1
|
High-resolution structure and strain comparison of infectious mammalian prions. Mol Cell 2021; 81:4540-4551.e6. [PMID: 34433091 DOI: 10.1016/j.molcel.2021.08.011] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/29/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022]
Abstract
Within the extensive range of self-propagating pathologic protein aggregates of mammals, prions are the most clearly infectious (e.g., ∼109 lethal doses per milligram). The structures of such lethal assemblies of PrP molecules have been poorly understood. Here we report a near-atomic core structure of a brain-derived, fully infectious prion (263K strain). Cryo-electron microscopy showed amyloid fibrils assembled with parallel in-register intermolecular β sheets. Each monomer provides one rung of the ordered fibril core, with N-linked glycans and glycolipid anchors projecting outward. Thus, single monomers form the templating surface for incoming monomers at fibril ends, where prion growth occurs. Comparison to another prion strain (aRML) revealed major differences in fibril morphology but, like 263K, an asymmetric fibril cross-section without paired protofilaments. These findings provide structural insights into prion propagation, strains, species barriers, and membrane pathogenesis. This structure also helps frame considerations of factors influencing the relative transmissibility of other pathologic amyloids.
Collapse
|
2
|
Haver HN, Scaglione KM. Dictyostelium discoideum as a Model for Investigating Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:759532. [PMID: 34776869 PMCID: PMC8578527 DOI: 10.3389/fncel.2021.759532] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/07/2021] [Indexed: 12/28/2022] Open
Abstract
The social amoeba Dictyostelium discoideum is a model organism that is used to investigate many cellular processes including chemotaxis, cell motility, cell differentiation, and human disease pathogenesis. While many single-cellular model systems lack homologs of human disease genes, Dictyostelium's genome encodes for many genes that are implicated in human diseases including neurodegenerative diseases. Due to its short doubling time along with the powerful genetic tools that enable rapid genetic screening, and the ease of creating knockout cell lines, Dictyostelium is an attractive model organism for both interrogating the normal function of genes implicated in neurodegeneration and for determining pathogenic mechanisms that cause disease. Here we review the literature involving the use of Dictyostelium to interrogate genes implicated in neurodegeneration and highlight key questions that can be addressed using Dictyostelium as a model organism.
Collapse
Affiliation(s)
- Holly N. Haver
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - K. Matthew Scaglione
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
- Department of Neurology, Duke University, Durham, NC, United States
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC, United States
| |
Collapse
|
3
|
Brandel JP. [Prion diseases or transmissible spongiform encephalopathies]. Rev Med Interne 2021; 43:106-115. [PMID: 34148672 DOI: 10.1016/j.revmed.2021.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/09/2021] [Indexed: 11/24/2022]
Abstract
Prion diseases or transmissible spongiform encephalopathies (TSEs) are human and animal diseases naturally or experimentally transmissible with a long incubation period and a fatal course without remission. The nature of the transmissible agent remains debated but the absence of a structure evoking a conventional microorganism led Stanley B. Prusiner to hypothesize that it could be an infectious protein (proteinaceous infectious particle or prion). The prion would be the abnormal form of a normal protein, cellular PrP (PrPc) which will change its spatial conformation and be converted into scrapie prion protein (PrPsc) with properties of partial resistance to proteases, aggregation and insolubility in detergents. No inflammatory or immune response are detected in TSEs which are characterized by brain damage combining spongiosis, neuronal loss, astrocytic gliosis, and deposits of PrPsc that may appear as amyloid plaques. Although the link between the accumulation of PrPsc and the appearance of lesions remains debated, the presence of PrPsc is constant during TSE and necessary for a definitive diagnosis. Even if they remain rare diseases (2 cases per million), the identification of kuru, at the end of the 1950s, of iatrogenic cases in the course of the 1970s and of the variant of Creutzfeldt-Jakob disease (CJD) in the mid-1990s explain the interest in these diseases but also the fears they can raise for public health. They remain an exciting research model because they belong both to the group of neurodegenerative diseases with protein accumulation (sporadic CJD), to the group of communicable diseases (iatrogenic CJD, variant of CJD) but also to the group of genetic diseases with a transmission Mendelian dominant (genetic CJD, Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia).
Collapse
Affiliation(s)
- J-P Brandel
- Cellule nationale de référence des maladies de Creutzfeldt-Jakob, Groupe hospitalier Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France; Inserm U1127/Institut du cerveau et de la moelle épinière (ICM), Groupe hospitalier Pitié-Salpêtrière, Centre national de référence des agents transmissibles non conventionnels, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France.
| |
Collapse
|
4
|
Nakić N, Tran TH, Novokmet M, Andreoletti O, Lauc G, Legname G. Site-specific analysis of N-glycans from different sheep prion strains. PLoS Pathog 2021; 17:e1009232. [PMID: 33600485 PMCID: PMC7891774 DOI: 10.1371/journal.ppat.1009232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/10/2020] [Indexed: 01/23/2023] Open
Abstract
Prion diseases are a group of neurodegenerative diseases affecting a wide range of mammalian species, including humans. During the course of the disease, the abnormally folded scrapie prion protein (PrPSc) accumulates in the central nervous system where it causes neurodegeneration. In prion disorders, the diverse spectrum of illnesses exists because of the presence of different isoforms of PrPSc where they occupy distinct conformational states called strains. Strains are biochemically distinguished by a characteristic three-band immunoblot pattern, defined by differences in the occupancy of two glycosylation sites on the prion protein (PrP). Characterization of the exact N-glycan structures attached on either PrPC or PrPSc is lacking. Here we report the characterization and comparison of N-glycans from two different sheep prion strains. PrPSc from both strains was isolated from brain tissue and enzymatically digested with trypsin. By using liquid chromatography coupled to electrospray mass spectrometry, a site-specific analysis was performed. A total of 100 structures were detected on both glycosylation sites. The N-glycan profile was shown to be similar to the one on mouse PrP, however, with additional 40 structures reported. The results presented here show no major differences in glycan composition, suggesting that glycans may not be responsible for the differences in the two analyzed prion strains. To date, prion diseases remain a controversy amongst scientists. Although we know now it is the abnormal form of the prion protein (PrPSc) that causes the disease, many questions are still left unanswered. To understand the cellular mechanism of these diseases, we should first and foremost try to fully understand the prion protein itself. Even though many findings have been made regarding the structure of the protein, a large part of it is still unknown. Since the prion protein is actually a glycoprotein, to resolve its structure we need to put our focus not only on the protein part of the glycoprotein but also on the glycan structures as well. Here we compared two different sheep prion strains and although no major differences have been found between the glycan structures, this analysis may help the understanding of the role glycans have in prion diseases.
Collapse
Affiliation(s)
- Natali Nakić
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Thanh Hoa Tran
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.,VNUK Institute for Research and Executive Education, The University of Danang, Da Nang, Vietnam
| | | | - Olivier Andreoletti
- UMR INRA ENVT 1225-IHAP, École Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.,ELETTRA Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, Italy
| |
Collapse
|
5
|
Holec SA, Block AJ, Bartz JC. The role of prion strain diversity in the development of successful therapeutic treatments. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:77-119. [PMID: 32958242 PMCID: PMC8939712 DOI: 10.1016/bs.pmbts.2020.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prions are a self-propagating misfolded conformation of a cellular protein. Prions are found in several eukaryotic organisms with mammalian prion diseases encompassing a wide range of disorders. The first recognized prion disease, the transmissible spongiform encephalopathies (TSEs), affect several species including humans. Alzheimer's disease, synucleinopathies, and tauopathies share a similar mechanism of self-propagation of the prion form of the disease-specific protein reminiscent of the infection process of TSEs. Strain diversity in prion disease is characterized by differences in the phenotype of disease that is hypothesized to be encoded by strain-specific conformations of the prion form of the disease-specific protein. Prion therapeutics that target the prion form of the disease-specific protein can lead to the emergence of drug-resistant strains of prions, consistent with the hypothesis that prion strains exist as a dynamic mixture of a dominant strain in combination with minor substrains. To overcome this obstacle, therapies that reduce or eliminate the template of conversion are efficacious, may reverse neuropathology, and do not result in the emergence of drug resistance. Recent advancements in preclinical diagnosis of prion infection may allow for a combinational approach that treats the prion form and the precursor protein to effectively treat prion diseases.
Collapse
Affiliation(s)
- Sara A.M. Holec
- Institute for Applied Life Sciences and Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States,Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States
| | - Alyssa J. Block
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States,Corresponding author:
| |
Collapse
|
6
|
A Single Amino Acid Substitution, Found in Mammals with Low Susceptibility to Prion Diseases, Delays Propagation of Two Prion Strains in Highly Susceptible Transgenic Mouse Models. Mol Neurobiol 2019; 56:6501-6511. [PMID: 30847740 DOI: 10.1007/s12035-019-1535-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/22/2019] [Indexed: 01/05/2023]
Abstract
Specific variations in the amino acid sequence of prion protein (PrP) are key determinants of susceptibility to prion diseases. We previously showed that an amino acid substitution specific to canids confers resistance to prion diseases when expressed in mice and demonstrated its dominant-negative protective effect against a variety of infectious prion strains of different origins and characteristics. Here, we show that expression of this single amino acid change significantly increases survival time in transgenic mice expressing bank vole cellular prion protein (PrPC), which is inherently prone to misfolding, following inoculation with two distinct prion strains (the CWD-vole strain and an atypical strain of spontaneous origin). This amino acid substitution hinders the propagation of both prion strains, even when expressed in the context of a PrPC uniquely susceptible to a wide range of prion isolates. Non-inoculated mice expressing this substitution experience spontaneous prion formation, but showing an increase in survival time comparable to that observed in mutant mice inoculated with the atypical strain. Our results underscore the importance of this PrP variant in the search for molecules with therapeutic potential against prion diseases.
Collapse
|
7
|
Abstract
During the course of prion infection, the normally soluble and protease-sensitive mammalian prion protein (PrPC) is refolded into an insoluble, partially protease-resistant, and infectious form called PrPSc. The conformational conversion of PrPC to PrPSc is a critical event during prion infection and is essential for the production of prion infectivity. This chapter briefly summarizes the ways in which cell biological approaches have enhanced our understanding of how PrP contributes to different aspects of prion pathogenesis.
Collapse
|
8
|
Otero A, Bolea R, Hedman C, Fernández-Borges N, Marín B, López-Pérez Ó, Barrio T, Eraña H, Sánchez-Martín MA, Monzón M, Badiola JJ, Castilla J. An Amino Acid Substitution Found in Animals with Low Susceptibility to Prion Diseases Confers a Protective Dominant-Negative Effect in Prion-Infected Transgenic Mice. Mol Neurobiol 2017; 55:6182-6192. [PMID: 29264770 DOI: 10.1007/s12035-017-0832-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/08/2017] [Indexed: 12/01/2022]
Abstract
While prion diseases have been described in numerous species, some, including those of the Canidae family, appear to show resistance or reduced susceptibility. A better understanding of the factors underlying prion susceptibility is crucial for the development of effective treatment and control measures. We recently demonstrated resistance to prion infection in mice overexpressing a mutated prion protein (PrP) carrying a specific amino acid substitution characteristic of canids. Here, we show that coexpression of this mutated PrP and wild-type mouse PrP in transgenic mice inoculated with different mouse-adapted prion strains (22 L, ME7, RML, and 301C) significantly increases survival times (by 45 to 113%). These data indicate that this amino acid substitution confers a dominant-negative effect on PrP, attenuating the conversion of PrPC to PrPSc and delaying disease onset without altering the neuropathological properties of the prion strains. Taken together, these findings have important implications for the development of new treatment approaches for prion diseases based on dominant-negative proteins.
Collapse
Affiliation(s)
- Alicia Otero
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Carlos Hedman
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | | | - Belén Marín
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Óscar López-Pérez
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain.,Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Tomás Barrio
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Hasier Eraña
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Manuel A Sánchez-Martín
- Servicio de Transgénesis, Nucleus, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - Marta Monzón
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Juan José Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain. .,IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain.
| |
Collapse
|
9
|
Eigenbrod S, Frick P, Bertsch U, Mitteregger-Kretzschmar G, Mielke J, Maringer M, Piening N, Hepp A, Daude N, Windl O, Levin J, Giese A, Sakthivelu V, Tatzelt J, Kretzschmar H, Westaway D. Substitutions of PrP N-terminal histidine residues modulate scrapie disease pathogenesis and incubation time in transgenic mice. PLoS One 2017; 12:e0188989. [PMID: 29220360 PMCID: PMC5722314 DOI: 10.1371/journal.pone.0188989] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 11/16/2017] [Indexed: 12/31/2022] Open
Abstract
Prion diseases have been linked to impaired copper homeostasis and copper induced-oxidative damage to the brain. Divalent metal ions, such as Cu2+ and Zn2+, bind to cellular prion protein (PrPC) at octapeptide repeat (OR) and non-OR sites within the N-terminal half of the protein but information on the impact of such binding on conversion to the misfolded isoform often derives from studies using either OR and non-OR peptides or bacterially-expressed recombinant PrP. Here we created new transgenic mouse lines expressing PrP with disrupted copper binding sites within all four histidine-containing OR's (sites 1-4, H60G, H68G, H76G, H84G, "TetraH>G" allele) or at site 5 (composed of residues His-95 and His-110; "H95G" allele) and monitored the formation of misfolded PrP in vivo. Novel transgenic mice expressing PrP(TetraH>G) at levels comparable to wild-type (wt) controls were susceptible to mouse-adapted scrapie strain RML but showed significantly prolonged incubation times. In contrast, amino acid replacement at residue 95 accelerated disease progression in corresponding PrP(H95G) mice. Neuropathological lesions in terminally ill transgenic mice were similar to scrapie-infected wt controls, but less severe. The pattern of PrPSc deposition, however, was not synaptic as seen in wt animals, but instead dense globular plaque-like accumulations of PrPSc in TgPrP(TetraH>G) mice and diffuse PrPSc deposition in (TgPrP(H95G) mice), were observed throughout all brain sections. We conclude that OR and site 5 histidine substitutions have divergent phenotypic impacts and that cis interactions between the OR region and the site 5 region modulate pathogenic outcomes by affecting the PrP globular domain.
Collapse
Affiliation(s)
- Sabina Eigenbrod
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | - Petra Frick
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | - Uwe Bertsch
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | | | - Janina Mielke
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | - Marko Maringer
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | - Niklas Piening
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | - Alexander Hepp
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | - Nathalie Daude
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Otto Windl
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | - Johannes Levin
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | - Vignesh Sakthivelu
- Department of Metabolic Biochemistry/Neurobiochemistry, Adolf Butenandt Institute, Ludwig Maximilians University, Munich, Germany
| | - Jörg Tatzelt
- Department of Metabolic Biochemistry/Neurobiochemistry, Adolf Butenandt Institute, Ludwig Maximilians University, Munich, Germany
| | - Hans Kretzschmar
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Marín-Moreno A, Fernández-Borges N, Espinosa JC, Andréoletti O, Torres JM. Transmission and Replication of Prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:181-201. [PMID: 28838661 DOI: 10.1016/bs.pmbts.2017.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) are a group of progressive, invariably fatal diseases that affect the nervous system of many mammals including humans. The key molecular event in the pathogenesis of TSEs is the conversion of the cellular prion protein PrPC into a disease-associated isoform PrPSc. The "protein-only hypothesis" argues that PrPSc itself is the infectious agent. In effect, PrPSc can adopt several structures that represent different prion strains. The interspecies transmission of TSEs is difficult because of differences between the host and donor primary PrP sequence. However, transmission is not impossible as this occurred when bovine spongiform encephalopathy spread to humans causing variant Creutzfeldt-Jakob disease (vCJD). This event determined a need for a thorough understanding of prion replication and transmission so that we could be one step ahead of further threats for human health. This chapter focuses on these concepts and on new insights gained into prion propagation mechanisms.
Collapse
Affiliation(s)
| | | | - Juan C Espinosa
- Centro de Investigación en Sanidad Animal, CISA-INIA, Madrid, Spain
| | - Olivier Andréoletti
- UMR INRA-ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Juan M Torres
- Centro de Investigación en Sanidad Animal, CISA-INIA, Madrid, Spain.
| |
Collapse
|
11
|
De Novo Generation of a Unique Cervid Prion Strain Using Protein Misfolding Cyclic Amplification. mSphere 2017; 2:mSphere00372-16. [PMID: 28144628 PMCID: PMC5266495 DOI: 10.1128/msphere.00372-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/11/2017] [Indexed: 11/29/2022] Open
Abstract
CWD is the only known TSE that affects free-ranging wildlife, specifically cervids such as elk, deer, moose, caribou, and reindeer. CWD has become endemic in both free-ranging and captive herds in North America, South Korea, and, most recently, northern Europe. The prion research community continues to debate the origins of CWD. Original foci of CWD emergence in Colorado and Wyoming coincident with the sheep TSE scrapie suggest that scrapie prions may have adapted to cervids to cause CWD. However, emerging evidence supports the idea that cervid PrPC may be more prone to misfolding to the pathological isoform. Here we test the hypothesis that cervid PrPC can spontaneously misfold to create de novo prions. Whether CWD can arise spontaneously as a sporadic TSE or represents a new TSE caused by cervid-adapted scrapie prions profoundly impacts surveillance and mitigation strategies. Substantial evidence supports the hypothesis that prions are misfolded, infectious, insoluble, and protease-resistant proteins (PrPRES) devoid of instructional nucleic acid that cause transmissible spongiform encephalopathies (TSEs). Protein misfolding cyclic amplification (PMCA) has provided additional evidence that PrPRes acts as a template that can convert the normal cellular prion protein (PrPC) present in uninfected normal brain homogenate (NBH) into the infectious misfolded PrPRES isoform. Human PrPC has been shown to spontaneously convert to a misfolded pathological state causing sporadic Creutzfeldt-Jakob disease (sCJD). Several investigators have reported spontaneous generation of prions by in vitro assays, including PMCA. Here we tested the rate of de novo generation of cervid prions in our laboratory using our standard PMCA protocol and NBH from transgenic mice expressing cervid PrPC (TgCerPrP mice). We generated de novo prions in rounds 4, 5, and 7 at low cumulative rates of 1.6, 5.0, and 6.7%, respectively. The prions caused infectious chronic wasting disease (CWD) upon inoculation into normal uninfected TgCerPrP mice and displayed unique biochemical characteristics compared to other cervid prion strains. We conclude that PMCA of cervid PrPC from normal brain homogenate spontaneously generated a new cervid prion strain. These data support the potential for cervids to develop sporadic CWD. IMPORTANCE CWD is the only known TSE that affects free-ranging wildlife, specifically cervids such as elk, deer, moose, caribou, and reindeer. CWD has become endemic in both free-ranging and captive herds in North America, South Korea, and, most recently, northern Europe. The prion research community continues to debate the origins of CWD. Original foci of CWD emergence in Colorado and Wyoming coincident with the sheep TSE scrapie suggest that scrapie prions may have adapted to cervids to cause CWD. However, emerging evidence supports the idea that cervid PrPC may be more prone to misfolding to the pathological isoform. Here we test the hypothesis that cervid PrPC can spontaneously misfold to create de novo prions. Whether CWD can arise spontaneously as a sporadic TSE or represents a new TSE caused by cervid-adapted scrapie prions profoundly impacts surveillance and mitigation strategies. Podcast: A podcast concerning this article is available.
Collapse
|
12
|
PrP Knockout Cells Expressing Transmembrane PrP Resist Prion Infection. J Virol 2017; 91:JVI.01686-16. [PMID: 27847358 DOI: 10.1128/jvi.01686-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/01/2016] [Indexed: 11/20/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchoring of the prion protein (PrPC) influences PrPC misfolding into the disease-associated isoform, PrPres, as well as prion propagation and infectivity. GPI proteins are found in cholesterol- and sphingolipid-rich membrane regions called rafts. Exchanging the GPI anchor for a nonraft transmembrane sequence redirects PrPC away from rafts. Previous studies showed that nonraft transmembrane PrPC variants resist conversion to PrPres when transfected into scrapie-infected N2a neuroblastoma cells, likely due to segregation of transmembrane PrPC and GPI-anchored PrPres in distinct membrane environments. Thus, it remained unclear whether transmembrane PrPC might convert to PrPres if seeded by an exogenous source of PrPres not associated with host cell rafts and without the potential influence of endogenous expression of GPI-anchored PrPC To further explore these questions, constructs containing either a C-terminal wild-type GPI anchor signal sequence or a nonraft transmembrane sequence containing a flexible linker were expressed in a cell line derived from PrP knockout hippocampal neurons, NpL2. NpL2 cells have physiological similarities to primary neurons, representing a novel and advantageous model for studying transmissible spongiform encephalopathy (TSE) infection. Cells were infected with inocula from multiple prion strains and in different biochemical states (i.e., membrane bound as in brain microsomes from wild-type mice or purified GPI-anchorless amyloid fibrils). Only GPI-anchored PrPC supported persistent PrPres propagation. Our data provide strong evidence that in cell culture GPI anchor-directed membrane association of PrPC is required for persistent PrPres propagation, implicating raft microdomains as a location for conversion. IMPORTANCE Mechanisms of prion propagation, and what makes them transmissible, are poorly understood. Glycosylphosphatidylinositol (GPI) membrane anchoring of the prion protein (PrPC) directs it to specific regions of cell membranes called rafts. In order to test the importance of the raft environment on prion propagation, we developed a novel model for prion infection where cells expressing either GPI-anchored PrPC or transmembrane-anchored PrPC, which partitions it to a different location, were treated with infectious, misfolded forms of the prion protein, PrPres We show that only GPI-anchored PrPC was able to convert to PrPres and able to serially propagate. The results strongly suggest that GPI anchoring and the localization of PrPC to rafts are crucial to the ability of PrPC to propagate as a prion.
Collapse
|
13
|
Brandel JP, Haïk S. Malattie da prioni o encefalopatie spongiformi trasmissibili. Neurologia 2016. [DOI: 10.1016/s1634-7072(16)77562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Silva CJ, Erickson-Beltran ML, Dynin IC. Covalent Surface Modification of Prions: A Mass Spectrometry-Based Means of Detecting Distinctive Structural Features of Prion Strains. Biochemistry 2016; 55:894-902. [PMID: 26786805 DOI: 10.1021/acs.biochem.5b01068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prions (PrP(Sc)) are molecular pathogens that are able to convert the isosequential normal cellular prion protein (PrP(C)) into a prion. The only demonstrated difference between PrP(C) and PrP(Sc) is conformational: they are isoforms. A given host can be infected by more than one kind or strain of prion. Five strains of hamster-adapted scrapie [Sc237 (=263K), drowsy, 139H, 22AH, and 22CH] and recombinant PrP were reacted with five different concentrations (0, 1, 5, 10, and 20 mM) of reagent (N-hydroxysuccinimide ester of acetic acid) that acetylates lysines. The extent of lysine acetylation was quantitated by mass spectrometry. The lysines in rPrP react similarly. The lysines in the strains react differently from one another in a given strain and react differently when strains are compared. Lysines in the C-terminal region of prions have different strain-dependent reactivity. The results are consistent with a recently proposed model for the structure of a prion. This model proposes that prions are composed of a four-rung β-solenoid structure comprised of four β-sheets that are joined by loops and turns of amino acids. Variation in the amino acid composition of the loops and β-sheet structures is thought to result in different strains of prions.
Collapse
Affiliation(s)
- Christopher J Silva
- Western Regional Research Center, United States Department of Agriculture , Albany, California 94710, United States
| | - Melissa L Erickson-Beltran
- Western Regional Research Center, United States Department of Agriculture , Albany, California 94710, United States
| | - Irina C Dynin
- Western Regional Research Center, United States Department of Agriculture , Albany, California 94710, United States
| |
Collapse
|
15
|
Brandel JP, Corbillé AG, Derkinderen P, Haïk S. [Is Parkinson's disease a prion disease?]. Rev Neurol (Paris) 2015; 171:812-24. [PMID: 26563663 PMCID: PMC7111738 DOI: 10.1016/j.neurol.2015.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 02/07/2023]
Abstract
The accumulation of a specific protein in aggregated form is a common phenomenon in human neurodegenerative diseases. In Parkinson's disease, this protein is α-synuclein which is a neuronal protein of 143 amino acids. With a monomeric conformation in solution, it also has a natural capacity to aggregate into amyloid structures (dimers, oligomers, fibrils and Lewy bodies or neurites). It therefore fulfils the characteristics of a prion protein (different conformations, seeding and spreading). In vitro and in vivo experimental evidence in transgenic and wild animals indicates a prion-like propagation of Parkinson's disease. The sequential and predictive distribution of α-synuclein demonstrated by Braak et al. and its correlation with non-motor signs are consistent with the prion-like progression. Although the triggering factor causing the misfolding and aggregation of the target protein is unknown, Parkinson's disease is a highly relevant model for the study of these mechanisms and also to test specific treatments targeting the assemblies of α-synuclein and propagation from pre-motor phase of the disease. Despite this prion-like progression, there is currently no argument indicating a risk of human transmission of Parkinson's disease.
Collapse
Affiliation(s)
- J-P Brandel
- Inserm U 1127, CNRS UMR 7225, Sorbonne universités, UPMC University Paris 06 UMR S 1127, institut du cerveau et de la mœlle épinière, ICM, 75013 Paris, France; Cellule nationale de référence des maladies de Creutzfeldt-Jakob, groupe hospitalier Pitié-Salpêtrière, AP-HP, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France; Centre national de référence des agents transmissibles non conventionnels, 75013 Paris, France; Unité James-Parkinson, Fondation ophtalmologique Rothschild, 75019 Paris, France.
| | - A-G Corbillé
- Département de neurologie, CHU de Nantes, 44093 Nantes, France; Inserm, U913, 44093 Nantes, France
| | - P Derkinderen
- Département de neurologie, CHU de Nantes, 44093 Nantes, France; Inserm, U913, 44093 Nantes, France
| | - S Haïk
- Inserm U 1127, CNRS UMR 7225, Sorbonne universités, UPMC University Paris 06 UMR S 1127, institut du cerveau et de la mœlle épinière, ICM, 75013 Paris, France; Cellule nationale de référence des maladies de Creutzfeldt-Jakob, groupe hospitalier Pitié-Salpêtrière, AP-HP, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France; Centre national de référence des agents transmissibles non conventionnels, 75013 Paris, France
| |
Collapse
|
16
|
Abstract
Prion diseases are a heterogeneous class of fatal neurodegenerative disorders associated with misfolding of host cellular prion protein (PrP(C)) into a pathological isoform, termed PrP(Sc). Prion diseases affect various mammals, including humans, and effective treatments are not available. Prion diseases are distinguished from other protein misfolding disorders - such as Alzheimer's or Parkinson's disease - in that they are infectious. Prion diseases occur sporadically without any known exposure to infected material, and hereditary cases resulting from rare mutations in the prion protein have also been documented. The mechanistic underpinnings of prion and other neurodegenerative disorders remain poorly understood. Various proteomics techniques have been instrumental in early PrP(Sc) detection, biomarker discovery, elucidation of PrP(Sc) structure and mapping of biochemical pathways affected by pathogenesis. Moving forward, proteomics approaches will likely become more integrated into the clinical and research settings for the rapid diagnosis and characterization of prion pathogenesis.
Collapse
Affiliation(s)
- Roger A Moore
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIH,NIAID, Hamilton, MT 59840, USA
| | | | | |
Collapse
|
17
|
Chong A, Kennedy I, Goldmann W, Green A, González L, Jeffrey M, Hunter N. Archival search for historical atypical scrapie in sheep reveals evidence for mixed infections. J Gen Virol 2015; 96:3165-3178. [PMID: 26281831 DOI: 10.1099/jgv.0.000234] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Natural scrapie in sheep occurs in classical and atypical forms, which may be distinguished on the basis of the associated neuropathology and properties of the disease-associated prion protein on Western blots. First detected in 1998, atypical scrapie is known to have occurred in UK sheep since the 1980s. However, its aetiology remains unclear and it is often considered as a sporadic, non-contagious disease unlike classical scrapie which is naturally transmissible. Although atypical scrapie tends to occur in sheep of prion protein (PRNP) genotypes that are different from those found predominantly in classical scrapie, there is some overlap so that there are genotypes in which both scrapie forms can occur. In this search for early atypical scrapie cases, we made use of an archive of fixed and frozen sheep samples, from both scrapie-affected and healthy animals (∼1850 individuals), dating back to the 1960s. Using a selection process based primarily on PRNP genotyping, but also on contemporaneous records of unusual clinical signs or pathology, candidate sheep samples were screened by Western blot, immunohistochemistry and strain-typing methods using tg338 mice. We identified, from early time points in the archive, three atypical scrapie cases, including one sheep which died in 1972 and two which showed evidence of mixed infection with classical scrapie. Cases with both forms of scrapie in the same animal as recognizable entities suggest that mixed infections have been around for a long time and may potentially contribute to the variety of scrapie strains.
Collapse
Affiliation(s)
- Angela Chong
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Iain Kennedy
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Wilfred Goldmann
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Andrew Green
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Lorenzo González
- Animal and Plant Health Agency (APHA - Lasswade), Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Martin Jeffrey
- Animal and Plant Health Agency (APHA - Lasswade), Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Nora Hunter
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
18
|
Wang X, McGovern G, Zhang Y, Wang F, Zha L, Jeffrey M, Ma J. Intraperitoneal Infection of Wild-Type Mice with Synthetically Generated Mammalian Prion. PLoS Pathog 2015; 11:e1004958. [PMID: 26136122 PMCID: PMC4489884 DOI: 10.1371/journal.ppat.1004958] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 05/14/2015] [Indexed: 11/23/2022] Open
Abstract
The prion hypothesis postulates that the infectious agent in transmissible spongiform encephalopathies (TSEs) is an unorthodox protein conformation based agent. Recent successes in generating mammalian prions in vitro with bacterially expressed recombinant prion protein provide strong support for the hypothesis. However, whether the pathogenic properties of synthetically generated prion (rec-Prion) recapitulate those of naturally occurring prions remains unresolved. Using end-point titration assay, we showed that the in vitro prepared rec-Prions have infectious titers of around 104 LD50 / μg. In addition, intraperitoneal (i.p.) inoculation of wild-type mice with rec-Prion caused prion disease with an average survival time of 210 – 220 days post inoculation. Detailed pathological analyses revealed that the nature of rec-Prion induced lesions, including spongiform change, disease specific prion protein accumulation (PrP-d) and the PrP-d dissemination amongst lymphoid and peripheral nervous system tissues, the route and mechanisms of neuroinvasion were all typical of classical rodent prions. Our results revealed that, similar to naturally occurring prions, the rec-Prion has a titratable infectivity and is capable of causing prion disease via routes other than direct intra-cerebral challenge. More importantly, our results established that the rec-Prion caused disease is pathogenically and pathologically identical to naturally occurring contagious TSEs, supporting the concept that a conformationally altered protein agent is responsible for the infectivity in TSEs. The transmissible spongiform encephalopathies (TSEs) are a group of infectious neurodegenerative diseases affecting both humans and animals. The prion hypothesis postulates that prions are protein conformation based infectious agents responsible for TSE infectivity. Prions have been synthetically generated in vitro, but it remains unclear whether the properties of synthetically generated prion are the same as those of TSE agents and whether the disease caused by synthetically generated prion is identical to naturally occurring TSEs. In this study, we demonstrated that similar to the classical TSE agents, the synthetically generated prion has a titratable infectivity and is able to cause prion disease in wild-type mice via routes other than direct intra-cerebral inoculation. More importantly, we showed that the synthetically generated prion induced pathological changes, including the dissemination of disease-specific prion protein accumulation and the route and mechanism of neuroinvasion, were all typical of classical TSEs. These results demonstrate the similarity of synthetically generated prion to the infectious agent in TSEs, providing strong evidence supporting the prion hypothesis.
Collapse
Affiliation(s)
- Xinhe Wang
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
| | - Gillian McGovern
- Animal and Plant Health Agency, Lasswade Laboratory, Pentlands Science Park, Penicuik, Midlothian, Scotland
| | - Yi Zhang
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, Shanghai, China
| | - Fei Wang
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
| | - Liang Zha
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
| | - Martin Jeffrey
- Animal and Plant Health Agency, Lasswade Laboratory, Pentlands Science Park, Penicuik, Midlothian, Scotland
| | - Jiyan Ma
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, Shanghai, China
- * E-mail:
| |
Collapse
|
19
|
Proteinase K and the structure of PrPSc: The good, the bad and the ugly. Virus Res 2015; 207:120-6. [PMID: 25816779 DOI: 10.1016/j.virusres.2015.03.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/14/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
Abstract
Infectious proteins (prions) are, ironically, defined by their resistance to proteolytic digestion. A defining characteristic of the transmissible isoform of the prion protein (PrP(Sc)) is its partial resistance to proteinase K (PK) digestion. Diagnosis of prion disease typically relies upon immunodetection of PK-digested PrP(Sc) by Western blot, ELISA or immunohistochemical detection. PK digestion has also been used to detect differences in prion strains. Thus, PK has been a crucial tool to detect and, thereby, control the spread of prions. PK has also been used as a tool to probe the structure of PrP(Sc). Mass spectrometry and antibodies have been used to identify PK cleavage sites in PrP(Sc). These results have been used to identify the more accessible, flexible stretches connecting the β-strand components in PrP(Sc). These data, combined with physical constraints imposed by spectroscopic results, were used to propose a qualitative model for the structure of PrP(Sc). Assuming that PrP(Sc) is a four rung β-solenoid, we have threaded the PrP sequence to satisfy the PK proteolysis data and other experimental constraints.
Collapse
|
20
|
Gielbert A, Thorne JK, Hope J. Pyroglutamyl-N-terminal prion protein fragments in sheep brain following the development of transmissible spongiform encephalopathies. Front Mol Biosci 2015; 2:7. [PMID: 25988175 PMCID: PMC4429639 DOI: 10.3389/fmolb.2015.00007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/17/2015] [Indexed: 12/20/2022] Open
Abstract
Protein misfolding, protein aggregation and disruption to cellular proteostasis are key processes in the propagation of disease and, in some progressive neurodegenerative diseases of the central nervous system, the misfolded protein can act as a self-replicating template or prion converting its normal isoform into a misfolded copy of itself. We have investigated the sheep transmissible spongiform encephalopathy, scrapie, and developed a multiple selected reaction monitoring (mSRM) mass spectrometry assay to quantify brain peptides representing the “ragged” N-terminus and the core of ovine prion protein (PrPSc) by using Q-Tof mass spectrometry. This allowed us to identify pyroglutamylated N-terminal fragments of PrPSc at residues 86, 95 and 101, and establish that these fragments were likely to be the result of in vivo processes. We found that the ratios of pyroglutamylated PrPSc fragments were different in sheep of different breeds and geographical origin, and our expanded ovine PrPSc assay was able to determine the ratio and allotypes of PrP accumulating in diseased brain of PrP heterozygous sheep; it also revealed significant differences between N-terminal amino acid profiles (N-TAAPs) in other types of ovine prion disease, CH1641 scrapie and ovine BSE. Variable rates of PrP misfolding, aggregation and degradation are the likely basis for phenotypic (or strain) differences in prion-affected animals and our mass spectrometry-based approach allows the simultaneous investigation of factors such as post-translational modification (pyroglutamyl formation), conformation (by N-TAAP analysis) and amino-acid polymorphisms (allotype ratio) which affect the kinetics of these proteostatic processes.
Collapse
Affiliation(s)
- Adriana Gielbert
- Department of Pathology, Animal and Plant Health Agency-Weybridge Addlestone, UK
| | - Jemma K Thorne
- Department of Pathology, Animal and Plant Health Agency-Weybridge Addlestone, UK
| | - James Hope
- Science Strategy Group, Animal and Plant Health Agency-Weybridge Addlestone, UK
| |
Collapse
|
21
|
Ultrastructural changes in the progress of natural Scrapie regardless fixation protocol. Histochem Cell Biol 2015; 144:77-85. [PMID: 25724812 DOI: 10.1007/s00418-015-1314-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2015] [Indexed: 10/23/2022]
Abstract
Because few studies regarding ultrastructural pathological changes associated with natural prion diseases have been performed, the present study primarily intended to determine consistent lesions at the subcellular level and to demonstrate whether these changes are evident regardless of the fixation protocol. Thus far, no assessment method has been developed for classifying the possible variations according to the disease stage, although such an assessment would contribute to clarifying the pathogenesis of this neurodegenerative disease. Therefore, animals at different disease stages were included here. This study presents the first description of lesions associated with natural Scrapie in the cerebellum. Vacuolation, which preferentially occurs around Purkinje cells and which displays a close relation with glial cells, is one of the most novel observations provided in this study. The disruption of hypolemmal cisterns in this neuronal type and the presence of a primary cilium in the granular layer both represent the first findings concerning prion diseases. The possibility of including samples regardless of their fixation protocol is confirmed in this work. Therefore, a high proportion of tissue bank samples that are currently being wasted can be included in ultrastructural studies, which constitute a valuable source for information regarding physiological and pathological samples.
Collapse
|
22
|
Silva CJ. Applying the tools of chemistry (mass spectrometry and covalent modification by small molecule reagents) to the detection of prions and the study of their structure. Prion 2015; 8:42-50. [PMID: 24509645 DOI: 10.4161/pri.27891] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Prions are molecular pathogens, able to convert a normal cellular prion protein (PrP(C)) into a prion (PrP(Sc)). The information necessary for this conversion is contained in the conformation of PrP(Sc). Mass spectrometry (MS) and small-molecule covalent reactions have been used to study prions. Mass spectrometry has been used to detect and quantitate prions in the attomole range (10⁻¹⁸ mole). MS-based analysis showed that both possess identical amino acid sequences, one disulfide bond, a GPI anchor, asparagine-linked sugar antennae, and unoxidized methionines. Mass spectrometry has been used to define elements of the secondary and tertiary structure of wild-type PrP(Sc) and GPI-anchorless PrP(Sc). It has also been used to study the quaternary structure of the PrP(Sc) multimer. Small molecule reagents react differently with the same lysine in the PrP(C) conformation than in the PrP(Sc) conformation. Such differences can be detected by Western blot using mAbs with lysine-containing epitopes, such as 3F4 and 6D11. This permits the detection of PrP(Sc) without the need for proteinase K pretreatment and can be used to distinguish among prion strains. These results illustrate how two important chemical tools, mass spectrometry and covalent modification by small molecules, are being applied to the detection and structural study of prions. Furthermore these tools are or can be applied to the study of the other protein misfolding diseases such as Alzheimer Disease, Parkinson Disease, or ALS.
Collapse
|
23
|
Groveman BR, Kraus A, Raymond LD, Dolan MA, Anson KJ, Dorward DW, Caughey B. Charge neutralization of the central lysine cluster in prion protein (PrP) promotes PrP(Sc)-like folding of recombinant PrP amyloids. J Biol Chem 2015; 290:1119-28. [PMID: 25416779 PMCID: PMC4294479 DOI: 10.1074/jbc.m114.619627] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/20/2014] [Indexed: 11/06/2022] Open
Abstract
The structure of the infectious form of prion protein, PrP(Sc), remains unclear. Most pure recombinant prion protein (PrP) amyloids generated in vitro are not infectious and lack the extent of the protease-resistant core and solvent exclusion of infectious PrP(Sc), especially within residues ∼90-160. Polyanionic cofactors can enhance infectivity and PrP(Sc)-like characteristics of such fibrils, but the mechanism of this enhancement is unknown. In considering structural models of PrP(Sc) multimers, we identified an obstacle to tight packing that might be overcome with polyanionic cofactors, namely, electrostatic repulsion between four closely spaced cationic lysines within a central lysine cluster of residues 101-110. For example, in our parallel in-register intermolecular β-sheet model of PrP(Sc), not only would these lysines be clustered within the 101-110 region of the primary sequence, but they would have intermolecular spacings of only ∼4.8 Å between stacked β-strands. We have now performed molecular dynamics simulations predicting that neutralization of the charges on these lysine residues would allow more stable parallel in-register packing in this region. We also show empirically that substitution of these clustered lysine residues with alanines or asparagines results in recombinant PrP amyloid fibrils with extended proteinase-K resistant β-sheet cores and infrared spectra that are more reminiscent of bona fide PrP(Sc). These findings indicate that charge neutralization at the central lysine cluster is critical for the folding and tight packing of N-proximal residues within PrP amyloid fibrils. This charge neutralization may be a key aspect of the mechanism by which anionic cofactors promote PrP(Sc) formation.
Collapse
Affiliation(s)
| | - Allison Kraus
- From the Laboratory of Persistent Viral Diseases and
| | | | - Michael A Dolan
- the Computational Biology Section, Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | - David W Dorward
- the Research Technologies Branch, Microscopy Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840 and
| | - Byron Caughey
- From the Laboratory of Persistent Viral Diseases and
| |
Collapse
|
24
|
Rouvinski A, Karniely S, Kounin M, Moussa S, Goldberg MD, Warburg G, Lyakhovetsky R, Papy-Garcia D, Kutzsche J, Korth C, Carlson GA, Godsave SF, Peters PJ, Luhr K, Kristensson K, Taraboulos A. Live imaging of prions reveals nascent PrPSc in cell-surface, raft-associated amyloid strings and webs. ACTA ACUST UNITED AC 2014; 204:423-41. [PMID: 24493590 PMCID: PMC3912534 DOI: 10.1083/jcb.201308028] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mammalian prions refold host glycosylphosphatidylinositol-anchored PrP(C) into β-sheet-rich PrP(Sc). PrP(Sc) is rapidly truncated into a C-terminal PrP27-30 core that is stable for days in endolysosomes. The nature of cell-associated prions, their attachment to membranes and rafts, and their subcellular locations are poorly understood; live prion visualization has not previously been achieved. A key obstacle has been the inaccessibility of PrP27-30 epitopes. We overcame this hurdle by focusing on nascent full-length PrP(Sc) rather than on its truncated PrP27-30 product. We show that N-terminal PrP(Sc) epitopes are exposed in their physiological context and visualize, for the first time, PrP(Sc) in living cells. PrP(Sc) resides for hours in unexpected cell-surface, slow moving strings and webs, sheltered from endocytosis. Prion strings observed by light and scanning electron microscopy were thin, micrometer-long structures. They were firmly cell associated, resisted phosphatidylinositol-specific phospholipase C, aligned with raft markers, fluoresced with thioflavin, and were rapidly abolished by anti-prion glycans. Prion strings and webs are the first demonstration of membrane-anchored PrP(Sc) amyloids.
Collapse
Affiliation(s)
- Alexander Rouvinski
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sarasa R, Becher D, Badiola JJ, Monzón M. A comparative study of modified confirmatory techniques and additional immuno-based methods for non-conclusive autolytic bovine spongiform encephalopathy cases. BMC Vet Res 2013; 9:212. [PMID: 24138967 PMCID: PMC4015824 DOI: 10.1186/1746-6148-9-212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 10/09/2013] [Indexed: 11/27/2022] Open
Abstract
Background In the framework of the Bovine Spongiform Encephalopathy (BSE) surveillance programme, samples with non-conclusive results using the OIE confirmatory techniques have been repeatedly found. It is therefore necessary to question the adequacy of the previously established consequences of this non-conclusive result: the danger of failing to detect potentially infected cattle or erroneous information that may affect the decision of culling or not of an entire bovine cohort. Moreover, there is a very real risk that the underreporting of cases may possibly lead to distortion of the BSE epidemiological information for a given country. In this study, samples from bovine nervous tissue presenting non-conclusive results by conventional OIE techniques (Western blot and immunohistochemistry) were analyzed. Their common characteristic was a very advanced degree of autolysis. All techniques recommended by the OIE for BSE diagnosis were applied on all these samples in order to provide a comparative study. Specifically, immunohistochemistry, Western blotting, SAF detection by electron microscopy and mouse bioassay were compared. Besides, other non confirmatory techniques, confocal scanning microscopy and colloidal gold labelling of fibrils, were applied on these samples for confirming and improving the results. Results Immunocytochemistry showed immunostaining in agreement with the positive results finally provided by the other confirmatory techniques. These results corroborated the suitability of this technique which was previously developed to examine autolysed (liquified) brain samples. Transmission after inoculation of a transgenic murine model TgbovXV was successful in all inocula but not in all mice, perhaps due to the very scarce PrPsc concentration present in samples. Electron microscopy, currently fallen into disuse, was demonstrated to be, not only capable to provide a final diagnosis despite the autolytic state of samples, but also to be a sensitive diagnostic alternative for resolving cases with low concentrations of PrPsc. Conclusions Demonstration of transmission of the disease even with low concentrations of PrPsc should reinforce that vigilance is required in interpreting results so that subtle changes do not go unnoticed. To maintain a continued supervision of the techniques which are applied in the routine diagnosis would prove essential for the ultimate eradication of the disease.
Collapse
Affiliation(s)
| | | | | | - Marta Monzón
- Research Centre for Encephalopathies and Transmissible Emerging Diseases, University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
26
|
Recombinant human prion protein inhibits prion propagation in vitro. Sci Rep 2013; 3:2911. [PMID: 24105336 PMCID: PMC3793212 DOI: 10.1038/srep02911] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/24/2013] [Indexed: 02/05/2023] Open
Abstract
Prion diseases are associated with the conformational conversion of the cellular prion protein (PrPC) into the pathological scrapie isoform (PrPSc) in the brain. Both the in vivo and in vitro conversion of PrPC into PrPSc is significantly inhibited by differences in amino acid sequence between the two molecules. Using protein misfolding cyclic amplification (PMCA), we now report that the recombinant full-length human PrP (rHuPrP23-231) (that is unglycosylated and lacks the glycophosphatidylinositol anchor) is a strong inhibitor of human prion propagation. Furthermore, rHuPrP23-231 also inhibits mouse prion propagation in a scrapie-infected mouse cell line. Notably, it binds to PrPSc, but not PrPC, suggesting that the inhibitory effect of recombinant PrP results from blocking the interaction of brain PrPC with PrPSc. Our findings suggest a new avenue for treating prion diseases, in which a patient's own unglycosylated and anchorless PrP is used to inhibit PrPSc propagation without inducing immune response side effects.
Collapse
|
27
|
Taguchi Y, Hohsfield LA, Hollister JR, Baron GS. Effects of FlAsH/tetracysteine (TC) Tag on PrP proteolysis and PrPres formation by TC-scanning. Chembiochem 2013; 14:1597-610, 1510. [PMID: 23943295 DOI: 10.1002/cbic.201300255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Indexed: 11/09/2022]
Abstract
Protein-protein interactions associated with proteolytic processing and aggregation are integral to normal and pathological aspects of prion protein (PrP) biology. Characterization of these interactions requires the identification of amino acid residues involved. The FlAsH/tetracysteine (FlAsH/TC) tag is a small fluorescent tag amenable to insertion at internal sites in proteins. In this study, we used serial FlAsH/TC insertions (TC-scanning) as a probe to characterize sites of protein-protein interaction between PrP and other molecules. To explore this application in the context of substrate-protease interactions, we analyzed the effect of FlAsH/TC insertions on proteolysis of cellular prion protein (PrPsen) in in vitro reactions and generation of the C1 metabolic fragment of PrPsen in live neuroblastoma cells. The influence of FlAsH/TC insertion was evaluated by TC-scanning across the cleavage sites of each protease. The results showed that FlAsH/TC inhibited protease cleavage only within limited ranges of the cleavage sites, which varied from about one to six residues in width, depending on the protease, providing an estimate of the PrP residues interacting with each protease. TC-scanning was also used to probe a different type of protein-protein interaction: the conformational conversion of FlAsH-PrPsen to the prion disease-associated isoform, PrPres. PrP constructs with FlAsH/TC insertions at residues 90-96 but not 97-101 were converted to FlAsH-PrPres, identifying a boundary separating loosely versus compactly folded regions of PrPres. Our observations demonstrate that TC-scanning with the FlAsH/TC tag can be a versatile method for probing protein-protein interactions and folding processes.
Collapse
Affiliation(s)
- Yuzuru Taguchi
- Rocky Mountain Laboratories, NIAID, NIH, Laboratory of Persistent Viral Diseases, 903 S. 4th St., Hamilton, MT 59840 (USA); Currently at the Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6 (Canada).
| | | | | | | |
Collapse
|
28
|
Marbach J, Zentis P, Ellinger P, Müller H, Birkmann E. Expression and characterisation of fully posttranslationally modified cellular prion protein in Pichia pastoris. Biol Chem 2013; 394:1475-83. [PMID: 23893688 DOI: 10.1515/hsz-2013-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/25/2013] [Indexed: 11/15/2022]
Abstract
Prion diseases are fatal neurodegenerative diseases which occur as sporadic, genetic, and transmissible disorders. A molecular hallmark of prion diseases is the conformational conversion of the host-encoded cellular form of the prion protein (PrPC) into its misfolded pathogenic isoform (PrPSc). PrPSc is the main component of the pathological and infectious prion agent. The study of the conversion mechanism from PrPC to PrPSc is a major field in prion research. PrPC is glycosylated and attached to the plasma membrane via its glycosyl phosphatidyl inositol (GPI)-anchor. In this study we established and characterised the expression of fully posttranslationally modified mammalian Syrian golden hamster PrPC in the yeast Pichia pastoris using native PrPC-specific N- and C-terminal signal sequences. In vivo as well as in vitro-studies demonstrated that the signal sequences controlled posttranslational processing and trafficking of native PrPC, resulting in PrPC localised in the plasma membrane of P. pastoris. In addition, the glycosylation pattern of native PrPC could be confirmed.
Collapse
|
29
|
Shi Q, Zhang BY, Gao C, Zhang J, Jiang HY, Chen C, Han J, Dong XP. Mouse-adapted scrapie strains 139A and ME7 overcome species barrier to induce experimental scrapie in hamsters and changed their pathogenic features. Virol J 2012; 9:63. [PMID: 22400710 PMCID: PMC3325885 DOI: 10.1186/1743-422x-9-63] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/09/2012] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Transmissible spongiform encephalopathy (TSE) diseases are known to be zoonotic diseases that can infect different kinds of animals. The transmissibility of TSE, like that of other infectious diseases, shows marked species barrier, either being unable to infect heterologous species or difficult to form transmission experimentally. The similarity of the amino acid sequences of PrP among species is believed to be one of the elements in controlling the transmission TSE interspecies. Other factors, such as prion strains and host's microenvironment, may also participate in the process. METHODS Two mouse-adapted strains 139A and ME7 were cerebrally inoculated to Golden hamsters. Presences of scrapie associate fibril (SAF) and PrPSc in brains of the infected animals were tested by TEM assays and Western blots dynamically during the incubation periods. The pathogenic features of the novel prions in hamsters, including electrophoretic patterns, glycosylating profiles, immunoreactivities, proteinase K-resistances and conformational stabilities were comparatively evaluated. TSE-related neuropathological changes were assayed by histological examinations. RESULTS After long incubation times, mouse-adapted agents 139A and ME7 induced experimental scrapie in hamsters, respectively, showing obvious spongiform degeneration and PrPSc deposits in brains, especially in cortex regions. SAF and PrPSc in brains were observed much earlier than the onset of clinical symptoms. The molecular characteristics of the newly-formed PrPSc in hamsters, 139A-ha and ME7-ha, were obviously distinct from the original mouse agents, however, greatly similar as that of a hamster-adapted scrapie strain 263 K. Although the incubation times and main disease signs of the hamsters of 139A-ha and ME7-ha were different, the pathogenic characteristics and neuropathological changes were highly similar. CONCLUSIONS This finding concludes that mouse-adapted agents 139A and ME7 change their pathogenic characteristics during the transmission to hamsters. The novel prions in hamsters' brains obtain new molecular properties with hamster-specificity.
Collapse
Affiliation(s)
- Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Hedlin P, Taschuk R, Potter A, Griebel P, Napper S. Detection and control of prion diseases in food animals. ISRN VETERINARY SCIENCE 2012; 2012:254739. [PMID: 23738120 PMCID: PMC3658581 DOI: 10.5402/2012/254739] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/22/2011] [Indexed: 12/14/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs), or prion diseases, represent a unique form of infectious disease based on misfolding of a self-protein (PrPC) into a pathological, infectious conformation (PrPSc). Prion diseases of food animals gained notoriety during the bovine spongiform encephalopathy (BSE) outbreak of the 1980s. In particular, disease transmission to humans, to the generation of a fatal, untreatable disease, elevated the perspective on livestock prion diseases from food production to food safety. While the immediate threat posed by BSE has been successfully addressed through surveillance and improved management practices, another prion disease is rapidly spreading. Chronic wasting disease (CWD), a prion disease of cervids, has been confirmed in wild and captive populations with devastating impact on the farmed cervid industries. Furthermore, the unabated spread of this disease through wild populations threatens a natural resource that is a source of considerable economic benefit and national pride. In a worst-case scenario, CWD may represent a zoonotic threat either through direct transmission via consumption of infected cervids or through a secondary food animal, such as cattle. This has energized efforts to understand prion diseases as well as to develop tools for disease detection, prevention, and management. Progress in each of these areas is discussed.
Collapse
Affiliation(s)
- Peter Hedlin
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E3 ; Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E3
| | | | | | | | | |
Collapse
|
31
|
Leidel F, Eiden M, Geissen M, Kretzschmar HA, Giese A, Hirschberger T, Tavan P, Schätzl HM, Groschup MH. Diphenylpyrazole-derived compounds increase survival time of mice after prion infection. Antimicrob Agents Chemother 2011; 55:4774-81. [PMID: 21746938 PMCID: PMC3186986 DOI: 10.1128/aac.00151-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 07/04/2011] [Indexed: 11/20/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) represent a group of fatal neurodegenerative disorders that can be transmitted by natural infection or inoculation. TSEs include scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle, and Creutzfeldt-Jakob disease (CJD) in humans. The emergence of a variant form of CJD (vCJD), which has been associated with BSE, produced strong pressure to search for effective treatments with new drugs. Up to now, however, TSEs have proved incurable, although many efforts have been made both in vitro and in vivo to search for potent therapeutic and prophylactic compounds. For this purpose, we analyzed a compound library consisting of 10,000 compounds with a cell-based high-throughput screening assay dealing with scrapie-infected scrapie mouse brain and ScN(2)A cells and identified a new class of inhibitors consisting of 3,5-diphenylpyrazole (DPP) derivatives. The most effective DPP derivative showed half-maximal inhibition of PrP(Sc) formation at concentrations (IC(50)) of 0.6 and 1.2 μM, respectively. This compound was subsequently subjected to a number of animal experiments using scrapie-infected wild-type C57BL/6 and transgenic Tga20 mice. The DPP derivative induced a significant increase of incubation time both in therapeutic and prophylactic experiments. The onset of the prion disease was delayed by 37 days after intraperitoneal and 42 days after oral application, respectively. In summary, we demonstrate a high in vitro efficiency of DPP derivatives against prion infections that was substantiated in vivo for one of these compounds. These results indicate that the novel class of DPP compounds should comprise excellent candidates for future therapeutic studies.
Collapse
Affiliation(s)
- Fabienne Leidel
- Institute for Novel and Emerging Infectious Diseases at the Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Martin Eiden
- Institute for Novel and Emerging Infectious Diseases at the Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Markus Geissen
- Institute for Novel and Emerging Infectious Diseases at the Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Hans A. Kretzschmar
- Institute for Neuropathology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Armin Giese
- Institute for Neuropathology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Hirschberger
- Arbeitsgruppe Theoretische Biophysik, Lehrstuhl für BioMolekulare Optik, Ludwig-Maximilians-Universität, Munich, Germany
| | - Paul Tavan
- Arbeitsgruppe Theoretische Biophysik, Lehrstuhl für BioMolekulare Optik, Ludwig-Maximilians-Universität, Munich, Germany
| | - Hermann M. Schätzl
- Department of Molecular Biology and of Veterinary Sciences, University of Wyoming, Laramie, Wyoming
| | - Martin H. Groschup
- Institute for Novel and Emerging Infectious Diseases at the Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
32
|
Murray AN, Solomon JP, Wang YJ, Balch WE, Kelly JW. Discovery and characterization of a mammalian amyloid disaggregation activity. Protein Sci 2010; 19:836-46. [PMID: 20162625 DOI: 10.1002/pro.363] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The formation of amyloid, a cross-beta-sheet fibrillar aggregate, is associated with a variety of aging-associated degenerative diseases. Herein, we report the existence of a mammalian amyloid disaggregase activity that is present in all tissues and cell types tested. Homogenates from mammalian tissues and cell lines are able to disaggregate amyloid fibrils composed of amyloid beta (A beta)(1-40) or the 8 kDa plasma gelsolin fragment. The mammalian disaggregase activity is sensitive to proteinase K digestion and can be uncoupled from proteolysis activity using a protease inhibitor cocktail. Amyloid disaggregation and proteolysis activities are remarkably resistant to changes in temperature and pH. Identification and manipulation of the proteins responsible for the amyloid disaggregation/degradation activities offers the possibility of ameliorating aggregation-associated diseases.
Collapse
Affiliation(s)
- Amber N Murray
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
33
|
Griffiths PC, Spiropoulos J, Lockey R, Tout AC, Jayasena D, Plater JM, Chave A, Green RB, Simonini S, Thorne L, Dexter I, Balkema-Buschmann A, Groschup MH, Béringue V, Le Dur A, Laude H, Hope J. Characterization of atypical scrapie cases from Great Britain in transgenic ovine PrP mice. J Gen Virol 2010; 91:2132-2138. [PMID: 20392900 DOI: 10.1099/vir.0.018986-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Twenty-four atypical scrapie cases from sheep with different prion protein genotypes from Great Britain were transmitted to transgenic tg338 and/or TgshpXI mice expressing sheep PrP alleles, but failed to transmit to wild-type mice. Mean incubation periods were 200-300 days in tg338 mice and 300-500 days in TgshpXI mice. Survival times in C57BL/6 and VM/Dk mice were >700 days. Western blot analysis of mouse brain samples revealed similar multi-band, protease-resistant prion protein (PrP(res)) profiles, including an unglycosylated band at approximately 8-11 kDa, which was shown by antibody mapping to correspond to the approximately 93-148 aa portion of the PrP molecule. In transgenic mice, the incubation periods, Western blot PrP(res) profiles, brain lesion profiles and abnormal PrP (PrP(Sc)) distribution patterns produced by the Great Britain atypical scrapie isolates were similar and compatible with the biological characteristics of other European atypical scrapie or Nor98 cases.
Collapse
Affiliation(s)
- Peter C Griffiths
- Molecular Pathogenesis and Genetics Department, Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK
| | - John Spiropoulos
- Neuropathology Section, Pathology Department, Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK
| | - Richard Lockey
- Neuropathology Section, Pathology Department, Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK
| | - Anna C Tout
- Molecular Pathogenesis and Genetics Department, Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK
| | - Dhanushka Jayasena
- Molecular Pathogenesis and Genetics Department, Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK
| | - Jane M Plater
- Molecular Pathogenesis and Genetics Department, Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK
| | - Alun Chave
- Molecular Pathogenesis and Genetics Department, Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK
| | - Robert B Green
- Neuropathology Section, Pathology Department, Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK
| | - Sarah Simonini
- Neuropathology Section, Pathology Department, Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK
| | - Leigh Thorne
- Molecular Pathogenesis and Genetics Department, Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK
| | - Ian Dexter
- Animal Services Unit, Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK
| | - Anne Balkema-Buschmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Martin H Groschup
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Vincent Béringue
- Virologie Immunologie Moléculaires, U892, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France
| | - Annick Le Dur
- Virologie Immunologie Moléculaires, U892, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France
| | - Hubert Laude
- Virologie Immunologie Moléculaires, U892, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France
| | - James Hope
- Centre for Epidemiology and Risk Analysis, Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
34
|
Jen A, Parkyn CJ, Mootoosamy RC, Ford MJ, Warley A, Liu Q, Bu G, Baskakov IV, Moestrup S, McGuinness L, Emptage N, Morris RJ. Neuronal low-density lipoprotein receptor-related protein 1 binds and endocytoses prion fibrils via receptor cluster 4. J Cell Sci 2010; 123:246-55. [PMID: 20048341 DOI: 10.1242/jcs.058099] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For infectious prion protein (designated PrP(Sc)) to act as a template to convert normal cellular protein (PrP(C)) to its distinctive pathogenic conformation, the two forms of prion protein (PrP) must interact closely. The neuronal receptor that rapidly endocytoses PrP(C) is the low-density lipoprotein receptor-related protein 1 (LRP1). We show here that on sensory neurons LRP1 is also the receptor that binds and rapidly endocytoses smaller oligomeric forms of infectious prion fibrils, and recombinant PrP fibrils. Although LRP1 binds two molecules of most ligands independently to its receptor clusters 2 and 4, PrP(C) and PrP(Sc) fibrils bind only to receptor cluster 4. PrP(Sc) fibrils out-compete PrP(C) for internalization. When endocytosed, PrP(Sc) fibrils are routed to lysosomes, rather than recycled to the cell surface with PrP(C). Thus, although LRP1 binds both forms of PrP, it traffics them to separate fates within sensory neurons. The binding of both to ligand cluster 4 should enable genetic modification of PrP binding without disrupting other roles of LRP1 essential to neuronal viability and function, thereby enabling in vivo analysis of the role of this interaction in controlling both prion and LRP1 biology.
Collapse
Affiliation(s)
- Angela Jen
- Wolfson Centre for Age Related Disease, King's College London, SE1 1UL, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Dron M, Moudjou M, Chapuis J, Salamat MKF, Bernard J, Cronier S, Langevin C, Laude H. Endogenous proteolytic cleavage of disease-associated prion protein to produce C2 fragments is strongly cell- and tissue-dependent. J Biol Chem 2010; 285:10252-64. [PMID: 20154089 DOI: 10.1074/jbc.m109.083857] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The abnormally folded form of the prion protein (PrP(Sc)) accumulating in nervous and lymphoid tissues of prion-infected individuals can be naturally cleaved to generate a N-terminal-truncated fragment called C2. Information about the identity of the cellular proteases involved in this process and its possible role in prion biology has remained limited and controversial. We investigated PrP(Sc) N-terminal trimming in different cell lines and primary cultured nerve cells, and in the brain and spleen tissue from transgenic mice infected by ovine and mouse prions. We found the following: (i) the full-length to C2 ratio varies considerably depending on the infected cell or tissue. Thus, in primary neurons and brain tissue, PrP(Sc) accumulated predominantly as untrimmed species, whereas efficient trimming occurred in Rov and MovS cells, and in spleen tissue. (ii) Although C2 is generally considered to be the counterpart of the PrP(Sc) proteinase K-resistant core, the N termini of the fragments cleaved in vivo and in vitro can actually differ, as evidenced by a different reactivity toward the Pc248 anti-octarepeat antibody. (iii) In lysosome-impaired cells, the ratio of full-length versus C2 species dramatically increased, yet efficient prion propagation could occur. Moreover, cathepsin but not calpain inhibitors markedly inhibited C2 formation, and in vitro cleavage by cathepsins B and L produced PrP(Sc) fragments lacking the Pc248 epitope, strongly arguing for the primary involvement of acidic hydrolases of the endolysosomal compartment. These findings have implications on the molecular analysis of PrP(Sc) and cell pathogenesis of prion infection.
Collapse
Affiliation(s)
- Michel Dron
- INRA, U892 Virologie Immunologie Moléculaires, F-78350 Jouy-en-Josas, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Meyerett C, Michel B, Pulford B, Spraker TR, Nichols TA, Johnson T, Kurt T, Hoover EA, Telling GC, Zabel MD. In vitro strain adaptation of CWD prions by serial protein misfolding cyclic amplification. Virology 2008; 382:267-76. [PMID: 18952250 DOI: 10.1016/j.virol.2008.09.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 09/08/2008] [Accepted: 09/12/2008] [Indexed: 11/18/2022]
Abstract
We used serial protein misfolding cyclic amplification (sPMCA) to amplify the D10 strain of CWD prions in a linear relationship over two logs of D10 dilutions. The resultant PMCA-amplified D10 induced terminal TSE disease in CWD-susceptible Tg(cerPrP)1536 mice with a survival time approximately 80 days shorter than the original D10 inoculum, similar to that produced by in vivo sub-passage of D10 in Tg(cerPrP)1536 mice. Both in vitro-amplified and mouse-passaged D10 produced brain lesion profiles, glycoform ratios and conformational stabilities significantly different than those produced by the original D10 inoculum in Tg(cerPrP)1536 mice. These findings demonstrate that sPMCA can amplify and adapt prion strains in vitro as effectively and much more quickly than in vivo strain adaptation by mouse passage. Thus sPMCA may represent a powerful tool to assess prion strain adaptation and species barriers in vitro.
Collapse
Affiliation(s)
- Crystal Meyerett
- Department of Microbiology, Immunology, and Pathology, Colorado State University, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO 80523, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sisó S, Jeffrey M, Steele P, McGovern G, Martin S, Finlayson J, Chianini F, González L. Occurrence and cellular localization of PrPd in kidneys of scrapie-affected sheep in the absence of inflammation. J Pathol 2008; 215:126-34. [PMID: 18381605 DOI: 10.1002/path.2336] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Following a preliminary description of disease-associated prion protein (PrPd) deposition in the kidneys of scrapie-affected sheep, detailed studies have been undertaken in order to evaluate the factors that could account for such PrPd accumulation and to determine the precise location of PrPd in the renal papillae. Immunohistochemical (IHC) examinations for PrPd were conducted in kidneys collected at post-mortem from 30 naturally and 37 experimentally infected sheep. In addition, PrPd detection by western blot analysis (WB) and ultrastructural examination was carried out in a selection of kidneys. PrPd-specific, multifocal IHC labelling with antibody R145 was achieved in the kidneys of 44% and 51% of the naturally and experimentally infected sheep, respectively. The specificity of these results was confirmed by further IHC and WB using several PrP antibodies raised to different amino acid sequences, and by examination of control tissues. PrPd was shown to accumulate in the interstitium of the renal papillae, in association with the cell membrane and lysosomes of fibroblast-like cells, or extracellularly, in close contact with collagen and basal membranes. These deposits were unrelated to inflammatory changes in the kidney as shown by routine histology and by IHC for different immune cell markers. PrPd accumulated in the kidney of sheep that showed widespread PrPd deposition in the lymphoreticular system and had long incubation periods; these findings argue for a haematogenous origin of renal PrPd, although the precise site and mechanism-glomerular filtration and reabsorption at Henle's loop, or extravasation from vasa recta capillaries, or both-by which PrPd leaves the blood to accumulate in the interstitium of renal papillae remain to be determined. Either of these pathogenetic mechanisms could lead to environmental contamination via urine.
Collapse
Affiliation(s)
- S Sisó
- Veterinary Laboratories Agency Lasswade, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Bibby DF, Gill AC, Kirby L, Farquhar CF, Bruce ME, Garson JA. Application of a novel in vitro selection technique to isolate and characterise high affinity DNA aptamers binding mammalian prion proteins. J Virol Methods 2008; 151:107-15. [PMID: 18433888 DOI: 10.1016/j.jviromet.2008.03.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 03/10/2008] [Indexed: 11/18/2022]
Abstract
Clinical diagnosis and research into transmissible spongiform encephalopathies are hampered by the lack of sufficiently sensitive and specific reagents able to adequately detect the normal cellular form of the prion protein, PrP(C), and the pathological isoform, PrP(Sc). In order to provide such reagents, we applied Systematic Evolution of Ligands by EXponential enrichment (SELEX) against a recombinant murine prion protein, to select single-stranded DNA ligands (aptamers) of high affinity. The SELEX protocol and subsequent aptamer characterisation employed protein immobilisation/partitioning using nickel-complexed magnetic particles and a novel SYBR Green-mediated quantitative real-time PCR technique. Following eight rounds of selection, the enriched aptamer pool was cloned and 24 clones sequenced. Seven of these were 'orphan' clones and the remainder were grouped into three separate T-rich families. All but four of the aptamer clones exhibited specific binding to the murine prion protein and the majority also bound to human and ovine prion proteins. Dissociation constants (K(d)) ranged from 18 to 79 nM. Flow cytometry with fluorescein-labelled aptamers confirmed that binding to cells was dependent on the expression of PrP(C). Preliminary studies also indicate that a trivalent aptamer pool is capable of binding the pathological isoform PrP(Sc) following guanidinium denaturation.
Collapse
Affiliation(s)
- David F Bibby
- Centre for Virology, Department of Infection, Windeyer Institute, University College London, London W1T 4JF, UK
| | | | | | | | | | | |
Collapse
|
40
|
Seuberlich T, Botteron C, Benestad SL, Brünisholz H, Wyss R, Kihm U, Schwermer H, Friess M, Nicolier A, Heim D, Zurbriggen A. Atypical scrapie in a Swiss goat and implications for transmissible spongiform encephalopathy surveillance. J Vet Diagn Invest 2007; 19:2-8. [PMID: 17459826 DOI: 10.1177/104063870701900102] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Different types of transmissible spongiform encephalopathies (TSEs) affect sheep and goats. In addition to the classical form of scrapie, both species are susceptible to experimental infections with the bovine spongiform encephalopathy (BSE) agent, and in recent years atypical scrapie cases have been reported in sheep from different European countries. Atypical scrapie in sheep is characterized by distinct histopathologic lesions and molecular characteristics of the abnormal scrapie prion protein (PrP(sc)). Characteristics of atypical scrapie have not yet been described in detail in goats. A goat presenting features of atypical scrapie was identified in Switzerland. Although there was no difference between the molecular characteristics of PrP(sc) in this animal and those of atypical scrapie in sheep, differences in the distribution of histopathologic lesions and PrP(sc) deposition were observed. In particular the cerebellar cortex, a major site of PrP(sc) deposition in atypical scrapie in sheep, was found to be virtually unaffected in this goat. In contrast, severe lesions and PrP(sc) deposition were detected in more rostral brain structures, such as thalamus and midbrain. Two TSE screening tests and PrP(sc) immunohistochemistry were either negative or barely positive when applied to cerebellum and obex tissues, the target samples for TSE surveillance in sheep and goats. These findings suggest that such cases may have been missed in the past and could be overlooked in the future if sampling and testing procedures are not adapted. The epidemiological and veterinary public health implications of these atypical cases, however, are not yet known.
Collapse
Affiliation(s)
- Torsten Seuberlich
- NeuroCenter, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, Bremgartenstrasse 109a, CH-3001 Berne, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The scrapie agent is still not completely characterized biochemically and ultrastructurally, but its requirement for a functional protein has been established. Purification of the scrapie agent by methods using digestion with proteinase K yields a glycoprotein with an apparent mass of 27-30 kDa (PrP 27-30). In contrast, a 33-37 kDa glycoprotein, called Sp33-37, is the major protein component isolated from scrapie-affected brain when protease digestion is not used. Sp33-37 is the product of a normal host gene and is a larger form of PrP 27-30. We propose a model in which Sp33-37, a modified host protein, is the critical component of the scrapie agent; a non-host nucleic acid is not part of the agent. We postulate that Sp33-37, perhaps in concert with other unidentified host components, is capable of inducing the disease and directing the production of more of itself by acting on the normal protein directly or by affecting one of the steps in protein processing. Agent replication requires that: 1) a constant supply of the substrate protein Cp33-37 is available, 2) aggregates of Sp33-37 are resistant to degradation and accumulate in cells or cell membranes, and 3) membrane damage and cell death facilitate spread to adjacent cells. The model predicts that disease can be transmitted by the scrapie agent or initiated by a spontaneous metabolic error resulting in accumulation of the abnormal protein.
Collapse
Affiliation(s)
- D C Bolton
- Department of Molecular Biology, New York State Office of Mental Retardation and Developmental Disabilities, Staten Island 10314
| | | |
Collapse
|
42
|
Prusiner SB, Stahl N, DeArmond SJ. Novel mechanisms of degeneration of the central nervous system--prion structure and biology. CIBA FOUNDATION SYMPOSIUM 2007; 135:239-60. [PMID: 2900720 DOI: 10.1002/9780470513613.ch16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Prion is a term for the novel infectious agents which cause scrapie and Creutzfeldt-Jakob disease; these infectious pathogens are composed largely, if not entirely, of prion protein (PrP) molecules. No prion-specific polynucleotide has been identified. Considerable evidence indicates that PrP 27-30 is required for and inseparable from scrapie infectivity. PrP 27-30 is derived from a larger protein, denoted PrPSc. A cellular isoform, designated PrPC, and PrPSc are both encoded by a single copy chromosomal gene and both proteins appear to be translated from the same 2.1 kb mRNA. Monoclonal antibodies to PrP 27-30 as well as antisera to PrP synthetic peptides, react with both PrPC and PrPSc, establishing the relatedness of these proteins. PrPC is completely digested by proteinase K; PrPSc is converted to PrP 27-30 under the same conditions. Detergent extraction of microsomal membranes isolated from scrapie-infected hamster brains solubilizes PrPC but induces PrPSc to polymerize into amyloid rods. This procedure allows separation of the two prion protein isoforms and the demonstration that PrPSc accumulates during scrapie infection while the level of PrPC does not change. The prion amyloid rods generated by detergent extraction are identical morphologically, except for length, to extracellular collections of prion amyloid filaments which form plaques in scrapie- and CJD-infected brains. The prion amyloid plaques stain with antibodies to PrP 27-30 and PrP peptides. Prion rods composed of PrP 27-30 dissociate into phospholipid vesicles with full retention of scrapie infectivity. The murine PrP gene (Prn-p) is linked to the Prn-i gene, which controls the length of the scrapie incubation period. Prolonged incubation times are a cardinal feature of scrapie and CJD. While the central role of PrPSc in scrapie pathogenesis is well established, the chemical and conformational differences between PrPC and PrPSc are unknown but presumably arise from post-translational events.
Collapse
Affiliation(s)
- S B Prusiner
- Department of Neurology, University of California, San Francisco 94143
| | | | | |
Collapse
|
43
|
Hope J, Hunter N. Scrapie-associated fibrils, PrP protein and the Sinc gene. CIBA FOUNDATION SYMPOSIUM 2007; 135:146-63. [PMID: 2900718 DOI: 10.1002/9780470513613.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Scrapie-associated fibrils (SAF) are disease-specific structures found in extracts of the brains of animals affected with scrapie. These structures are pathological aggregates of a normal host protein called PrP. In collaboration with Konrad Beyreuther (Heidelberg), we have characterized the multiple forms of PrP found in SAF fractions from mouse brain affected by the ME7 strain of scrapie. There is no in vivo N-terminal cleavage of the most abundant forms of PrP. However, N-terminal cleavage of some minor forms of PrP does occur in vivo within a domain of repetitive sequences at sites similar to but distinct from those cut by proteinase K in vitro. We suggest that such covalently modified forms of PrP may be the result of enzymic degradation occurring as a consequence rather than as a cause of disease. We also found a novel, as yet unidentified, amino acid derivative of the arginine residue at position 3 in both hamster and mouse PrP 33-35, which may predispose PrP to form SAF. Carlson and colleagues have discovered a linkage between the PrP gene and the murine gene provisionally called Prn-i which, from the work of Carp and coworkers, appears identical to the Sinc gene. The Sinc gene is the major gene determining the incubation period of all strains of scrapie in mice. We have evidence for a linkage of the PrP gene and Sinc using inbred mice of known Sinc genotype, including VM(Sincp7) and VM(Sincs7) congenic mice. PrP may even be the protein product of the Sinc gene.
Collapse
Affiliation(s)
- J Hope
- AFRC & MRC Neuropathogenesis Unit, Edinburgh, UK
| | | |
Collapse
|
44
|
Olschewski D, Seidel R, Miesbauer M, Rambold AS, Oesterhelt D, Winklhofer KF, Tatzelt J, Engelhard M, Becker CFW. Semisynthetic Murine Prion Protein Equipped with a GPI Anchor Mimic Incorporates into Cellular Membranes. ACTA ACUST UNITED AC 2007; 14:994-1006. [PMID: 17884632 DOI: 10.1016/j.chembiol.2007.08.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 07/16/2007] [Accepted: 08/01/2007] [Indexed: 10/22/2022]
Abstract
Conversion of cellular prion protein (PrP(C)) into the pathological conformer (PrP(Sc)) has been studied extensively by using recombinantly expressed PrP (rPrP). However, due to inherent difficulties of expressing and purifying posttranslationally modified rPrP variants, only a limited amount of data is available for membrane-associated PrP and its behavior in vitro and in vivo. Here, we present an alternative route to access lipidated mouse rPrP (rPrP(Palm)) via two semisynthetic strategies. These rPrP variants studied by a variety of in vitro methods exhibited a high affinity for liposomes and a lower tendency for aggregation than rPrP. In vivo studies demonstrated that double-lipidated rPrP is efficiently taken up into the membranes of mouse neuronal and human epithelial kidney cells. These latter results enable experiments on the cellular level to elucidate the mechanism and site of PrP-PrP(Sc) conversion.
Collapse
Affiliation(s)
- Diana Olschewski
- Max-Planck Institute of Molecular Physiology, Department of Physical Biochemistry, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Jeffrey M, González L. Classical sheep transmissible spongiform encephalopathies: pathogenesis, pathological phenotypes and clinical disease. Neuropathol Appl Neurobiol 2007; 33:373-94. [PMID: 17617870 DOI: 10.1111/j.1365-2990.2007.00868.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Scrapie is a prion disease or transmissible spongiform encephalopathy (TSE) of sheep, goats and moufflon. As with its human counterparts, pathology consists of vacuolation, gliosis and accumulations of abnormal forms of a host prion protein (PrPd) in the brain of affected individuals. Immunohistochemical methods can be used to identify both the intracellular truncation sites of PrPd in different cell types (PrPd epitope mapping) and the different morphological patterns of accumulation (PrPd profiling). Differences in the inferred truncation sites of PrPd are found for different strains of sheep TSEs and for different infected cell types within individual strains. Immunochemical methods of characterizing strains broadly correspond to PrPd mapping discriminatory results, but distinct PrPd profiles, which provide strain- and source-specific information on both the cell types which sustain infection (cellular tropisms) and the cellular processing of PrPd, have no immunoblotting counterparts. The cause of neurological dysfunction in human is commonly considered to be neuronal loss secondary to a direct or indirect effect of the accumulation of PrPd. However, in sheep scrapie there is no significant neuronal loss, and relationships between different magnitudes, topographical and cytological forms of PrPd accumulation and clinical signs are not evident. PrPd accumulation also occurs in lymphoid tissues, for which there is indirect evidence of a pathological effect, in the peripheral nervous system and in other tissues. It is generally assumed that neuroinvasion results from infection of the enteric nervous system neurones subsequent to amplification of infectivity in lymphoid tissues and later spread via sympathetic and parasympathetic pathways. The evidence for this is, however, circumstantial. Accumulation of PrPd and presence of infectivity in tissues other than the nervous and lymphoreticular systems gives insights on the ways of transmission of infection and on food safety.
Collapse
Affiliation(s)
- M Jeffrey
- Veterinary Laboratory Agency, Lasswade Laboratory, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, Scotland, UK.
| | | |
Collapse
|
46
|
Jacobs JG, Langeveld JPM, Biacabe AG, Acutis PL, Polak MP, Gavier-Widen D, Buschmann A, Caramelli M, Casalone C, Mazza M, Groschup M, Erkens JHF, Davidse A, van Zijderveld FG, Baron T. Molecular discrimination of atypical bovine spongiform encephalopathy strains from a geographical region spanning a wide area in Europe. J Clin Microbiol 2007; 45:1821-9. [PMID: 17442800 PMCID: PMC1933055 DOI: 10.1128/jcm.00160-07] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 03/12/2007] [Accepted: 04/06/2007] [Indexed: 11/20/2022] Open
Abstract
Transmissible spongiform encephalopathy strains can be differentiated by their behavior in bioassays and by molecular analyses of the disease-associated prion protein (PrP) in a posttranslationally transformed conformation (PrPSc). Until recently, isolates from cases of bovine spongiform encephalopathy (BSE) appeared to be very homogeneous. However, a limited number of atypical BSE isolates have recently been identified upon analyses of the disease-associated proteinase K (PK) resistance-associated moiety of PrPSc (PrPres), suggesting the existence of at least two additional BSE PrPres variants. These are defined here as the H type and the L type, according to the higher and lower positions of the nonglycosylated PrPres band in Western blots, respectively, compared to the position of the band in classical BSE (C-type) isolates. These molecular PrPres variants, which originated from six different European countries, were investigated together. In addition to the migration properties and glycosylation profiles (glycoprofiles), the H- and L-type isolates exhibited enhanced PK sensitivities at pH 8 compared to those of the C-type isolates. Moreover, H-type BSE isolates exhibited differences in the binding of antibodies specific for N- and more C-terminal PrP regions and principally contained two aglycosylated PrPres moieties which can both be glycosylated and which is thus indicative of the existence of two PrPres populations or intermediate cleavage sites. These properties appear to be consistent within each BSE type and independent of the geographical origin, suggesting the existence of different BSE strains in cattle. The choice of three antibodies and the application of two pHs during the digestion of brain homogenates provide practical and diverse tools for the discriminative detection of these three molecular BSE types and might assist with the recognition of other variants.
Collapse
Affiliation(s)
- Jorg G Jacobs
- Central Institute for Animal Disease Control (CIDC-Lelystad), 8203 AA 2004, Lelystad. The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sim RB, Kishore U, Villiers CL, Marche PN, Mitchell DA. C1q binding and complement activation by prions and amyloids. Immunobiology 2007; 212:355-62. [PMID: 17544820 DOI: 10.1016/j.imbio.2007.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 04/03/2007] [Accepted: 04/03/2007] [Indexed: 11/30/2022]
Abstract
C1q binds to many non-self and altered-self-materials. These include microorganisms, immune complexes, apoptotic and necrotic cells and their breakdown products, and amyloids. C1q binding to amyloid fibrils found as extracellular deposits in tissues, and subsequent complement activation are involved in the pathology of several amyloid diseases, such as Alzheimer's disease. Prion diseases, such as scrapie also involve formation of amyloid by polymerization of the host prion protein (PrP). Complement activation is likely to contribute to neuronal damage in the end stages of prion diseases, but is also thought to participate in the initial infection, dissemination and replication stages. Infectious prion particles are likely to bind C1q and activate the complement system. Bound complement proteins may then influence the uptake and transport of prion particles by dendritic cells (DCs) and their subsequent proliferation at sites such as follicular DCs.
Collapse
Affiliation(s)
- Robert B Sim
- MRC Immunochemistry Unit, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU, UK.
| | | | | | | | | |
Collapse
|
48
|
Kuczius T, Koch R, Keyvani K, Karch H, Grassi J, Groschup MH. Regional and phenotype heterogeneity of cellular prion proteins in the human brain. Eur J Neurosci 2007; 25:2649-55. [PMID: 17466020 DOI: 10.1111/j.1460-9568.2007.05518.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) are neurological disorders that include genetic, infectious and sporadic forms of human Creutzfeldt-Jakob disease (CJD). The pathogenic agent is the prion protein that is composed of an abnormal isoform (PrP(Sc)) of a host-encoded protein (PrP(C)). Analysis of the relative amounts of PrP(Sc) glycoforms has been used to discriminate between various agents involved in TSE. The distribution and efficiency of conversion to PrP(Sc) can be influenced by differences in the expression of PrP(C). However, little attention has been given so far to the banding patterns of PrP(C). Using four different antibodies recognizing amino- and carboxyl-terminal PrP sequences we analysed the glycoforms of PrP(C) in seven regions of the human brain using brains obtained from six subjects. For determination of the staining intensities, signals were quantified by densitometry and reproducible patterns were accomplished by many repeated immunoblot analyses. When amino-terminal binding antibodies were used for detection, PrP(C) in the frontal neocortex, nucleus lentiformis, thalamus, hippocampus and cerebellum displayed a glycotype with high staining of the diglycosylated isoforms. This was different from patterns in the pons and medulla oblongata, which showed a high intensity of the nonglycosylated isoform, and PrP(C) proteins, approximately 27 kDa in size, exhibited high staining using the carboxyl-terminal binding antibodies. This intense staining followed from an overlay of full-length and truncated PrP(C) isoforms. Furthermore, we found marked differences in the expression of PrP(C). Variations in the processing of PrP(C) may lead to interregional differences in the glycoform composition of PrP(Sc) in human brains.
Collapse
Affiliation(s)
- Thorsten Kuczius
- Institute for Hygiene, University Hospital Muenster, Münster, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Treiber C, Thompsett AR, Pipkorn R, Brown DR, Multhaup G. Real-time kinetics of discontinuous and highly conformational metal-ion binding sites of prion protein. J Biol Inorg Chem 2007; 12:711-20. [PMID: 17345106 DOI: 10.1007/s00775-007-0220-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 02/06/2007] [Indexed: 11/24/2022]
Abstract
The prion protein (PrP) is a metalloprotein with an unstructured region covering residues 60-91 that bind two to six Cu(II) ions cooperatively. Cu can bind to PrP regions C-terminally to the octarepeat region involving residues His111 and/or His96. In addition to Cu(II), PrP binds Zn(II), Mn(II) and Ni(II) with binding constants several orders of magnitudes lower than those determined for Cu. We used for the first time surface plasmon resonance (SPR) analysis to dissect metal binding to specific sites of PrP domains and to determine binding kinetics in real time. A biosensor assay was established to measure the binding of PrP-derived synthetic peptides and recombinant PrP to nitrilotriacetic acid chelated divalent metal ions. We have identified two separate binding regions for binding of Cu to PrP by SPR, one in the octarepeat region and the second provided by His96 and His111, of which His96 is more essential for Cu coordination. The octarepeat region at the N-terminus of PrP increases the affinity for Cu of the full-length protein by a factor of 2, indicating a cooperative effect. Since none of the synthetic peptides covering the octarepeat region bound to Mn and recombinant PrP lacking this sequence were able to bind Mn, we propose a conformational binding site for Mn involving residues 91-230. A novel low-affinity binding site for Co(II) was discovered between PrP residues 104 and 114, with residue His111 being the key amino acid for coordinating Co(II). His111 is essential for Co(II) binding, whereas His96 is more important than His111 for binding of Cu(II).
Collapse
Affiliation(s)
- Carina Treiber
- Institut für Chemie/Biochemie, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
50
|
Vana K, Zuber C, Nikles D, Weiss S. Novel aspects of prions, their receptor molecules, and innovative approaches for TSE therapy. Cell Mol Neurobiol 2007; 27:107-28. [PMID: 17151946 PMCID: PMC11517296 DOI: 10.1007/s10571-006-9121-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 09/20/2006] [Indexed: 10/23/2022]
Abstract
1. Prion diseases are a group of rare, fatal neurodegenerative diseases, also known as transmissible spongiform encephalopathies (TSEs), that affect both animals and humans and include bovine spongiform encephalopathy (BSE) in cattle, scrapie in sheep, chronic wasting disease (CWD) in deer and elk, and Creutzfeldt-Jakob disease (CJD) in humans. TSEs are usually rapidly progressive and clinical symptoms comprise dementia and loss of movement coordination due to the accumulation of an abnormal isoform (PrP(Sc)) of the host-encoded prion protein (PrP(c)). 2. This article reviews the current knowledge on PrP(c) and PrP(Sc), prion replication mechanisms, interaction partners of prions, and their cell surface receptors. Several strategies, summarized in this article, have been investigated for an effective antiprion treatment including development of a vaccination therapy and screening for potent chemical compounds. Currently, no effective treatment for prion diseases is available. 3. The identification of the 37 kDa/67 kDa laminin receptor (LRP/LR) and heparan sulfate as cell surface receptors for prions, however, opens new avenues for the development of alternative TSE therapies.
Collapse
Affiliation(s)
- Karen Vana
- Laboratorium für Molekulare Biologie, Genzentrum, Institut für Biochemie der Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 München, Germany
| | - Chantal Zuber
- Laboratorium für Molekulare Biologie, Genzentrum, Institut für Biochemie der Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 München, Germany
| | - Daphne Nikles
- Laboratorium für Molekulare Biologie, Genzentrum, Institut für Biochemie der Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 München, Germany
| | - Stefan Weiss
- Laboratorium für Molekulare Biologie, Genzentrum, Institut für Biochemie der Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 München, Germany
| |
Collapse
|