1
|
Kitab B, Tsukiyama-Kohara K. Regulatory Role of Ribonucleotide Reductase Subunit M2 in Hepatocyte Growth and Pathogenesis of Hepatitis C Virus. Int J Mol Sci 2023; 24:ijms24032619. [PMID: 36768940 PMCID: PMC9916403 DOI: 10.3390/ijms24032619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Hepatitis C virus (HCV) frequently causes chronic infection in the human liver, which may progress to advanced hepatic fibrosis, cirrhosis, and hepatocellular carcinoma. HCV primarily infects highly differentiated quiescent hepatocytes and can modulate cell cycle-regulatory genes and proliferation pathways, which ultimately contribute to persistent infection and pathogenesis. On the other hand, several studies have shown differential regulation of HCV RNA and viral protein expression levels, depending on the proliferation state of hepatocytes and the phase of the cell cycle. HCV typically requires factors provided by host cells for efficient and persistent viral replication. Previously, we found that HCV infection upregulates the expression of ribonucleotide reductase subunit M2 (RRM2) in quiescent hepatocytes. RRM2 is a rate-limiting protein that catalyzes de novo synthesis of deoxyribonucleotide triphosphates, and its expression is highly regulated during various phases of the cell cycle. RRM2 functions as a pro-viral factor essential for HCV RNA synthesis, but its functional role in HCV-induced liver diseases remains unknown. Here, we present a comprehensive review of the role of the hepatocyte cell cycle, in correlation with RRM2 expression, in the regulation of HCV replication. We also discuss the potential relevance of this protein in the pathogenesis of HCV, particularly in the development of hepatocellular carcinoma.
Collapse
|
2
|
Yang Z, Wong SM, Yue GH. Effects of rrm1 on NNV Resistance Revealed by RNA-seq and Gene Editing. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:854-869. [PMID: 34735644 DOI: 10.1007/s10126-021-10068-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Viral nervous necrosis (VNN) disease caused by the nervous necrosis virus (NNV) is a major disease, leading to a huge economic loss in aquaculture. Previous GWAS and QTL mapping have identified a major QTL for NNV resistance in linkage group 20 in Asian seabass. However, no causative gene for NNV resistance has been identified. In this study, RNA-seq from brains of Asian seabass fingerlings challenged with NNV at four time points (5, 10, 15 and 20 days post-challenge) identified 1228, 245, 189 and 134 DEGs, respectively. Eight DEGs, including rrm1, were located in the major QTL for NNV resistance. An association study in 445 survived and 608 dead fingerlings after NNV challenge revealed that the SNP in rrm1 were significantly associated with NNV resistance. Therefore, rrm1 was selected for functional analysis, as a candidate gene for NNV resistance. The expression of rrm1 was significantly increased in the gill, liver, spleen and muscle, and was suppressed in the brain, gut and skin after NNV challenge. The rrm1 protein was localized in the nuclear membrane. Over-expression of rrm1 significantly decreased viral RNA and titer in NNV-infected Asian seabass cells, whereas knock-down of rrm1 significantly increased viral RNA and titer in NNV-infected Asian seabass cells. The rrm1 knockout heterozygous zebrafish was more susceptible to NNV infection. Our study suggests that rrm1 is one of the causative genes for NNV resistance and the SNP in the gene may be applied for accelerating genetic improvement for NNV resistance.
Collapse
Affiliation(s)
- Zituo Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, Singapore, 117543, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| | - Sek Man Wong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, Singapore, 117543, Singapore.
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore.
- National University of Singapore Suzhou Research Institute, Suzhou, 215123, Jiangsu, China.
| | - Gen Hua Yue
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, Singapore, 117543, Singapore.
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore.
- School of Biological Sciences, Nanyang Technological University, 6 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
3
|
Nucleotide Pool Imbalance and Antibody Gene Diversification. Vaccines (Basel) 2021; 9:vaccines9101050. [PMID: 34696158 PMCID: PMC8538681 DOI: 10.3390/vaccines9101050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023] Open
Abstract
The availability and adequate balance of deoxyribonucleoside triphosphate (dNTP) is an important determinant of both the fidelity and the processivity of DNA polymerases. Therefore, maintaining an optimal balance of the dNTP pool is critical for genomic stability in replicating and quiescent cells. Since DNA synthesis is required not only in genomic replication but also in DNA damage repair and recombination, the abnormalities in the dNTP pool affect a wide range of chromosomal activities. The generation of antibody diversity relies on antigen-independent V(D)J recombination, as well as antigen-dependent somatic hypermutation and class switch recombination. These processes involve diverse sets of DNA polymerases, which are affected by the dNTP pool imbalances. This review discusses the role of the optimal dNTP pool balance in the diversification of antibody encoding genes.
Collapse
|
4
|
Jiang X, Li Y, Zhang N, Gao Y, Han L, Li S, Li J, Liu X, Gong Y, Xie C. RRM2 silencing suppresses malignant phenotype and enhances radiosensitivity via activating cGAS/STING signaling pathway in lung adenocarcinoma. Cell Biosci 2021; 11:74. [PMID: 33858512 PMCID: PMC8051110 DOI: 10.1186/s13578-021-00586-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/07/2021] [Indexed: 01/22/2023] Open
Abstract
Background As one of the most common malignancy, lung adenocarcinoma (LUAD) is characterized by low 5-year survival rate. This research aimed to investigate the effects of ribonucleotide reductase regulatory subunit M2 (RRM2) on malignant biological behaviors and activation of cGAS/STING pathway. We also explored the synergistic sensitization mechanisms of RRM2 and radiotherapy. Methods Bioinformatic tools were used to evaluate the clinical significance of RRM2 in LUAD patients. The roles of RRM2 in malignant phenotype and DNA damage in LUAD cells were investigated with cell proliferation, colony formation, immunofluorescence, modified Boyden chamber and comet assays. The mouse models were used to evaluate the biological significance of RRM2 in vivo. Cytotoxic T cell infiltration was evaluated via flow cytometric analysis and immunohistochemistry staining in C57BL/6 mice. We also explored the synergistic effects of RRM2 silencing and radiation on LUAD cells with apoptosis assay and immunoblotting in vitro. Results Bioinformatic analysis revealed that RRM2 had diagnostic values for LUAD patients. Higher levels of RRM2 predicted worse prognosis. RRM2 silencing inhibited LUAD cell proliferation, invasion and migration. RRM2 knockdown induced S phase arrest and DNA damage. RRM2 silencing induced cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway, and the downstream targets were regulated in a STING-dependent manner. Knockdown of RRM2 suppressed tumor growth in the xenograft tumor models. RRM2 deficiency increased CD8 + T cells in the tumor tissues and spleens. Furthermore, RRM2 silencing had synergistic effects with radiation on inhibiting cell proliferation and promoting apoptosis. Meanwhile, this combination promoted the activation of cGAS/STING signaling pathway synergistically, and simultaneously increased expression of IFNβ, CCL5 and CXCL10. Conclusion Our results demonstrated that RRM2 silencing had anti-tumor values and activated the cGAS/STING signaling pathway. RRM2 silencing increased CD8 + T cells infiltration. RRM2 silencing cooperated with radiation to inhibit LUAD cell proliferation, promote apoptosis and enhance the activation of cGAS/STING signaling pathway. RRM2 could be a promising target for tumor regression through cancer immunotherapy in LUAD. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00586-5.
Collapse
Affiliation(s)
- Xueping Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yangyi Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Nannan Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yanping Gao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Linzhi Han
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Shuying Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Jiali Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Xingyu Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China. .,Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China. .,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China. .,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
5
|
van Koetsveld PM, Creemers SG, Dogan F, Franssen GJH, de Herder WW, Feelders RA, Hofland LJ. The Efficacy of Mitotane in Human Primary Adrenocortical Carcinoma Cultures. J Clin Endocrinol Metab 2020; 105:5581636. [PMID: 31586196 PMCID: PMC7006231 DOI: 10.1210/clinem/dgz001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 09/06/2019] [Indexed: 12/31/2022]
Abstract
CONTEXT Patients with adrenocortical carcinoma (ACC) often fail mitotane treatment and deal with severe toxicity, marking the relevance of predictive parameters for treatment outcome. OBJECTIVE Determine the effects of mitotane in primary ACC cultures, and correlate sensitivity with patient and tumor characteristics. METHODS In 32 primary ACC cultures, the effects of mitotane on cell growth and cortisol production were determined. RRM1, SOAT1, and CYP2W1 expression were assessed using reverse transcription-polymerase chain reaction and immunohistochemistry. RESULTS The median percentage cell amount inhibition in primary ACC cultures at 50 µM mitotane was 57%. Seven patients were classified as nonresponders, 14 as partial responders, and 11 as responders. The mean median effective concentration (EC50) value of mitotane for inhibition of cell amount in responders was 14.2 µM (95% CI, 11.3-17.9), in partial responders 41.6 µM (95% CI, 33.5-51.8), and could not be calculated in nonresponders. The percentage cortisol-producing ACC was 14%, 43%, and 73% for nonresponders, partial responders, and responders (P = 0.068). Mitotane inhibited cortisol production with a mean EC50 of 1.4 µM (95% CI, 0.9-2.1), which was considerably lower than the EC50 on cell growth. RRM1, SOAT1, and CYP2W1 expression levels were not predictive for mitotane sensitivity in vitro. CONCLUSION Direct antitumor effects of mitotane on human primary ACC cultures are highly variable between patients, reflecting heterogeneous responses in patients. Cortisol was inhibited at lower concentrations, compared with its effect on cell amount. Cortisol secretion by ACC might be associated with enhanced mitotane sensitivity due to increased direct antitumor effects of mitotane.
Collapse
Affiliation(s)
- Peter M van Koetsveld
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sara G Creemers
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Fadime Dogan
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gaston J H Franssen
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Wouter W de Herder
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Richard A Feelders
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Leo J Hofland
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Correspondence: L.J. Hofland, PhD, Department of Internal Medicine, Division of Endocrinology, Room Ee514, Erasmus Medical Center, P.O. box 2040, 3000 CA Rotterdam, The Netherlands. E-mail:
| |
Collapse
|
6
|
Moussa RS, Park KC, Kovacevic Z, Richardson DR. Ironing out the role of the cyclin-dependent kinase inhibitor, p21 in cancer: Novel iron chelating agents to target p21 expression and activity. Free Radic Biol Med 2019; 133:276-294. [PMID: 29572098 DOI: 10.1016/j.freeradbiomed.2018.03.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/02/2018] [Accepted: 03/14/2018] [Indexed: 12/12/2022]
Abstract
Iron (Fe) has become an important target for the development of anti-cancer therapeutics with a number of Fe chelators entering human clinical trials for advanced and resistant cancer. An important aspect of the activity of these compounds is their multiple molecular targets, including those that play roles in arresting the cell cycle, such as the cyclin-dependent kinase inhibitor, p21. At present, the exact mechanism by which Fe chelators regulate p21 expression remains unclear. However, recent studies indicate the ability of chelators to up-regulate p21 at the mRNA level was dependent on the chelator and cell-type investigated. Analysis of the p21 promoter identified that the Sp1-3-binding site played a significant role in the activation of p21 transcription by Fe chelators. Furthermore, there was increased Sp1/ER-α and Sp1/c-Jun complex formation in melanoma cells, suggesting these complexes were involved in p21 promoter activation. Elucidating the mechanisms involved in the regulation of p21 expression in response to Fe chelator treatment in neoplastic cells will further clarify how these agents achieve their anti-tumor activity. It will also enhance our understanding of the complex roles p21 may play in neoplastic cells and lead to the development of more effective and specific anti-cancer therapies.
Collapse
Affiliation(s)
- Rayan S Moussa
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
7
|
Fu Y, Long MJC, Wisitpitthaya S, Inayat H, Pierpont TM, Elsaid IM, Bloom JC, Ortega J, Weiss RS, Aye Y. Nuclear RNR-α antagonizes cell proliferation by directly inhibiting ZRANB3. Nat Chem Biol 2018; 14:943-954. [PMID: 30150681 DOI: 10.1038/s41589-018-0113-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/28/2018] [Indexed: 11/09/2022]
Abstract
Since the origins of DNA-based life, the enzyme ribonucleotide reductase (RNR) has spurred proliferation because of its rate-limiting role in de novo deoxynucleoside-triphosphate (dNTP) biosynthesis. Paradoxically, the large subunit, RNR-α, of this obligatory two-component complex in mammals plays a context-specific antiproliferative role. There is little explanation for this dichotomy. Here, we show that RNR-α has a previously unrecognized DNA-replication inhibition function, leading to growth retardation. This underappreciated biological activity functions in the nucleus, where RNR-α interacts with ZRANB3. This process suppresses ZRANB3's function in unstressed cells, which we show to promote DNA synthesis. This nonreductase function of RNR-α is promoted by RNR-α hexamerization-induced by a natural and synthetic nucleotide of dA/ClF/CLA/FLU-which elicits rapid RNR-α nuclear import. The newly discovered nuclear signaling axis is a primary defense against elevated or imbalanced dNTP pools that can exert mutagenic effects irrespective of the cell cycle.
Collapse
Affiliation(s)
- Yuan Fu
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Marcus J C Long
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY, USA
| | | | - Huma Inayat
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | | | - Islam M Elsaid
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Jordana C Bloom
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Robert S Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Yimon Aye
- Ecole Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Lausanne, Switzerland.
| |
Collapse
|
8
|
Chen PYT, Funk MA, Brignole EJ, Drennan CL. Disruption of an oligomeric interface prevents allosteric inhibition of Escherichia coli class Ia ribonucleotide reductase. J Biol Chem 2018; 293:10404-10412. [PMID: 29700111 DOI: 10.1074/jbc.ra118.002569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/17/2018] [Indexed: 11/06/2022] Open
Abstract
Ribonucleotide reductases (RNRs) convert ribonucleotides to deoxynucleotides, a process essential for DNA biosynthesis and repair. Class Ia RNRs require two dimeric subunits for activity: an α2 subunit that houses the active site and allosteric regulatory sites and a β2 subunit that houses the diferric tyrosyl radical cofactor. Ribonucleotide reduction requires that both subunits form a compact α2β2 state allowing for radical transfer from β2 to α2 RNR activity is regulated allosterically by dATP, which inhibits RNR, and by ATP, which restores activity. For the well-studied Escherichia coli class Ia RNR, dATP binding to an allosteric site on α promotes formation of an α4β4 ring-like state. Here, we investigate whether the α4β4 formation causes or results from RNR inhibition. We demonstrate that substitutions at the α-β interface (S37D/S39A-α2, S39R-α2, S39F-α2, E42K-α2, or L43Q-α2) that disrupt the α4β4 oligomer abrogate dATP-mediated inhibition, consistent with the idea that α4β4 formation is required for dATP's allosteric inhibition of RNR. Our results further reveal that the α-β interface in the inhibited state is highly sensitive to manipulation, with a single substitution interfering with complex formation. We also discover that residues at the α-β interface whose substitution has previously been shown to cause a mutator phenotype in Escherichia coli (i.e. S39F-α2 or E42K-α2) are impaired only in their activity regulation, thus linking this phenotype with the inability to allosterically down-regulate RNR. Whereas the cytotoxicity of RNR inhibition is well-established, these data emphasize the importance of down-regulation of RNR activity.
Collapse
Affiliation(s)
| | | | - Edward J Brignole
- From the Departments of Chemistry and.,Biology and.,the Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Catherine L Drennan
- From the Departments of Chemistry and .,Biology and.,the Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
9
|
Graindorge D, Martineau S, Machon C, Arnoux P, Guitton J, Francesconi S, Frochot C, Sage E, Girard PM. Singlet Oxygen-Mediated Oxidation during UVA Radiation Alters the Dynamic of Genomic DNA Replication. PLoS One 2015; 10:e0140645. [PMID: 26485711 PMCID: PMC4618472 DOI: 10.1371/journal.pone.0140645] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 09/29/2015] [Indexed: 02/07/2023] Open
Abstract
UVA radiation (320–400 nm) is a major environmental agent that can exert its deleterious action on living organisms through absorption of the UVA photons by endogenous or exogenous photosensitizers. This leads to the production of reactive oxygen species (ROS), such as singlet oxygen (1O2) and hydrogen peroxide (H2O2), which in turn can modify reversibly or irreversibly biomolecules, such as lipids, proteins and nucleic acids. We have previously reported that UVA-induced ROS strongly inhibit DNA replication in a dose-dependent manner, but independently of the cell cycle checkpoints activation. Here, we report that the production of 1O2 by UVA radiation leads to a transient inhibition of replication fork velocity, a transient decrease in the dNTP pool, a quickly reversible GSH-dependent oxidation of the RRM1 subunit of ribonucleotide reductase and sustained inhibition of origin firing. The time of recovery post irradiation for each of these events can last from few minutes (reduction of oxidized RRM1) to several hours (replication fork velocity and origin firing). The quenching of 1O2 by sodium azide prevents the delay of DNA replication, the decrease in the dNTP pool and the oxidation of RRM1, while inhibition of Chk1 does not prevent the inhibition of origin firing. Although the molecular mechanism remains elusive, our data demonstrate that the dynamic of replication is altered by UVA photosensitization of vitamins via the production of singlet oxygen.
Collapse
Affiliation(s)
- Dany Graindorge
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
| | - Sylvain Martineau
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
| | - Christelle Machon
- Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Laboratoire de biochimie-toxicologie, Pierre Bénite, France
- Laboratoire de chimie analytique, Université Lyon 1, ISPBL, Faculté de pharmacie, Lyon, France
| | - Philippe Arnoux
- Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), Nancy, France
- CNRS, UMR7274, Nancy, France
| | - Jérôme Guitton
- Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Laboratoire de biochimie-toxicologie, Pierre Bénite, France
- Laboratoire de Toxicologie, Université Lyon 1, ISPBL, Faculté de pharmacie, Lyon, France
| | - Stefania Francesconi
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
| | - Céline Frochot
- Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), Nancy, France
- CNRS, UMR7274, Nancy, France
| | - Evelyne Sage
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
| | - Pierre-Marie Girard
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
- * E-mail:
| |
Collapse
|
10
|
Abstract
Cancer was recognized as a genetic disease at least four decades ago, with the realization that the spontaneous mutation rate must increase early in tumorigenesis to account for the many mutations in tumour cells compared with their progenitor pre-malignant cells. Abnormalities in the deoxyribonucleotide pool have long been recognized as determinants of DNA replication fidelity, and hence may contribute to mutagenic processes that are involved in carcinogenesis. In addition, many anticancer agents antagonize deoxyribonucleotide metabolism. Here, we consider the extent to which aspects of deoxyribonucleotide metabolism contribute to our understanding of both carcinogenesis and to the effective use of anticancer agents.
Collapse
Affiliation(s)
- Christopher K Mathews
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-7305, USA
| |
Collapse
|
11
|
Morafraile EC, Diffley JFX, Tercero JA, Segurado M. Checkpoint-dependent RNR induction promotes fork restart after replicative stress. Sci Rep 2015; 5:7886. [PMID: 25601385 PMCID: PMC4298733 DOI: 10.1038/srep07886] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/19/2014] [Indexed: 01/03/2023] Open
Abstract
The checkpoint kinase Rad53 is crucial to regulate DNA replication in the presence of replicative stress. Under conditions that interfere with the progression of replication forks, Rad53 prevents Exo1-dependent fork degradation. However, although EXO1 deletion avoids fork degradation in rad53 mutants, it does not suppress their sensitivity to the ribonucleotide reductase (RNR) inhibitor hydroxyurea (HU). In this case, the inability to restart stalled forks is likely to account for the lethality of rad53 mutant cells after replication blocks. Here we show that Rad53 regulates replication restart through the checkpoint-dependent transcriptional response, and more specifically, through RNR induction. Thus, in addition to preventing fork degradation, Rad53 prevents cell death in the presence of HU by regulating RNR-expression and localization. When RNR is induced in the absence of Exo1 and RNR negative regulators, cell viability of rad53 mutants treated with HU is increased and the ability of replication forks to restart after replicative stress is restored.
Collapse
Affiliation(s)
- Esther C. Morafraile
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain
| | - John F. X. Diffley
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Herts. EN6 3LD, United Kingdom
| | - José Antonio Tercero
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, 28049 Madrid, Spain
| | - Mónica Segurado
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Herts. EN6 3LD, United Kingdom
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
12
|
Aye Y, Li M, Long MJC, Weiss RS. Ribonucleotide reductase and cancer: biological mechanisms and targeted therapies. Oncogene 2014; 34:2011-21. [PMID: 24909171 DOI: 10.1038/onc.2014.155] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/25/2014] [Accepted: 04/26/2014] [Indexed: 12/16/2022]
Abstract
Accurate DNA replication and repair is essential for proper development, growth and tumor-free survival in all multicellular organisms. A key requirement for the maintenance of genomic integrity is the availability of adequate and balanced pools of deoxyribonucleoside triphosphates (dNTPs), the building blocks of DNA. Notably, dNTP pool alterations lead to genomic instability and have been linked to multiple human diseases, including mitochondrial disorders, susceptibility to viral infection and cancer. In this review, we discuss how a key regulator of dNTP biosynthesis in mammals, the enzyme ribonucleotide reductase (RNR), impacts cancer susceptibility and serves as a target for anti-cancer therapies. Because RNR-regulated dNTP production can influence DNA replication fidelity while also supporting genome-protecting DNA repair, RNR has complex and stage-specific roles in carcinogenesis. Nevertheless, cancer cells are dependent on RNR for de novo dNTP biosynthesis. Therefore, elevated RNR expression is a characteristic of many cancers, and an array of mechanistically distinct RNR inhibitors serve as effective agents for cancer treatment. The dNTP metabolism machinery, including RNR, has been exploited for therapeutic benefit for decades and remains an important target for cancer drug development.
Collapse
Affiliation(s)
- Y Aye
- 1] Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA [2] Department of Biochemistry, Weill Cornell Medical College, New York, NY, USA
| | - M Li
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - M J C Long
- Graduate Program in Biochemistry, Brandeis University, Waltham, MA, USA
| | - R S Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
13
|
The deoxynucleotide triphosphohydrolase SAMHD1 is a major regulator of DNA precursor pools in mammalian cells. Proc Natl Acad Sci U S A 2013; 110:14272-7. [PMID: 23858451 DOI: 10.1073/pnas.1312033110] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sterile alpha motif and HD-domain containing protein 1 (SAMHD1) is a triphosphohydrolase converting deoxynucleoside triphosphates (dNTPs) to deoxynucleosides. The enzyme was recently identified as a component of the human innate immune system that restricts HIV-1 infection by removing dNTPs required for viral DNA synthesis. SAMHD1 has deep evolutionary roots and is ubiquitous in human organs. Here we identify a general function of SAMHD1 in the regulation of dNTP pools in cultured human cells. The protein was nuclear and variably expressed during the cell cycle, maximally during quiescence and minimally during S-phase. Treatment of lung or skin fibroblasts with specific siRNAs resulted in the disappearence of SAMHD1 accompanied by loss of the cell-cycle regulation of dNTP pool sizes and dNTP imbalance. Cells accumulated in G1 phase with oversized pools and stopped growing. Following removal of the siRNA, the pools were normalized and cell growth restarted, but only after SAMHD1 had reappeared. In quiescent cultures SAMHD1 down-regulation leads to a marked expansion of dNTP pools. In all cases the largest effect was on dGTP, the preferred substrate of SAMHD1. Ribonucleotide reductase, responsible for the de novo synthesis of dNTPs, is a cytosolic enzyme maximally induced in S-phase cells. Thus, in mammalian cells the cell cycle regulation of the two main enzymes controlling dNTP pool sizes is adjusted to the requirements of DNA replication. Synthesis by the reductase peaks during S-phase, and catabolism by SAMHD1 is maximal during G1 phase when large dNTP pools would prevent cells from preparing for a new round of DNA replication.
Collapse
|
14
|
Frangini M, Franzolin E, Chemello F, Laveder P, Romualdi C, Bianchi V, Rampazzo C. Synthesis of mitochondrial DNA precursors during myogenesis, an analysis in purified C2C12 myotubes. J Biol Chem 2013; 288:5624-35. [PMID: 23297407 PMCID: PMC3581417 DOI: 10.1074/jbc.m112.441147] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
During myogenesis, myoblasts fuse into multinucleated myotubes that acquire the contractile fibrils and accessory structures typical of striated skeletal muscle fibers. To support the high energy requirements of muscle contraction, myogenesis entails an increase in mitochondrial (mt) mass with stimulation of mtDNA synthesis and consumption of DNA precursors (dNTPs). Myotubes are quiescent cells and as such down-regulate dNTP production despite a high demand for dNTPs. Although myogenesis has been studied extensively, changes in dNTP metabolism have not been examined specifically. In differentiating cultures of C2C12 myoblasts and purified myotubes, we analyzed expression and activities of enzymes of dNTP biosynthesis, dNTP pools, and the expansion of mtDNA. Myotubes exibited pronounced post-mitotic modifications of dNTP synthesis with a particularly marked down-regulation of de novo thymidylate synthesis. Expression profiling revealed the same pattern of enzyme down-regulation in adult murine muscles. The mtDNA increased steadily after myoblast fusion, turning over rapidly, as revealed after treatment with ethidium bromide. We individually down-regulated p53R2 ribonucleotide reductase, thymidine kinase 2, and deoxyguanosine kinase by siRNA transfection to examine how a further reduction of these synthetic enzymes impacted myotube development. Silencing of p53R2 had little effect, but silencing of either mt kinase caused 50% mtDNA depletion and an unexpected decrease of all four dNTP pools independently of the kinase specificity. We suggest that during development of myotubes the shortage of even a single dNTP may affect all four pools through dysregulation of ribonucleotide reduction and/or dissipation of the non-limiting dNTPs during unproductive elongation of new DNA chains.
Collapse
Affiliation(s)
- Miriam Frangini
- Department of Biology, University of Padova, 35131 Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Gammon DB, Gowrishankar B, Duraffour S, Andrei G, Upton C, Evans DH. Vaccinia virus-encoded ribonucleotide reductase subunits are differentially required for replication and pathogenesis. PLoS Pathog 2010; 6:e1000984. [PMID: 20628573 PMCID: PMC2900304 DOI: 10.1371/journal.ppat.1000984] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 06/03/2010] [Indexed: 11/19/2022] Open
Abstract
Ribonucleotide reductases (RRs) are evolutionarily-conserved enzymes that catalyze the rate-limiting step during dNTP synthesis in mammals. RR consists of both large (R1) and small (R2) subunits, which are both required for catalysis by the R12R22 heterotetrameric complex. Poxviruses also encode RR proteins, but while the Orthopoxviruses infecting humans [e.g. vaccinia (VACV), variola, cowpox, and monkeypox viruses] encode both R1 and R2 subunits, the vast majority of Chordopoxviruses encode only R2 subunits. Using plaque morphology, growth curve, and mouse model studies, we investigated the requirement of VACV R1 (I4) and R2 (F4) subunits for replication and pathogenesis using a panel of mutant viruses in which one or more viral RR genes had been inactivated. Surprisingly, VACV F4, but not I4, was required for efficient replication in culture and virulence in mice. The growth defects of VACV strains lacking F4 could be complemented by genes encoding other Chordopoxvirus R2 subunits, suggesting conservation of function between poxvirus R2 proteins. Expression of F4 proteins encoding a point mutation predicted to inactivate RR activity but still allow for interaction with R1 subunits, caused a dominant negative phenotype in growth experiments in the presence or absence of I4. Co-immunoprecipitation studies showed that F4 (as well as other Chordopoxvirus R2 subunits) form hybrid complexes with cellular R1 subunits. Mutant F4 proteins that are unable to interact with host R1 subunits failed to rescue the replication defect of strains lacking F4, suggesting that F4-host R1 complex formation is critical for VACV replication. Our results suggest that poxvirus R2 subunits form functional complexes with host R1 subunits to provide sufficient dNTPs for viral replication. Our results also suggest that R2-deficient poxviruses may be selective oncolytic agents and our bioinformatic analyses provide insights into how poxvirus nucleotide metabolism proteins may have influenced the base composition of these pathogens. Efficient genome replication is central to the virulence of all DNA viruses, including poxviruses. To ensure replication efficiency, many of the more virulent poxviruses encode their own nucleotide metabolism machinery, including ribonucleotide reductase (RR) enzymes, which act to provide ample DNA precursors for replication. RR enzymes require both large (R1) and small (R2) subunit proteins for activity. Curiously, some poxviruses only encode R2 subunits. Other poxviruses, such as the smallpox vaccine strain, vaccinia virus (VACV), encode both R1 and R2 subunits. We report here that the R2, but not the R1, subunit of VACV RR is required for efficient replication and virulence. We also provide evidence that several poxvirus R2 proteins form novel complexes with host R1 subunits and this interaction is required for efficient VACV replication in primate cells. Our study explains why some poxviruses only encode R2 subunits and identifies a role for these proteins in poxvirus pathogenesis. Furthermore, we provide evidence that mutant poxviruses unable to generate R2 proteins may become entirely dependent upon host RR activity. This may restrict their replication to cells that over-express RR proteins such as cancer cells, making them potential therapeutics for human malignancies.
Collapse
Affiliation(s)
- Don B. Gammon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Branawan Gowrishankar
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Sophie Duraffour
- Laboratory of Virology and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Graciela Andrei
- Laboratory of Virology and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Chris Upton
- Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - David H. Evans
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
16
|
Zhang YW, Jones TL, Martin SE, Caplen NJ, Pommier Y. Implication of checkpoint kinase-dependent up-regulation of ribonucleotide reductase R2 in DNA damage response. J Biol Chem 2009; 284:18085-95. [PMID: 19416980 DOI: 10.1074/jbc.m109.003020] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To investigate drug mechanisms of action and identify molecular targets for the development of rational drug combinations, we conducted synthetic small interfering RNA (siRNA)-based RNAi screens to identify genes whose silencing affects anti-cancer drug responses. Silencing of RRM1 and RRM2, which encode the large and small subunits of the human ribonucleotide reductase complex, respectively, markedly enhanced the cytotoxicity of the topoisomerase I inhibitor camptothecin (CPT). Silencing of RRM2 was also found to enhance DNA damage as measured by histone gamma-H2AX. Further studies showed that CPT up-regulates both RRM1 and RRM2 mRNA and protein levels and induces the nuclear translocation of RRM2. The checkpoint kinase 1 (Chk1) was up-regulated and activated in response to CPT, and CHEK1 down-regulation by siRNA and small molecule inhibitors of Chk1 blocked RRM2 induction by CPT. CHEK1 siRNA also suppressed E2F1 up-regulation by CPT, and silencing of E2F1 suppressed the up-regulation of RRM2. Silencing of ATR or ATM and inhibition of ATM activity by KU-55933 blocked Chk1 activation and RRM2 up-regulation. This study links the known components of CPT-induced DNA damage response with proteins required for the synthesis of dNTPs and DNA repair. Specifically, we propose that upon DNA damage, Chk1 activation, mediated by ATM and ATR, up-regulates RRM2 expression through the E2F1 transcription factor. Up-regulation in RRM2 expression levels coupled with its nuclear recruitment suggests an active role for ribonucleotide reductase in the cellular response to CPT-mediated DNA damage that could potentially be exploited as a strategy for enhancing the efficacy of topoisomerase I inhibitors.
Collapse
Affiliation(s)
- Yong-Wei Zhang
- Laboratory of Molecular Pharmacology, Genetics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
17
|
The Epstein-Barr virus (EBV) deubiquitinating enzyme BPLF1 reduces EBV ribonucleotide reductase activity. J Virol 2009; 83:4345-53. [PMID: 19244336 DOI: 10.1128/jvi.02195-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A newly discovered virally encoded deubiquitinating enzyme (DUB) is strictly conserved across the Herpesviridae. Epstein-Barr virus (EBV) BPLF1 encodes a tegument protein (3,149 amino acids) that exhibits deubiquitinating (DUB) activity that is lost upon mutation of the active-site cysteine. However, targets for the herpesviral DUBs have remained elusive. To investigate a predicted interaction between EBV BPLF1 and EBV ribonucleotide reductase (RR), a functional clone of the first 246 N-terminal amino acids of BPLF1 (BPLF1 1-246) was constructed. Immunoprecipitation verified an interaction between the small subunit of the viral RR2 and BPLF1 proteins. In addition, the large subunit (RR1) of the RR appeared to be ubiquitinated both in vivo and in vitro; however, ubiquitinated forms of the small subunit, RR2, were not detected. Ubiquitination of RR1 requires the expression of both subunits of the RR complex. Furthermore, coexpression of RR1 and RR2 with BPLF1 1-246 abolishes ubiquitination of RR1. EBV RR1, RR2, and BPLF1 1-246 colocalized to the cytoplasm in HEK 293T cells. Finally, expression of enzymatically active BPLF1 1-246 decreased RR activity, whereas a nonfunctional active-site mutant (BPLF1 C61S) had no effect. These results indicate that the EBV deubiquitinating enzyme interacts with, deubiquitinates, and influences the activity of the EBV RR. This is the first verified protein target of the EBV deubiquitinating enzyme.
Collapse
|
18
|
Nonaka M, Tsuchimoto D, Sakumi K, Nakabeppu Y. Mouse RS21-C6 is a mammalian 2'-deoxycytidine 5'-triphosphate pyrophosphohydrolase that prefers 5-iodocytosine. FEBS J 2009; 276:1654-66. [PMID: 19220460 DOI: 10.1111/j.1742-4658.2009.06898.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Free nucleotides in living cells play important roles in a variety of biological reactions, and often undergo chemical modifications of their base moieties. As modified nucleotides may have deleterious effects on cells, they must be eliminated from intracellular nucleotide pools. We have performed a screen for ITP-binding proteins because ITP is a deaminated product of ATP, the most abundant nucleotide, and identified RS21-C6 protein, which bound not only ITP but also ATP. Purified, recombinant RS21-C6 hydrolyzed several canonical nucleoside triphosphates to the corresponding nucleoside monophosphates. The pyrophosphohydrolase activity of RS21-C6 showed a preference for deoxynucleoside triphosphates and cytosine bases. The k(cat)/K(m) (s(-1) m(-1)) values were 3.11 x 10(4), 4.49 x 10(3) and 1.87 x 10(3) for dCTP, dATP and dTTP, respectively, and RS21-C6 did not hydrolyze dGTP. Of the base-modified nucleotides analyzed, 5-I-dCTP showed an eightfold higher k(cat)/K(m) value compared with that of its corresponding unmodified nucleotide, dCTP. RS21-C6 is expressed in both proliferating and non-proliferating cells, and is localized to the cytoplasm. These results show that RS21-C6 produces dCMP, an upstream precursor for the de novo synthesis of dTTP, by hydrolyzing canonical dCTP. Moreover, RS21-C6 may also prevent inappropriate DNA methylation, DNA replication blocking or mutagenesis by hydrolyzing modified dCTP.
Collapse
Affiliation(s)
- Mari Nonaka
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | | | | |
Collapse
|
19
|
Zahedi Avval F, Berndt C, Pramanik A, Holmgren A. Mechanism of inhibition of ribonucleotide reductase with motexafin gadolinium (MGd). Biochem Biophys Res Commun 2009; 379:775-9. [PMID: 19121624 DOI: 10.1016/j.bbrc.2008.12.128] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 12/20/2008] [Indexed: 12/21/2022]
Abstract
Motexafin gadolinium (MGd) is an expanded porphyrin anticancer agent which selectively targets tumor cells and works as a radiation enhancer, with promising results in clinical trials. Its mechanism of action is oxidation of intracellular reducing molecules and acting as a direct inhibitor of mammalian ribonucleotide reductase (RNR). This paper focuses on the mechanism of inhibition of RNR by MGd. Our experimental data present at least two pathways for inhibition of RNR; one precluding subunits oligomerization and the other direct inhibition of the large catalytic subunit of the enzyme. Co-localization of MGd and RNR in the cytoplasm particularly in the S-phase may account for its inhibitory properties. These data can elucidate an important effect of MGd on the cancer cells with overproduction of RNR and its efficacy as an anticancer agent and not only as a general radiosensitizer.
Collapse
Affiliation(s)
- Farnaz Zahedi Avval
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
20
|
Pontarin G, Fijolek A, Pizzo P, Ferraro P, Rampazzo C, Pozzan T, Thelander L, Reichard PA, Bianchi V. Ribonucleotide reduction is a cytosolic process in mammalian cells independently of DNA damage. Proc Natl Acad Sci U S A 2008; 105:17801-6. [PMID: 18997010 PMCID: PMC2584719 DOI: 10.1073/pnas.0808198105] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Indexed: 01/14/2023] Open
Abstract
Ribonucleotide reductase provides deoxynucleotides for nuclear and mitochondrial (mt) DNA replication and repair. The mammalian enzyme consists of a catalytic (R1) and a radical-generating (R2 or p53R2) subunit. During S-phase, a R1/R2 complex is the major provider of deoxynucleotides. p53R2 is induced by p53 after DNA damage and was proposed to supply deoxynucleotides for DNA repair after translocating from the cytosol to the cell nucleus. Similarly R1 and R2 were claimed to move to the nucleus during S-phase to provide deoxynucleotides for DNA replication. These models suggest translocation of ribonucleotide reductase subunits as a regulatory mechanism. In quiescent cells that are devoid of R2, R1/p53R2 synthesizes deoxynucleotides also in the absence of DNA damage. Mutations in human p53R2 cause severe mitochondrial DNA depletion demonstrating a vital function for p53R2 different from DNA repair and cast doubt on a nuclear localization of the protein. Here we use three independent methods to localize R1, R2, and p53R2 in fibroblasts during cell proliferation and after DNA damage: Western blotting after separation of cytosol and nuclei; immunofluorescence in intact cells; and transfection with proteins carrying fluorescent tags. We thoroughly validate each method, especially the specificity of antibodies. We find in all cases that ribonucleotide reductase resides in the cytosol suggesting that the deoxynucleotides produced by the enzyme diffuse into the nucleus or are transported into mitochondria and supporting a primary function of p53R2 for mitochondrial DNA replication.
Collapse
Affiliation(s)
| | - Artur Fijolek
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | | | | | | | - Tullio Pozzan
- Department of Biomedical Sciences and
- CNR Institute of Neurosciences, University of Padova, 35131 Padova, Italy; and
| | - Lars Thelander
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | | | | |
Collapse
|
21
|
Xu X, Page JL, Surtees JA, Liu H, Lagedrost S, Lu Y, Bronson R, Alani E, Nikitin AY, Weiss RS. Broad overexpression of ribonucleotide reductase genes in mice specifically induces lung neoplasms. Cancer Res 2008; 68:2652-60. [PMID: 18413732 PMCID: PMC2459241 DOI: 10.1158/0008-5472.can-07-5873] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ribonucleotide reductase (RNR) catalyzes the rate-limiting step in nucleotide biosynthesis and plays a central role in genome maintenance. Although a number of regulatory mechanisms govern RNR activity, the physiologic effect of RNR deregulation had not previously been examined in an animal model. We show here that overexpression of the small RNR subunit potently and selectively induces lung neoplasms in transgenic mice and is mutagenic in cultured cells. Combining RNR deregulation with defects in DNA mismatch repair, the cellular mutation correction system, synergistically increased RNR-induced mutagenesis and carcinogenesis. Moreover, the proto-oncogene K-ras was identified as a frequent mutational target in RNR-induced lung neoplasms. Together, these results show that RNR deregulation promotes lung carcinogenesis through a mutagenic mechanism and establish a new oncogenic activity for a key regulator of nucleotide metabolism. Importantly, RNR-induced lung neoplasms histopathologically resemble human papillary adenocarcinomas and arise stochastically via a mutagenic mechanism, making RNR transgenic mice a valuable model for lung cancer.
Collapse
Affiliation(s)
- Xia Xu
- Department of Biomedical Sciences, Cornell University, Ithaca, NY
| | - Jennifer L. Page
- Department of Biomedical Sciences, Cornell University, Ithaca, NY
| | - Jennifer A. Surtees
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
| | - Houchun Liu
- Department of Biomedical Sciences, Cornell University, Ithaca, NY
| | - Sarah Lagedrost
- Department of Biomedical Sciences, Cornell University, Ithaca, NY
| | - Young Lu
- Department of Biomedical Sciences, Cornell University, Ithaca, NY
| | | | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
| | | | - Robert S. Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, NY
| |
Collapse
|
22
|
|
23
|
Abstract
Replication of nuclear DNA in eukaryotes presents a tremendous challenge, not only due to the size and complexity of the genome, but also because of the time constraint imposed by a limited duration of S phase during which the entire genome has to be duplicated accurately and only once per cell division cycle. A challenge of this magnitude can only be met by the close coupling of DNA precursor synthesis to replication. Prokaryotic systems provide evidence for multienzyme and multiprotein complexes involved in DNA precursor synthesis and DNA replication. In addition, fractionation of nuclear proteins from proliferating mammalian cells shows co-sedimentation of enzymes involved in DNA replication with those required for synthesis of deoxynucleoside triphosphates (dNTPs). Such complexes can be isolated only from cells that are in S phase, but not from cells in G(0)/G(1) phases of cell cycle. The kinetics of deoxynucleotide metabolism supporting DNA replication in intact and permeabilized cells reveals close coupling and allosteric interaction between the enzymes of dNTP synthesis and DNA replication. These interactions contribute to channeling and compartmentation of deoxynucleotides in the microvicinity of DNA replication. A multienzyme and multiprotein megacomplex with these unique properties is called "replitase." In this article, we summarize some of the relevant evidence to date that supports the concept of replitase in mammalian cells, which originated from the observations in Dr. Pardee's laboratory. In addition, we show that androgen receptor (AR), which plays a critical role in proliferation and viability of prostate cancer cells, is associated with replitase, and that identification of constituents of replitase in androgen-dependent versus androgen-independent prostate cancer cells may provide insights into androgen-regulated events that control proliferation of prostate cancer cells and potentially offer an effective strategy for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Shalini Murthy
- Vattikuti Urology Institute, Henry Ford Health System, One Ford Place 2D, Detroit, MI 48202, USA
| | | |
Collapse
|
24
|
Håkansson P, Hofer A, Thelander L. Regulation of mammalian ribonucleotide reduction and dNTP pools after DNA damage and in resting cells. J Biol Chem 2006; 281:7834-41. [PMID: 16436374 DOI: 10.1074/jbc.m512894200] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Ribonucleotide reductase (RNR) provides the cell with a balanced supply of deoxyribonucleoside triphosphates (dNTP) for DNA synthesis. In budding yeast DNA damage leads to an up-regulation of RNR activity and an increase in dNTP pools, which are essential for survival. Mammalian cells contain three non-identical subunits of RNR; that is, one homodimeric large subunit, R1, carrying the catalytic site and two variants of the homodimeric small subunit, R2 and the p53-inducible p53R2, each containing a tyrosyl free radical essential for catalysis. S-phase-specific DNA replication is supported by an RNR consisting of the R1 and R2 subunits. In contrast, DNA damage induces expression of the R1 and the p53R2 subunits. We now show that neither logarithmically growing nor G(o)/G1-synchronized mammalian cells show any major increase in their dNTP pools after DNA damage. However, non-dividing fibroblasts expressing the p53R2 protein, but not the R2 protein, have reduced dNTP levels if exposed to the RNR-specific inhibitor hydroxyurea, strongly indicating that there is ribonucleotide reduction in resting cells. The slow, 4-fold increase in p53R2 protein expression after DNA damage results in a less than 2-fold increase in the dNTP pools in G(o)/G1 cells, where the pools are about 5% that of the size of the pools in S-phase cells. Our results emphasize the importance of the low constitutive levels of p53R2 in mammalian cells, which together with low levels of R1 protein may be essential for the supply of dNTPs for basal levels of DNA repair and mitochondrial DNA synthesis in G(o)/G1 cells.
Collapse
Affiliation(s)
- Pelle Håkansson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187-Umeå, Sweden.
| | | | | |
Collapse
|
25
|
Håkansson P, Dahl L, Chilkova O, Domkin V, Thelander L. The Schizosaccharomyces pombe replication inhibitor Spd1 regulates ribonucleotide reductase activity and dNTPs by binding to the large Cdc22 subunit. J Biol Chem 2005; 281:1778-83. [PMID: 16317005 DOI: 10.1074/jbc.m511716200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ribonucleotide reductase (RNR) is an essential enzyme that provides the cell with a balanced supply of deoxyribonucleoside triphosphates for DNA replication and repair. Mutations that affect the regulation of RNR in yeast and mammalian cells can lead to genetic abnormalities and cell death. We have expressed and purified the components of the RNR system in fission yeast, the large subunit Cdc22p, the small subunit Suc22p, and the replication inhibitor Spd1p. It was proposed (Liu, C., Powell, K. A., Mundt, K., Wu, L., Carr, A. M., and Caspari, T. (2003) Genes Dev. 17, 1130-1140) that Spd1 is an RNR inhibitor, acting by anchoring the Suc22p inside the nucleus during G1 phase. Using in vitro assays with highly purified proteins we have demonstrated that Spd1 indeed is a very efficient inhibitor of fission yeast RNR, but acting on Cdc22p. Furthermore, biosensor technique showed that Spd1p binds to the Cdc22p with a KD of 2.4 microM, whereas the affinity to Suc22p is negligible. Therefore, Spd1p inhibits fission yeast RNR activity by interacting with the Cdc22p. Similar to the situation in budding yeast, logarithmically growing fission yeast increases the dNTP pools 2-fold after 3 h of incubation in the UV mimetic 4-nitroquinoline-N-oxide. This increase is smaller than the increase observed in budding yeast but of the same order as the dNTP pool increase when synchronous Schizosaccharomyces pombe cdc10 cells are going from G1 to S-phase.
Collapse
Affiliation(s)
- Pelle Håkansson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | | | | | |
Collapse
|
26
|
Liu X, Zhou B, Xue L, Shih J, Tye K, Qi C, Yen Y. The ribonucleotide reductase subunit M2B subcellular localization and functional importance for DNA replication in physiological growth of KB cells. Biochem Pharmacol 2005; 70:1288-97. [PMID: 16168962 DOI: 10.1016/j.bcp.2005.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 08/05/2005] [Accepted: 08/10/2005] [Indexed: 01/19/2023]
Abstract
Ribonucleoside diphosphate reductase (EC 1.17.4.1) (RR) is a potential target for antineoplastic agents due to its crucial role in DNA replication and repair. The expression and activity of RR subunits are highly regulated to maintain an optimal dNTP pool, which is required to maintain genetic fidelity. The human RR small subunit M2B (p53R2) is thought to contribute to DNA repair in response to DNA damage. However, it is not clear whether M2B is involved in providing dNTPs for DNA replication under physiological growth conditions. Serum starvation synchronized studies showed that a rapid increase of M2B was associated with cyclin E, which is responsible for regulation of G(1)/S-phase transition. A living cell sorting study that used KB cells in normal growth, further confirmed that M2B increased to maximum levels at the G(1)/S-phase transition, and decreased with DNA synthesis. Confocal studies revealed that M2B redistributed from the cytoplasm to the nucleus earlier than hRRM2 in response to DNA replication. Nuclear accumulation of M2B is associated with dynamic changes in dNTP at early periods of serum addition. By using M2B-shRNA expression vectors, inhibition of M2B may result in growth retardation in KB cells. We conclude that M2B may translocate from the cytoplasm into the nucleus and allow dNTPs to initiate DNA synthesis in KB cells under physiological conditions. Thus, our findings suggested that M2B might play an important role for initiating DNA replication of KB cells in normal growth.
Collapse
Affiliation(s)
- Xiyong Liu
- Department of Medical Oncology and Therapeutic Research, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010-3000, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Woldman I, Reither H, Kattinger A, Hornykiewicz O, Pifl C. Dopamine inhibits cell growth and cell cycle by blocking ribonucleotide reductase. Neuropharmacology 2005; 48:525-37. [PMID: 15755480 DOI: 10.1016/j.neuropharm.2004.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 10/15/2004] [Accepted: 11/27/2004] [Indexed: 01/08/2023]
Abstract
Dopamine (DA) is a classical neurotransmitter modulating various brain functions by acting on its specific receptors. In addition, DA is a reactive molecule that has been implicated in neurodegeneration, especially in Parkinson's disease. Here we show that DA inhibited cell growth of dopamine transporter transfected cells by intracellularly blocking cell cycle progression. To pinpoint the site of this effect, we measured DNA distribution and 5-bromo-2'-deoxyuridine (BrdU) incorporation, as well as the levels of the key cell cycle proteins. DA increased number of cells with a G1 DNA content, decreased BrdU incorporation and simultaneously increased cyclin A but had no effect on cyclin D2, D3, E, nor on cdk4 and p21. These results narrowed down the DA effect to the beginning of S phase, suggesting inhibition of the ribonucleotide reductase, an enzyme essential for DNA synthesis. Indeed, measurement of enzyme activity in situ revealed that DA, within 1h of addition to cells labelled with [3H]cytidine, strongly reduced the cell content of [3H]2'-deoxycytidine 5'-triphophate. The time course of this DA effect preceded the cell cycle progression. This novel molecular mechanism of intracellular DA action independent of plasmamembrane receptors may be involved in processes controlling the development and survival of brain dopaminergic neurons.
Collapse
Affiliation(s)
- Irina Woldman
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
28
|
Chang SC, Kuzmenok O, Chiang SC, Lee ST. An improved method for detection of Leishmania amastigotes by an antibody probe against the small subunit of leishmanial ribonucleotide reductase. Parasitol Res 2004; 94:243-5. [PMID: 15338282 DOI: 10.1007/s00436-004-1184-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Accepted: 07/08/2004] [Indexed: 11/24/2022]
Abstract
By taking advantage of an antibody raised against the small M2 subunit of ribonucleotide reductase of Leishmania that reacts with the enzyme in the nucleus of the parasite but does not cross-react with the same enzyme of the host macrophage, an improved fluorescence-staining method is developed for enumeration of leishmanial amastigotes inside the macrophage. The method offers an accurate and easy way of counting, compared with Giemsa staining.
Collapse
Affiliation(s)
- Shu-Ching Chang
- Division of infectious diseases, Institute of Biomedical Sciences, Academia Sinica, 11529, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
29
|
Zhu H, Wang ZY, Hansson HA. Visualization of proliferating cells in the adult mammalian brain with the aid of ribonucleotide reductase. Brain Res 2003; 977:180-9. [PMID: 12834878 DOI: 10.1016/s0006-8993(03)02627-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proliferating cells are hardly detectable in the adult mammalian brain by microscopy of stained sections, but after pre-labeling with radioactive thymidine or 5'-bromo-2-deoxyuridine (BrdU), either marks the nucleus, as do mitosis-related proteins such as Ki67 and PCNA. Engineered virus may also be used to mark proliferating cells. One alternative approach is to use the enzyme ribonucleotide reductase (RNR), expressed by proliferating cells, but not by quiescent ones. A monoclonal antibody against the M1 subunit of RNR was used to visualize proliferating cells in the brains of adult normal rats, rabbits, pigs and sheep. Stem cells were distinctly outlined. In the subgranular layer in the hippocampal dentate gyrus, most RNR immunoreactive cells were bipolar to multipolar, and had a large cell body and long processes. Two different populations of RNR expressing cells were visualized in the subventricular zone in the forebrain, one dominated by small, bipolar cells extending into the rostral migratory stream, while the other was formed by large multipolar cells, adjacent to the ependyma, with processes extending to the lateral ventricle. Furthermore, rare RNR-expressing cells were recognized throughout the brain. The RNR immunoreactive cells were immature, as they did not express any marker characterizing differentiated neurons and glial cells, except for a fraction that co-expressed the gliofibrillary acidic protein. BrdU and RNR were co-localized in proliferating cells in animals pretreated with BrdU. We conclude that RNR immunohistochemistry can accurately visualize proliferating cells, including stem cells, in adult mammalian brains. The occurrence of processes at cell proliferation is elucidated. Further, the advocated approach does not require any pre-labeling, and can be carried out on fixed tissues.
Collapse
Affiliation(s)
- Hong Zhu
- Institute of Anatomy and Cell Biology, Göteborg University, P.O. Box 420, SE 40530 Gothenburg, Sweden
| | | | | |
Collapse
|
30
|
Kashlan OB, Cooperman BS. Comprehensive model for allosteric regulation of mammalian ribonucleotide reductase: refinements and consequences. Biochemistry 2003; 42:1696-706. [PMID: 12578384 DOI: 10.1021/bi020634d] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reduction of NDPs by murine ribonucleotide reductase (mRR) requires catalytic (mR1) and free radical-containing (mR2) subunits and is regulated by nucleoside triphosphate allosteric effectors. Here we present the results of several studies that refine the recently presented comprehensive model for the allosteric control of mRR enzymatic activity [Kashlan, O. B., et al. (2002) Biochemistry 41, 462-474], in which nucleotide binding to the specificity site (s-site) drives formation of an active R1(2)R2(2) dimer, ATP or dATP binding to the adenine site (a-site) drives formation of a tetramer, mR1(4a), which isomerizes to an inactive form, mR1(4b), and ATP binding to the hexamerization site (h-site) drives formation of an active R1(6)R2(6) hexamer. Analysis of the a-site D57N variant of mR1, which differs from wild-type mR1 (wt-mR1) in that its RR activity is activated by both ATP and dATP, demonstrates that dATP activation of the D57N variant RR arises from a blockage in the formation of mR1(4b) from mR1(4a), and provides strong evidence that mR1(4a) forms active complexes with mR2(2). We further demonstrate that (a) differences in the effects of ATP versus dATP binding to the a-site of wt-mR1 provide specific mechanisms by which the dATP/ATP ratio in mammalian cells could modulate in vivo RR enzymatic activity, (b) the comprehensive model is valid over a range of Mg(2+) concentrations that include in vivo concentrations, and (c) equilibrium constants derived for the comprehensive model can be used to simulate the distribution of R1 among dimer, tetramer, and hexamer forms in vivo. Such simulations indicate that mR1(6) predominates over mR1(2) in the cytoplasm of normal mammalian cells, where the great majority of RR activity is located, but that mR1(2) may be important for nuclear RR activity and for RR activity in cells in which the level of ATP is depleted.
Collapse
Affiliation(s)
- Ossama B Kashlan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | | |
Collapse
|
31
|
Lin ST, Chang YS, Wang HC, Tzeng HF, Chang ZF, Lin JY, Wang CH, Lo CF, Kou GH. Ribonucleotide reductase of shrimp white spot syndrome virus (WSSV): expression and enzymatic activity in a baculovirus/insect cell system and WSSV-infected shrimp. Virology 2002; 304:282-90. [PMID: 12504569 DOI: 10.1006/viro.2002.1696] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Infection of shrimp cells with white spot syndrome virus (WSSV) results in an increase in ribonucleotide reductase (RR) expression at the RNA level. In this article we further express and characterize the induction of a novel ribonucleotide reductase after WSSV infection of shrimp cells. A baculovirus/insect system was used to express the two recombinant protein subunits RR1 and RR2, and a DNA polymerase coupled RR activity assay showed a marked increase in ribonucleotide reductase activity when cell extracts containing recombinant RR1 and RR2 were combined. The same assay revealed that RR activity increased as infection advanced in the gills of experimentally infected shrimp. An increase in RR expression was also detected at the protein level in WSSV-infected shrimp cells. An immunocytochemistry assay by confocal laser scanning microscopy showed that in hemocytes collected from WSSV-infected shrimp, both of the subunit proteins (RR1 and RR2) were concentrated mainly around the nucleus, but only RR1 was detected inside it. All of these results suggest that WSSV RR is functionally involved during WSSV infection.
Collapse
Affiliation(s)
- Shinn-Tsuen Lin
- Department of Zoology, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Dolce V, Fiermonte G, Runswick MJ, Palmieri F, Walker JE. The human mitochondrial deoxynucleotide carrier and its role in the toxicity of nucleoside antivirals. Proc Natl Acad Sci U S A 2001; 98:2284-8. [PMID: 11226231 PMCID: PMC30130 DOI: 10.1073/pnas.031430998] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The synthesis of DNA in mitochondria requires the uptake of deoxynucleotides into the matrix of the organelle. We have characterized a human cDNA encoding a member of the family of mitochondrial carriers. The protein has been overexpressed in bacteria and reconstituted into phospholipid vesicles where it catalyzed the transport of all four deoxy (d) NDPs, and, less efficiently, the corresponding dNTPs, in exchange for dNDPs, ADP, or ATP. It did not transport dNMPs, NMPs, deoxynucleosides, nucleosides, purines, or pyrimidines. The physiological role of this deoxynucleotide carrier is probably to supply deoxynucleotides to the mitochondrial matrix for conversion to triphosphates and incorporation into mitochondrial DNA. The protein is expressed in all human tissues that were examined except for placenta, in accord with such a central role. The deoxynucleotide carrier also transports dideoxynucleotides efficiently. It is likely to be medically important by providing the means of uptake into mitochondria of nucleoside analogs, leading to the mitochondrial impairment that underlies the toxic side effects of such drugs in the treatment of viral illnesses, including AIDS, and in cancer therapy.
Collapse
Affiliation(s)
- V Dolce
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | | | | | | | | |
Collapse
|
33
|
Masson P, Andersson O, Petersen UM, Young P. Identification and characterization of a Drosophila nuclear proteasome regulator. A homolog of human 11 S REGgamma (PA28gamma ). J Biol Chem 2001; 276:1383-90. [PMID: 11027688 DOI: 10.1074/jbc.m007379200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the cloning and characterization of a Drosophila proteasome 11 S REGgamma (PA28) homolog. The 28-kDa protein shows 47% identity to the human REGgamma and strongly enhances the trypsin-like activities of both Drosophila and mammalian 20 S proteasomes. Surprisingly, the Drosophila REG was found to inhibit the proteasome's chymotrypsin-like activity against the fluorogenic peptide succinyl-LLVY-7-amino-4-methylcoumarin. Immunocytological analysis reveals that the Drosophila REG is localized to the nucleus but is distributed throughout the cell when nuclear envelope breakdown occurs during mitosis. Through site-directed mutagenesis studies, we have identified a functional nuclear localization signal present in the homolog-specific insert region. The Drosophila PA28 NLS is similar to the oncogene c-Myc nuclear localization motif. Comparison between uninduced and innate immune induced Drosophila cells suggests that the REGgamma proteasome activator has a role independent of the invertebrate immune system. Our results support the idea that gamma class proteasome activators have an ancient conserved function within metazoans and were present prior to the emergence of the alpha and beta REG classes.
Collapse
Affiliation(s)
- P Masson
- Department of Molecular Biology, Stockholm University, S-10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
34
|
Sviatoha V, Tani E, Rassidakis G, Tribukait B, Kleina R, Skoog L. Analysis of proliferating cell fraction determined by monoclonal antibody to M1-subunit ribonucleotide reductase and Ki-67 in relation to p53 protein expression in fine-needle aspirates from non-Hodgkin's lymphomas. Cytopathology 2000; 11:290-301. [PMID: 11014656 DOI: 10.1046/j.1365-2303.2000.00234.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The purpose of this study was to analyse the proliferative fraction with the monoclonal antibody M1-R-R to M1-subunit ribonucleotide reductase and with MIB-1 to Ki-67 antigen in relation to p53 protein expression in fine needle aspirates from B-cell non-Hodgkin's lymphomas. One hundred and thirty-seven cases, previously diagnosed and sub-typed according to the Kiel classification and characterized by immunophenotyping, were included in the study. The M-1 subunit ribonucleotide reductase (M1-R-R), Ki-67 and p53 antigens were detected using monoclonal antibodies on stored cytospin preparations. There was a good correlation (r = 0.72) between Ki-67 and M1-R-R positive cell fraction in both high and low grade lymphomas. High-grade lymphomas had a median percentage of M1-R-R/MIB-1 positive cells of 53.0/73.0 for lymphoblastic, 61.0/52.0 for immunoblastic and 33.5/41.0 for centroblastic lymphomas, respectively. In low grade lymphomas figures of median percentage of M1-R-R/MIB-1 were 9.0/15.0 for centroblastic/centrocytic, 11.0/9.5 for chronic lymphocytic leukaemia, 16.0/27.0 for centrocytic and 12.0/9.0 for immunocytomas, respectively. The median percentages of M1-R-R/MIB-1 for high and low grade lymphomas were 37.0/50.5 and 11.0/12.0, respectively. In the p53 positive cases the proliferation rate as measured by staining for M1-R-R and MIB-1 was higher than in p53 negative cases, but the difference was not statistically significant. The results show that cytospin material obtained by fine needle aspiration and stored at -70 degrees C for years can be used reliably for both peroxidase-avidin-biotin and three-step alkaline phosphatase immunocytochemical staining. In addition, proliferation fraction determined by M1-R-R monoclonal antibody staining correlates well with that measured by an established marker for cell proliferation, the Ki-67 antibody. However, the proliferation fraction as measured by the two antibodies differs in the various subtypes of non-Hodgkin's lymphoma which indicates that they may contribute different prognostic information.
Collapse
Affiliation(s)
- V Sviatoha
- Department of General Pathology, Latvian Centre of Pathology, Latvian, Medical Academy, Riga
| | | | | | | | | | | |
Collapse
|
35
|
Chabes A, Thelander L. Controlled protein degradation regulates ribonucleotide reductase activity in proliferating mammalian cells during the normal cell cycle and in response to DNA damage and replication blocks. J Biol Chem 2000; 275:17747-53. [PMID: 10747958 DOI: 10.1074/jbc.m000799200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ribonucleotide reductase (RNR) plays a central role in the formation and control of the optimal levels of deoxyribonucleoside triphosphates, which are required for DNA replication and DNA repair processes. Mammalian RNRs are composed of two nonidentical subunits, proteins R1 and R2. The levels of the limiting R2 protein control overall RNR activity during the mammalian cell cycle, being undetectable in G(1) phase and increasing in S phase. We show that in proliferating mammalian cells, the transcription of the R2 gene, once activated in the beginning of S phase, reaches its maximum 6-7 h later and then declines. Surprisingly, DNA damage and replication blocks neither increase nor prolong the R2 promoter activity in S phase. Instead, the cell cycle activity of the mammalian enzyme is controlled by an S phase/DNA damage-specific stabilization of the R2 protein, which is effective until cells pass into mitosis.
Collapse
Affiliation(s)
- A Chabes
- Department of Medical Biosciences, Medical Biochemistry, Umeå University, SE-901 87 Umeå, Sweden.
| | | |
Collapse
|
36
|
Tanaka H, Arakawa H, Yamaguchi T, Shiraishi K, Fukuda S, Matsui K, Takei Y, Nakamura Y. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature 2000; 404:42-9. [PMID: 10716435 DOI: 10.1038/35003506] [Citation(s) in RCA: 665] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The p53 gene is frequently inactivated in human cancers. Here we have isolated a p53-inducible gene, p53R2, by using differential display to examine messenger RNAs in a cancer-derived human cell line carrying a highly regulated wild-type p53 expression system. p53R2 contains a p53-binding sequence in intron 1 and encodes a 351-amino-acid peptide with striking similarity to the ribonucleotide reductase small subunit (R2), which is important in DNA synthesis during cell division. Expression of p53R2, but not R2, was induced by ultraviolet and gamma-irradiation and adriamycin treatment in a wild-type p53-dependent manner. Induction of p53R2 in p53-deficient cells caused G2/M arrest and prevented cells from death in response to adriamycin. Inhibition of endogenous p53R2 expression in cells that have an intact p53-dependent DNA damage checkpoint reduced ribonucleotide reductase activity, DNA repair and cell survival after exposure to various genotoxins. Our results indicate that p53R2 encodes a ribonucleotide reductase that is directly involved in the p53 checkpoint for repair of damaged DNA. The discovery of p53R2 clarifies a relationship between a ribonucleotide reductase activity involved in repair of damaged DNA and tumour suppression by p53.
Collapse
Affiliation(s)
- H Tanaka
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Lye LF, Chiang SC, Hsu JY, Lee ST. Expression and cellular localization of ribonucleotide reductase small subunit M2 protein in hydroxyurea-resistant Leishmania mexicana amazonensis. Mol Biochem Parasitol 1999; 102:263-71. [PMID: 10498182 DOI: 10.1016/s0166-6851(99)00099-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We raised a specific antiserum against the recombinant M2 subunit protein of ribonucleotide reductase of Leishmania mexicana amazonensis in rabbit. This antiserum was used to study the expression and cellular location of the M2 protein in wildtype as well as hydroxyurea-resistant variants (HuR) of the parasite. The protein increased with increasing dose of the drug used for selection of resistance. The increase in protein level was accompanied by an increase in the copy numbers of mRNA of the M2 gene in the variants. In contrast to mammalian cells, the M2 protein of Leishmania is located in the nucleus rather than in the cytoplasm. The number of cells expressing M2 protein is also different in mammalian cells versus Leishmania. In mammalian cells, expression of M2 protein is a strictly S-phase-correlated event and in exponentially growing cells only approximately 50% of the cells are in S-phase and only these cells synthesize M2 protein. In L. m. amazonensis, however, almost all exponentially growing cells are positive for M2 protein. This makes it unlikely that M2 protein expression in Leishmania is S-phase dependent. In view of these findings, a fresh look in the future into the regulatory mechanisms of synthesis and the site of action of RNR in L. m. amazonensis is warranted.
Collapse
Affiliation(s)
- L F Lye
- Division of Infectious Diseases, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
38
|
Hatzis P, Al-Madhoon AS, Jüllig M, Petrakis TG, Eriksson S, Talianidis I. The intracellular localization of deoxycytidine kinase. J Biol Chem 1998; 273:30239-30243. [PMID: 9804782 DOI: 10.1074/jbc.273.46.30239] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deoxycytidine kinase (dCK) catalyzes the rate-limiting step of the deoxynucleoside salvage pathway in mammalian cells and plays a key role in the activation of several pharmacologically important nucleoside analogs. Using a highly specific polyclonal antibody raised against a C-terminal peptide of the human dCK, we analyzed its subcellular localization by Western blots of biochemically fractionated nuclear and cytoplasmic fractions as well as by in situ immunochemistry. Native dCK was found to be located mainly in the cytoplasm in several cell types, and the enzyme was more concentrated in the perinuclear and cellular membrane area. In contrast, when dCK was overexpressed in the cells, it was mainly located in the nucleus. The results demonstrate that native dCK is a cytoplasmic enzyme. However, it has the ability to enter the nucleus under certain conditions, suggesting the existence of a cytoplasmic retention mechanism that may have an important function in the regulation of the deoxynucleoside salvage pathway.
Collapse
Affiliation(s)
- P Hatzis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 711 10 Herakleion, Crete, Greece
| | | | | | | | | | | |
Collapse
|
39
|
Fan H, Villegas C, Chan AK, Wright JA. Myc-epitope tagged proteins detected with the 9E10 antibody in immunofluorescence and immunoprecipitation assays but not in Western blot analysis. Biochem Cell Biol 1998. [DOI: 10.1139/o98-003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A human Myc epitope is frequently used to tag proteins for expression experiments in nonhuman cells. We used the monoclonal 9E10 antibody specific for this epitope to analyse the expression of four proteins carrying the Myc tag in cells transfected with expression vectors. While all four proteins can be detected by immunofluorescence and immunoprecipitation assays, surprisingly, only two proteins could be detected in Western blot analysis, indicating that epitope recognition by the monoclonal antibody can be blocked in some membrane-retained ectopic proteins. Other techniques such as immunofluorescence and immunoprecipitation assays can be successfully used with the 9E10 antibody to determine potential expression of Myc-tagged proteins.Key words: recombinant protein, Myc epitope, 9E10, Western blot, gene expression, immunofluorescence assay, immunoprecipitation.
Collapse
|
40
|
Johansson M, Brismar S, Karlsson A. Human deoxycytidine kinase is located in the cell nucleus. Proc Natl Acad Sci U S A 1997; 94:11941-5. [PMID: 9342341 PMCID: PMC23663 DOI: 10.1073/pnas.94.22.11941] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human deoxyribonucleoside kinases are required for the pharmacological activity of several clinically important anticancer and antiviral nucleoside analogs. Human deoxycytidine kinase and thymidine kinase 1 are described as cytosolic enzymes in the literature, whereas human deoxyguanosine kinase and thymidine kinase 2 are believed to be located in the mitochondria. We expressed the four human deoxyribonucleoside kinases as fusion proteins with the green fluorescent protein to study their intracellular locations in vivo. Our data showed that the human deoxycytidine kinase is located in the cell nucleus and the human deoxyguanosine kinase is located in the mitochondria. The fusion proteins between green fluorescent protein and thymidine kinases 1 and 2 were both predominantly located in the cytosol. Site-directed mutagenesis of a putative nuclear targeting signal, identified in the primary structure of deoxycytidine kinase, completely abolished nuclear import of the protein. Reconstitution of a deoxycytidine kinase-deficient cell line with the wild-type nuclear or the mutant cytosolic enzymes both restored sensitivity toward anticancer nucleoside analogs. This paper reports that a deoxyribonucleoside kinase is located in the cell nucleus and we discuss the implications for deoxyribonucleotide synthesis and phosphorylation of nucleoside analogs.
Collapse
Affiliation(s)
- M Johansson
- Medical Nobel Institute, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
41
|
|
42
|
Muller E. Deoxyribonucleotides are maintained at normal levels in a yeast thioredoxin mutant defective in DNA synthesis. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)51107-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
43
|
Lepoivre M, Flaman J, Bobé P, Lemaire G, Henry Y. Quenching of the tyrosyl free radical of ribonucleotide reductase by nitric oxide. Relationship to cytostasis induced in tumor cells by cytotoxic macrophages. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31886-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Sun L, Jacobson BA, Dien BS, Srienc F, Fuchs JA. Cell cycle regulation of the Escherichia coli nrd operon: requirement for a cis-acting upstream AT-rich sequence. J Bacteriol 1994; 176:2415-26. [PMID: 8157611 PMCID: PMC205367 DOI: 10.1128/jb.176.8.2415-2426.1994] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The expression of the nrd operon encoding ribonucleotide reductase in Escherichia coli has been shown to be cell cycle regulated. To identify the cis-acting elements required for the cell cycle regulation of the nrd promoter, different 5' deletions as well as site-directed mutations were translationally fused to a lacZ reporter gene. The expression of beta-galactosidase from these nrd-lacZ fusions in single-copy plasmids was determined with synchronously growing cultures obtained by repeated phosphate starvation as well as with exponentially growing cultures by flow cytometry analysis. Although Fis and DnaA, two regulatory proteins that bind at multiple sites on the E. coli chromosome, have been found to regulate the nrd promoter, the results in this study demonstrated that neither Fis nor DnaA was required for nrd cell cycle regulation. A cis-acting upstream AT-rich sequence was found to be required for the cell cycle regulation. This sequence could be replaced by a different sequence that maintained the AT richness. A flow cytometry analysis that combined specific immunofluorescent staining of beta-galactosidase with a DNA-specific stain was developed and employed to study the nrd promoter activity in cells at specific cell cycle positions. The results of the flow cytometry analysis confirmed the results obtained from studies with synchronized cells.
Collapse
Affiliation(s)
- L Sun
- Department of Biochemistry, University of Minnesota, St. Paul 55108
| | | | | | | | | |
Collapse
|
45
|
Thymidylate synthase is localized to the nuclear periphery in the yeast Saccharomyces cerevisiae. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37199-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
46
|
Slabaugh M, Davis R, Roseman N, Mathews C. Vaccinia virus ribonucleotide reductase expression and isolation of the recombinant large subunit. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(17)46776-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
47
|
Howell M, Roseman N, Slabaugh M, Mathews C. Vaccinia virus ribonucleotide reductase. Correlation between deoxyribonucleotide supply and demand. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53159-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Mathews CK. Enzyme organization in DNA precursor biosynthesis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1993; 44:167-203. [PMID: 8434123 DOI: 10.1016/s0079-6603(08)60220-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- C K Mathews
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis 97331
| |
Collapse
|
49
|
Narasimhan J, Antholine WE, Chitambar CR. Effect of gallium on the tyrosyl radical of the iron-dependent M2 subunit of ribonucleotide reductase. Biochem Pharmacol 1992; 44:2403-8. [PMID: 1335254 DOI: 10.1016/0006-2952(92)90686-d] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Gallium, a pharmacologically important metal which resembles iron, was shown in previous studies to inhibit ribonucleotide reductase. To better understand its mechanism of action, we have examined the interaction of gallium with the iron-dependent M2 subunit of ribonucleotide reductase. In its active form, M2 contains an iron center and a tyrosyl free radical which is detectable by ESR spectroscopy. In the present study, cytoplasmic extracts prepared from murine leukemic L1210 cells after an 18-hr incubation with 960 microM gallium nitrate displayed a > 60% inhibition in their M2 tyrosyl radical ESR signal. However, this signal was restored within 15 min to levels greater than that of controls by the addition of increasing concentrations of ferrous ammonium sulfate. Gallium citrate added directly to cytoplasmic extracts from control cells also decreased the tyrosyl radical signal, an effect which could be reversed by iron. Immunoblot analysis revealed that incubation with gallium did not diminish the amount of M2 protein in cells, thus indicating that the decrease in the tyrosyl radical signal was not due to a decrease in cellular M2 content. In immunoprecipitation studies of 59Fe-labeled M2, gallium displaced 55-60% of the 59Fe incorporated into M2. Our studies suggest that gallium displaces iron from the M2 subunit of ribonucleotide reductase, resulting in a loss of the tyrosyl radical and an accumulation of inactive M2 within the cell.
Collapse
Affiliation(s)
- J Narasimhan
- Department of Medicine, Medical College of Wisconsin, Milwaukee 53226
| | | | | |
Collapse
|
50
|
Early loss of the tyrosyl radical in ribonucleotide reductase of adenocarcinoma cells producing nitric oxide. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)50046-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|