-1301. [PMID: 28540412 DOI: 10.1007/s00439-017-1813-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/14/2017] [Indexed: 01/24/2023]
Abstract
The degenerative muscle disorder facioscapulohumeral dystrophy (FSHD) is thought to be caused by the inappropriate expression of the Double Homeobox 4 (Dux4) protein in muscle cells leading to apoptosis. Expression of Dux4 in the major form of FSHD is a function of two contributing molecular changes: contractions in the D4Z4 microsatellite repeat region where Dux4 is located and an SNP present within a region downstream of the D4Z4. This SNP provides a functional, yet non-consensus polyadenylation signal (PAS) is used for the Dux4 mRNA 3' end processing. Surprisingly, the sequences flanking the Dux4 PAS do not resemble a typical cleavage and polyadenylation landscape with no recognizable downstream sequence element and a suboptimal cleavage site. Here, we conducted a systematic analysis of the cis-acting elements that govern Dux4 cleavage and polyadenylation. Using a transcriptional read-through reporter, we determined that sequences downstream of the SNP located within the β-satellite region are critical for Dux4 cleavage and polyadenylation. We also demonstrate the feasibility of using antisense oligonucleotides to target these sequences as a means to reduce Dux4 expression. Our results underscore the complexity of the region immediately downstream of the D4Z4 and uncover a previously unknown function for the β-satellite region in Dux4 cleavage and polyadenylation.
Collapse
Affiliation(s)
- Natoya Peart
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, USA
- Graduate Program in Biochemistry and Molecular Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric J Wagner
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, USA.
| |
Collapse
|
33
|
Frazer DM, Wilkins SJ, Mirciov CSG, Dunn LA, Anderson GJ. Hepcidin independent iron recycling in a mouse model of β-thalassaemia intermedia. Br J Haematol 2016; 175:308-317. [PMID: 27410488 DOI: 10.1111/bjh.14206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/04/2016] [Indexed: 12/17/2022]
Abstract
In conditions such as β-thalassaemia, stimulated erythropoiesis can reduce the expression of the iron regulatory hormone hepcidin, increasing both macrophage iron release and intestinal iron absorption and leading to iron loading. However, in certain conditions, sustained elevation of erythropoiesis can occur without an increase in body iron load. To investigate this in more detail, we made use of a novel mouse strain (RBC14), which exhibits mild β-thalassaemia intermedia with minimal iron loading. We compared iron homeostasis in RBC14 mice to that of Hbbth3/+ mice, a more severe model of β-thalassaemia intermedia. Both mouse strains showed a decrease in plasma iron half-life, although the changes were less severe in RBC14 mice. Despite this, intestinal ferroportin and serum hepcidin levels were unaltered in RBC14 mice. In contrast, Hbbth3/+ mice exhibited reduced serum hepcidin and increased intestinal ferroportin. However, splenic ferroportin levels were increased in both mouse strains. These data suggest that in low-grade chronic haemolytic anaemia, such as that seen in RBC14 mice, the increased erythroid iron requirements can be met through enhanced macrophage iron release without the need to increase iron absorption, implying that hepcidin is not the sole regulator of macrophage iron release in vivo.
Collapse
Affiliation(s)
- David M Frazer
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia.
| | - Sarah J Wilkins
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Cornel S G Mirciov
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia.,Schools of Medicine, The University of Queensland, St Lucia, Australia
| | - Linda A Dunn
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Gregory J Anderson
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia. .,Schools of Medicine, The University of Queensland, St Lucia, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia.
| |
Collapse
|
34
|
Ogorodnikov A, Kargapolova Y, Danckwardt S. Processing and transcriptome expansion at the mRNA 3' end in health and disease: finding the right end. Pflugers Arch 2016; 468:993-1012. [PMID: 27220521 PMCID: PMC4893057 DOI: 10.1007/s00424-016-1828-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 04/19/2016] [Indexed: 01/09/2023]
Abstract
The human transcriptome is highly dynamic, with each cell type, tissue, and organ system expressing an ensemble of transcript isoforms that give rise to considerable diversity. Apart from alternative splicing affecting the "body" of the transcripts, extensive transcriptome diversification occurs at the 3' end. Transcripts differing at the 3' end can have profound physiological effects by encoding proteins with distinct functions or regulatory properties or by affecting the mRNA fate via the inclusion or exclusion of regulatory elements (such as miRNA or protein binding sites). Importantly, the dynamic regulation at the 3' end is associated with various (patho)physiological processes, including the immune regulation but also tumorigenesis. Here, we recapitulate the mechanisms of constitutive mRNA 3' end processing and review the current understanding of the dynamically regulated diversity at the transcriptome 3' end. We illustrate the medical importance by presenting examples that are associated with perturbations of this process and indicate resulting implications for molecular diagnostics as well as potentially arising novel therapeutic strategies.
Collapse
Affiliation(s)
- Anton Ogorodnikov
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Langenbeckstr 1, 55131, Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstr 1, 55131, Mainz, Germany
| | - Yulia Kargapolova
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Langenbeckstr 1, 55131, Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstr 1, 55131, Mainz, Germany
| | - Sven Danckwardt
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Langenbeckstr 1, 55131, Mainz, Germany.
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstr 1, 55131, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Langenbeckstr 1, 55131, Mainz, Germany.
| |
Collapse
|
35
|
Erson-Bensan AE, Can T. Alternative Polyadenylation: Another Foe in Cancer. Mol Cancer Res 2016; 14:507-17. [PMID: 27075335 DOI: 10.1158/1541-7786.mcr-15-0489] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/30/2016] [Indexed: 11/16/2022]
Abstract
Advancements in sequencing and transcriptome analysis methods have led to seminal discoveries that have begun to unravel the complexity of cancer. These studies are paving the way toward the development of improved diagnostics, prognostic predictions, and targeted treatment options. However, it is clear that pieces of the cancer puzzle are still missing. In an effort to have a more comprehensive understanding of the development and progression of cancer, we have come to appreciate the value of the noncoding regions of our genomes, partly due to the discovery of miRNAs and their significance in gene regulation. Interestingly, the miRNA-mRNA interactions are not solely dependent on variations in miRNA levels. Instead, the majority of genes harbor multiple polyadenylation signals on their 3' UTRs (untranslated regions) that can be differentially selected on the basis of the physiologic state of cells, resulting in alternative 3' UTR isoforms. Deregulation of alternative polyadenylation (APA) has increasing interest in cancer research, because APA generates mRNA 3' UTR isoforms with potentially different stabilities, subcellular localizations, translation efficiencies, and functions. This review focuses on the link between APA and cancer and discusses the mechanisms as well as the tools available for investigating APA events in cancer. Overall, detection of deregulated APA-generated isoforms in cancer may implicate some proto-oncogene activation cases of unknown causes and may help the discovery of novel cases; thus, contributing to a better understanding of molecular mechanisms of cancer. Mol Cancer Res; 14(6); 507-17. ©2016 AACR.
Collapse
Affiliation(s)
- Ayse Elif Erson-Bensan
- Department of Biological Sciences, Middle East Technical University (METU) (ODTU), Ankara, Turkey.
| | - Tolga Can
- Department of Computer Engineering, Middle East Technical University (METU) (ODTU), Ankara, Turkey
| |
Collapse
|
36
|
Qin F, Song Y, Zhang Y, Facemire L, Frierson H, Li H. Role of CTCF in Regulating SLC45A3-ELK4 Chimeric RNA. PLoS One 2016; 11:e0150382. [PMID: 26938874 PMCID: PMC4777538 DOI: 10.1371/journal.pone.0150382] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/12/2016] [Indexed: 12/30/2022] Open
Abstract
The chimeric RNA, SLC45A3-ELK4, was found to be a product of cis-splicing between the two adjacent genes (cis-SAGe). Despite the biological and clinical significance of SLC45A3-ELK4, its generating mechanism has not been elucidated. It was shown in one cell line that the binding of transcription factor CTCF to the insulators located at or near the gene boundaries, inversely correlates with the level of the chimera. To investigate the mechanism of such cis-SAGe events, we sequenced potential regions that may play a role in such transcriptional read-through. We could not detect mutations at the transcription termination site, insulator sites, splicing sites, or within CTCF itself in LNCaP cells, thus suggesting a “soft-wired” mechanism in regulating the cis-SAGe event. To investigate the role CTCF plays in regulating the chimeric RNA expression, we compared the levels of CTCF binding to the insulators in different cell lines, as well as clinical samples. Surprisingly, we did not find an inverse correlation between CTCF level, or its bindings to the insulators and SLC45A3-ELK4 expression among different samples. However, in three prostate cancer cell lines, different environmental factors can cause the expression levels of the chimeric RNA to change, and these changes do inversely correlate with CTCF level, and/or its bindings to the insulators. We thus conclude that CTCF and its bindings to the insulators are not the primary reasons for differential SLC45A3-ELK4 expression in different cell lines, or clinical cases. However, they are the likely mechanism for the same cells to respond to different environmental cues, in order to regulate the expression of SLC45A3-ELK4 chimeric RNA. This response to different environmental cues is not general to other cis-SAGe events, as we only found one out of 16 newly identified chimeric RNAs showing a pattern similar to SLC45A3-ELK4.
Collapse
Affiliation(s)
- Fujun Qin
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Yansu Song
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Yanmei Zhang
- Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | - Loryn Facemire
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Henry Frierson
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Hui Li
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
37
|
Vinciguerra M, Passarello C, Cassarà F, Leto F, Cannata M, Calvaruso G, Di Maggio R, Renda D, Maggio A, Giambona A. Co-heredity of silent CAP + 1570 T>C (HBB:c*96T>C) defect and severe β-thal mutation: a cause of mild β-thalassemia intermedia. Int J Lab Hematol 2015; 38:17-26. [PMID: 26418075 DOI: 10.1111/ijlh.12433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/05/2015] [Indexed: 11/29/2022]
Abstract
INTRODUCTION During an intensive screening program aimed at identifying the healthy carriers of thalassemia and the couples at risk of bearing an affected fetus, a rare single nucleotide variation (SNV), CAP + 1570 T > C (HBB:c*96T > C), located 12 nucleotides upstream of the polyadenylation signal in 3'UTR of the beta globin gene was identified. It was previously reported as a β+ thalassemia mutation and later as a plain polymorphism. METHODS Genotype identification of globin gene mutations was carried out using sequencing analysis, GAP-PCR, and MLPA methods. RESULTS CAP + 1570 T > C (HBB:c*96T > C) was found in 39 heterozygotes, in one case in homozygous state and in thirteen cases of co-inheritance of this nucleotide substitution with other mutations in globin genes. Carriers of this mutation showed a 'silent' phenotype without appreciable microcytosis and hypochromia, so they cannot be differentiated from noncarrier individuals. Compound heterozygotes for this mutation and severe β-thal mutations showed a variable phenotype ranging from β-thal carrier to mild form of β-thalassemia intermedia, revealing new aspects and allowing to better understand the clinical implications of this nucleotide substitution that can be classified as a silent β-thalassemic defect. CONCLUSION Data reported in this study indicate the need of investigating partner of β-thalassemia carrier by complete sequencing analysis of β-globin gene and of providing an appropriate genetic counseling for couples at risk undergoing prenatal diagnosis.
Collapse
Affiliation(s)
- M Vinciguerra
- Department of Hematology for Rare Diseases of Blood and Blood-Forming Organs, Regional Reference Laboratory for Screening and Prenatal Diagnosis of Hemoglobinopathies, Villa Sofia-Cervello Hospital, Palermo, Italy
| | - C Passarello
- Department of Hematology for Rare Diseases of Blood and Blood-Forming Organs, Regional Reference Laboratory for Screening and Prenatal Diagnosis of Hemoglobinopathies, Villa Sofia-Cervello Hospital, Palermo, Italy
| | - F Cassarà
- Department of Hematology for Rare Diseases of Blood and Blood-Forming Organs, Regional Reference Laboratory for Screening and Prenatal Diagnosis of Hemoglobinopathies, Villa Sofia-Cervello Hospital, Palermo, Italy
| | - F Leto
- Department of Hematology for Rare Diseases of Blood and Blood-Forming Organs, Regional Reference Laboratory for Screening and Prenatal Diagnosis of Hemoglobinopathies, Villa Sofia-Cervello Hospital, Palermo, Italy
| | - M Cannata
- Department of Hematology for Rare Diseases of Blood and Blood-Forming Organs, Regional Reference Laboratory for Screening and Prenatal Diagnosis of Hemoglobinopathies, Villa Sofia-Cervello Hospital, Palermo, Italy
| | - G Calvaruso
- Department of Hematology for Rare Diseases of Blood and Blood-Forming Organs, Regional Reference Laboratory for Screening and Prenatal Diagnosis of Hemoglobinopathies, Villa Sofia-Cervello Hospital, Palermo, Italy
| | - R Di Maggio
- Department of Hematology for Rare Diseases of Blood and Blood-Forming Organs, Regional Reference Laboratory for Screening and Prenatal Diagnosis of Hemoglobinopathies, Villa Sofia-Cervello Hospital, Palermo, Italy
| | - D Renda
- Department of Hematology for Rare Diseases of Blood and Blood-Forming Organs, Regional Reference Laboratory for Screening and Prenatal Diagnosis of Hemoglobinopathies, Villa Sofia-Cervello Hospital, Palermo, Italy
| | - A Maggio
- Department of Hematology for Rare Diseases of Blood and Blood-Forming Organs, Regional Reference Laboratory for Screening and Prenatal Diagnosis of Hemoglobinopathies, Villa Sofia-Cervello Hospital, Palermo, Italy
| | - A Giambona
- Department of Hematology for Rare Diseases of Blood and Blood-Forming Organs, Regional Reference Laboratory for Screening and Prenatal Diagnosis of Hemoglobinopathies, Villa Sofia-Cervello Hospital, Palermo, Italy
| |
Collapse
|
38
|
Chakrabarti M, Hunt AG. CPSF30 at the Interface of Alternative Polyadenylation and Cellular Signaling in Plants. Biomolecules 2015; 5:1151-68. [PMID: 26061761 PMCID: PMC4496715 DOI: 10.3390/biom5021151] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 01/05/2023] Open
Abstract
Post-transcriptional processing, involving cleavage of precursor messenger RNA (pre mRNA), and further incorporation of poly(A) tail to the 3' end is a key step in the expression of genetic information. Alternative polyadenylation (APA) serves as an important check point for the regulation of gene expression. Recent studies have shown widespread prevalence of APA in diverse systems. A considerable amount of research has been done in characterizing different subunits of so-called Cleavage and Polyadenylation Specificity Factor (CPSF). In plants, CPSF30, an ortholog of the 30 kD subunit of mammalian CPSF is a key polyadenylation factor. CPSF30 in the model plant Arabidopsis thaliana was reported to possess unique biochemical properties. It was also demonstrated that poly(A) site choice in a vast majority of genes in Arabidopsis are CPSF30 dependent, suggesting a pivotal role of this gene in APA and subsequent regulation of gene expression. There are also indications of this gene being involved in oxidative stress and defense responses and in cellular signaling, suggesting a role of CPSF30 in connecting physiological processes and APA. This review will summarize the biochemical features of CPSF30, its role in regulating APA, and possible links with cellular signaling and stress response modules.
Collapse
Affiliation(s)
- Manohar Chakrabarti
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, USA.
| | - Arthur G Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, USA.
| |
Collapse
|
39
|
Curinha A, Oliveira Braz S, Pereira-Castro I, Cruz A, Moreira A. Implications of polyadenylation in health and disease. Nucleus 2014; 5:508-19. [PMID: 25484187 DOI: 10.4161/nucl.36360] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polyadenylation is the RNA processing step that completes the maturation of nearly all eukaryotic mRNAs. It is a two-step nuclear process that involves an endonucleolytic cleavage of the pre-mRNA at the 3'-end and the polymerization of a polyadenosine (polyA) tail, which is fundamental for mRNA stability, nuclear export and efficient translation during development. The core molecular machinery responsible for the definition of a polyA site includes several recognition, cleavage and polyadenylation factors that identify and act on a given polyA signal present in a pre-mRNA, usually an AAUAAA hexamer or similar sequence. This mechanism is tightly regulated by other cis-acting elements and trans-acting factors, and its misregulation can cause inefficient gene expression and may ultimately lead to disease. The majority of genes generate multiple mRNAs as a result of alternative polyadenylation in the 3'-untranslated region. The variable lengths of the 3' untranslated regions created by alternative polyadenylation are a recognizable target for differential regulation and clearly affect the fate of the transcript, ultimately modulating the expression of the gene. Over the past few years, several studies have highlighted the importance of polyadenylation and alternative polyadenylation in gene expression and their impact in a variety of physiological conditions, as well as in several illnesses. Abnormalities in the 3'-end processing mechanisms thus represent a common feature among many oncological, immunological, neurological and hematological disorders, but slight imbalances can lead to the natural establishment of a specific cellular state. This review addresses the key steps of polyadenylation and alternative polyadenylation in different cellular conditions and diseases focusing on the molecular effectors that ensure a faultless pre-mRNA 3' end formation.
Collapse
Key Words
- 3′ untranslated region
- 3′READS, 3′ Region Extraction and Deep Sequencing
- AD, Alzheimer disease
- APA, Alternative polyadenylation
- AREs, Au-rich elements
- BPV, bovine papilloma virus
- CAH, congenital adrenal hyperplasia
- CFIm25, Cleavage Factor Im 25 kDa
- COX-2, cyclooxygenase 2
- CPSF, Cleavage and Polyadenylation Specificity Factor
- CSTF2, cleavage stimulatory factor-64kDa
- DMKN, dermokine
- DSE, downstream sequence element
- ESC, embryonic stem cells
- FMR1, Fragil X mental retardation 1
- FOXP3, forkhead box P3
- FXPOI, fragile X-associated immature ovarian insufficiency
- FXS, Fragile X syndrome
- FXTAS, fragile X-associated tremor/ataxia syndrome
- HGRG-14, high-glucose-regulated gene
- IMP-1, Insulin-like growth factor 2 mRNA binding protein 1
- IPEX, immune dysfunction, polyendocrinopathy, enteropathy, X-linked
- LPS, lipopolysaccharide
- OPMD, oculopharyngeal muscular dystrophy
- PABPN1, poly(A) binding protein
- PAP, polyA polymerase
- PAS, polyA site
- PD, Parkinson disease
- PDXK, pyridoxal kinase
- PPIE, peptidylpropylisomerase E
- RBP, RNA-binding protein
- RNA Pol II, RNA polymerase II
- SLE, systemic lupus erythematosus
- SMA, Spinal Muscular Atrophy
- SMN, Survival Motor Neuron
- SNP, single nucleotide polymorphism
- StAR, steroigogenic acute regulatory
- TCF/LEF, T cell factor/lymphoid enhancer factor.
- TCF7L2, transcription factor 7-like 2
- TCR, T cell receptor
- TLI, tandem UTR length index
- TNF-α, tumor necrosis factor-α
- USE, upstream sequence element
- UTR, untranslated region
- WAS, Wiskott-Aldrich syndrome
- WASP, Wiskott-Aldrich syndrome protein
- aSyn, α-Synuclein
- aSynL, longest aSyn isoform
- alternative polyadenylation
- cell state
- disease
- gene expression
- miRNA, microRNA
- nuclear 1
- pA signal, polyA signal
- pA tail, polyA tail
- polyadenylation
- siRNAs, small interfering RNAs
- snRNPs, spliceosomal small nuclear ribonucleoproteins
- α-GalA, α-galactosidase A
- μ, IgM heavy-chain mRNA
Collapse
Affiliation(s)
- Ana Curinha
- a Gene Regulation Group; IBMC-Instituto de Biologia Molecular e Celular ; Universidade do Porto ; Porto , Portugal
| | | | | | | | | |
Collapse
|
40
|
Fahiminiya S, Al-Jallad H, Majewski J, Palomo T, Moffatt P, Roschger P, Klaushofer K, Glorieux FH, Rauch F. A polyadenylation site variant causes transcript-specific BMP1 deficiency and frequent fractures in children. Hum Mol Genet 2014; 24:516-24. [DOI: 10.1093/hmg/ddu471] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Laishram RS. Poly(A) polymerase (PAP) diversity in gene expression--star-PAP vs canonical PAP. FEBS Lett 2014; 588:2185-97. [PMID: 24873880 PMCID: PMC6309179 DOI: 10.1016/j.febslet.2014.05.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/02/2014] [Accepted: 05/15/2014] [Indexed: 01/09/2023]
Abstract
Almost all eukaryotic mRNAs acquire a poly(A) tail at the 3'-end by a concerted RNA processing event: cleavage and polyadenylation. The canonical PAP, PAPα, was considered the only nuclear PAP involved in general polyadenylation of mRNAs. A phosphoinositide-modulated nuclear PAP, Star-PAP, was then reported to regulate a select set of mRNAs in the cell. In addition, several non-canonical PAPs have been identified with diverse cellular functions. Further, canonical PAP itself exists in multiple isoforms thus illustrating the diversity of PAPs. In this review, we compare two nuclear PAPs, Star-PAP and PAPα with a general overview of PAP diversity in the cell. Emerging evidence suggests distinct niches of target pre-mRNAs for the two PAPs and that modulation of these PAPs regulates distinct cellular functions.
Collapse
Affiliation(s)
- Rakesh S Laishram
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India.
| |
Collapse
|
42
|
Genome-wide search for exonic variants affecting translational efficiency. Nat Commun 2014; 4:2260. [PMID: 23900168 PMCID: PMC3749366 DOI: 10.1038/ncomms3260] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 07/05/2013] [Indexed: 01/10/2023] Open
Abstract
The search for expression quantitative trait loci (eQTL) has traditionally centered entirely on the process of transcription, whereas variants with effects on mRNA translation have not been systematically studied. Here we present a high throughput approach for measuring translational cis-regulation in the human genome. Using ribosomal association as proxy for translational efficiency of polymorphic mRNAs, we test the ratio of polysomal/nonpolysomal mRNA level as a quantitative trait for association with single-nucleotide polymorphisms on the same mRNA transcript. We identify one important ribosomal-distribution effect, from rs1131017 in the 5’UTR of RPS26 , that is in high linkage disequilibrium (LD) with the 12q13 locus for susceptibility to type 1 diabetes. The effect on translation is confirmed at the protein level by quantitative Western blots, both ex vivo and after in vitro translation. Our results are a proof-of-principle that allelic effects on translation can be detected at a transcriptome-wide scale.
Collapse
|
43
|
Elkon R, Ugalde AP, Agami R. Alternative cleavage and polyadenylation: extent, regulation and function. Nat Rev Genet 2013; 14:496-506. [PMID: 23774734 DOI: 10.1038/nrg3482] [Citation(s) in RCA: 564] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The 3' end of most protein-coding genes and long non-coding RNAs is cleaved and polyadenylated. Recent discoveries have revealed that a large proportion of these genes contains more than one polyadenylation site. Therefore, alternative polyadenylation (APA) is a widespread phenomenon, generating mRNAs with alternative 3' ends. APA contributes to the complexity of the transcriptome by generating isoforms that differ either in their coding sequence or in their 3' untranslated regions (UTRs), thereby potentially regulating the function, stability, localization and translation efficiency of target RNAs. Here, we review our current understanding of the polyadenylation process and the latest progress in the identification of APA events, mechanisms that regulate poly(A) site selection, and biological processes and diseases resulting from APA.
Collapse
Affiliation(s)
- Ran Elkon
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
44
|
Abstract
Recent studies have revealed widespread mRNA alternative polyadenylation (APA) in eukaryotes and its dynamic spatial and temporal regulation. APA not only generates proteomic and functional diversity, but also plays important roles in regulating gene expression. Global deregulation of APA has been demonstrated in a variety of human diseases. Recent exciting advances in the field have been made possible in a large part by high throughput analyses using newly developed experimental tools. Here I review the recent progress in global studies of APA and the insights that have emerged from these and other studies that use more conventional methods.
Collapse
Affiliation(s)
- Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, California 92697, USA.
| |
Collapse
|
45
|
Brown FC, Scott N, Rank G, Collinge JE, Vadolas J, Vickaryous N, Whitelaw N, Whitelaw E, Kile BT, Jane SM, Curtis DJ. ENU mutagenesis identifies the first mouse mutants reproducing human β-thalassemia at the genomic level. Blood Cells Mol Dis 2012; 50:86-92. [PMID: 23040355 DOI: 10.1016/j.bcmd.2012.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 09/11/2012] [Indexed: 12/24/2022]
Abstract
Forward genetic screens have been performed in many species to identify phenotypes in specific organ systems. We have undertaken a large-scale N-ethyl-N-nitrosourea (ENU) mutagenesis screen to identify dominant mutations that perturb erythropoiesis in mice. Mutant mice that displayed an erythrocyte mean cell volume (MCV) greater than three standard deviations from the population mean were identified. Two of these lines, RBC13 and RBC14, displayed a hypochromic, microcytic anemia, accompanied by a marked reticulocytosis, splenomegaly and diminished red cell survival. Timed pregnancies from heterozygous intercrosses revealed that a quarter of the embryos displayed severe anemia and did not survive beyond embryonic day (E) 18.5, consistent with homozygous β-thalassemia. Genetic complementation studies with a β-thalassemia mouse line reproduced the embryonic lethality in compound heterozygotes and a genomic custom capture array and massively parallel sequencing of the β-globin locus identified the causative mutations. The RBC13 line displayed a nonsense mutation at codon 40 in exon 2 of the β-major gene, invoking parallels with the common β(0)39 thalassemia mutation seen in humans. The RBC14 line exhibited a mutation at the polyadenylation signal of the β-major gene, exactly replicating a human β-thalassemia mutation. The RBC13 and RBC14 lines are the first β-thalassemia mouse models that reproduce human β-thalassemia at the genomic level, and as such highlight the power of ENU mutagenesis screens in generating mouse models of human disease.
Collapse
Affiliation(s)
- Fiona C Brown
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Italia K, Sawant P, Surve R, Wadia M, Nadkarni A, Ghosh K, Colah R. Variable haematological and clinical presentation of β-thalassaemia carriers and homozygotes with the Poly A (T→C) mutation in the Indian population. Eur J Haematol 2012; 89:160-4. [PMID: 22690826 DOI: 10.1111/j.1600-0609.2012.01810.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2012] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To study the varied clinical and haematological profile of β-thalassaemia homozygotes, compound heterozygotes and heterozygotes with the Poly A (T→C) mutation and its implication in prenatal diagnosis. MATERIALS AND METHODS Forty individuals were included in the study. Peripheral smear examination, complete blood count and haemoglobin analysis were carried out. β-thalassaemia mutation analysis was carried out by reverse-dot-blot hybridization, amplification refractory mutation system and DNA sequencing of the β-globin gene. RESULTS Five of the six β-thalassaemia homozygotes with the Poly A (T→C) mutation and five individuals who were compound heterozygous for the Poly A (T→C) mutation along with another common Indian β-thalassaemia mutation showed a severe β-thalassaemia major phenotype, while one individual presented as a thalassaemia intermedia. Majority of the 28 heterozygous individuals with this mutation showed borderline HbA₂ (mean HbA₂ = 3.7 ± 0.4%) levels as compared to individuals with common β-thalassaemia mutations (mean HbA₂ = 5.2 ± 1.4%). The Mean Corpuscular Volume (MCV) levels in individuals heterozygous for the Poly A (T→C) mutation (mean MCV 70.0 ± 5.2 fl) were significantly higher than in individuals with other common β-thalassaemia mutations (mean MCV 60.7 ± 7.7 fl) (P < 0.001). CONCLUSION It is important to identify these often silent carriers of β-thalassaemia for prenatal diagnosis as homozygotes have a severe disease.
Collapse
Affiliation(s)
- Khushnooma Italia
- National Institute of Immunohaematology, Indian Council of Medical Research, Parel, Mumbai, India
| | | | | | | | | | | | | |
Collapse
|
47
|
Zhang Y, Gong M, Yuan H, Park HG, Frierson HF, Li H. Chimeric transcript generated by cis-splicing of adjacent genes regulates prostate cancer cell proliferation. Cancer Discov 2012; 2:598-607. [PMID: 22719019 DOI: 10.1158/2159-8290.cd-12-0042] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Gene fusion is a common event in cancer. The fusion RNA and protein products often play causal roles in tumorigenesis and therefore represent ideal diagnostic and therapeutic targets. Formerly, fusion chimeric products in cancer were thought to be produced solely by chromosomal translocation. Here, we show that a chimeric SLC45A3-ELK4 RNA is generated in the absence of chromosomal rearrangement. We showed that it is not a product of RNA trans-splicing, but formed by cis-splicing of adjacent genes/read-through. The binding of CCCTC-binding factor (CTCF) to the insulator sequences inversely correlates with the expression of the chimera transcript. The SLC45A3-ELK4 fusion, but not wild-type, ELK4 plays important roles in regulating cell growth in both androgen-dependent and -independent prostate cancer cells. The level of the chimeric transcript correlates with disease progression, with the highest levels in prostate cancer metastases. Our results suggest that gene fusions can arise from cis-splicing of adjacent genes without corresponding DNA changes. SIGNIFICANCE With the absence of corresponding DNA rearrangement, chimeric fusion SLC45A3-ELK4 transcript in prostate cancer cells is generated by cis-splicing of adjacent genes/gene read-through instead of trans-splicing. SLC45A3-ELK4 controls prostate cancer cell proliferation, and the chimera level correlates with prostate cancer disease progression.
Collapse
Affiliation(s)
- Yanmei Zhang
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|
48
|
Italia KY, Sawant PM, Nadkarni AH, Ghosh K, Colah RB. Is the poly A (T>C) mutation a causative factor for misdiagnosis in second trimester prenatal diagnosis of β-thalassemia by fetal blood analysis on high performance liquid chromatography? Hemoglobin 2012; 36:114-23. [PMID: 22296681 DOI: 10.3109/03630269.2011.654144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We report the problems in diagnosis faced by two families referred for prenatal diagnosis of thalassemia where cordocentesis and fetal blood analysis by high performance liquid chromatography (HPLC) had to be done. The Hb A levels of the fetal blood measured by HPLC on the VARIANT™ Hemoglobin Testing System were 1.2 and 6.7%, respectively, suggestive of a heterozygous β-thalassemia (β-thal) fetus in the first case and a normal fetus in the second case. In one family, one of the parents had a borderline Hb A(2) level and in the other, one parent had normal RBC indices. However, DNA sequencing, done later, showed that in the first case the fetus was a compound heterozygote for the IVS-I-5 (G>C) and the polyadenylation signal site [poly A (T>C)] mutation, while in the second case, the fetus was homozygous for the poly A mutation. This emphasizes that characterization of β-thal mutations must be done whenever one of the parents has a borderline Hb A(2) level or normal RBC indices, and one should not rely on fetal blood analysis by HPLC for prenatal diagnosis of β-thal so as to avoid misdiagnosis.
Collapse
Affiliation(s)
- Khushnooma Y Italia
- National Institute of Immunohematology, King Edward Memorial Hospital Campus, Parel, Mumbai, India
| | | | | | | | | |
Collapse
|
49
|
Di Giammartino DC, Nishida K, Manley JL. Mechanisms and consequences of alternative polyadenylation. Mol Cell 2011; 43:853-66. [PMID: 21925375 DOI: 10.1016/j.molcel.2011.08.017] [Citation(s) in RCA: 544] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/02/2011] [Accepted: 08/09/2011] [Indexed: 12/11/2022]
Abstract
Alternative polyadenylation (APA) is emerging as a widespread mechanism used to control gene expression. Like alternative splicing, usage of alternative poly(A) sites allows a single gene to encode multiple mRNA transcripts. In some cases, this changes the mRNA coding potential; in other cases, the code remains unchanged but the 3' UTR length is altered, influencing the fate of mRNAs in several ways, for example, by altering the availability of RNA binding protein sites and microRNA binding sites. The mechanisms governing both global and gene-specific APA are only starting to be deciphered. Here we review what is known about these mechanisms and the functional consequences of alternative polyadenylation.
Collapse
|
50
|
Lopes-Marques M, Pereira-Castro I, Amorim A, Azevedo L. Characterization of the human ornithine transcarbamylase 3' untranslated regulatory region. DNA Cell Biol 2011; 31:427-33. [PMID: 22054066 DOI: 10.1089/dna.2011.1391] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutations in the untranslated regulatory regions of genes may result in abnormal gene expression or transcriptional regulation. In this study, we characterize the ornithine transcarbamylase (OTC) mRNA isoforms of the X-linked OTC gene involved in the urea formation in the liver. Our data revealed that two major transcripts (OTC-t1 and OTC-t2) are more highly expressed than any of the other isoforms in all the tissues analyzed, though a longer transcript (OTC-t3) was also isolated and characterized from the brain sample. The OTC-t2 sequence fully matches the OTC mRNA reference sequence (NM_000531.5). All three isoforms use a canonical AAUAAA hexamer that is predicted to fold into a hairpin secondary structure which might be exposed to the cleavage and polyadenylation specificity factor. In addition, we observed that the OTC-t1 and OTC-t2 transcripts display heterogeneity at the cleavage sites in a tissue-dependent manner. Taken together, our data demonstrate that several mRNA isoforms are transcribed from the OTC gene, thereby indicating a wide degree of variability in post-transcriptional regulation.
Collapse
Affiliation(s)
- Monica Lopes-Marques
- Population Genetics Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | | | | | | |
Collapse
|